
Chapter 17

Byzantine Agreement

In order to make flying safer, researchers studied possible failures of various
sensors and machines used in airplanes. While trying to model the failures,
they were confronted with the following problem: Failing machines did not just
crash, instead they sometimes showed arbitrary behavior before stopping com-
pletely. With these insights researchers modeled failures as arbitrary failures,
not restricted to any patterns.

Definition 17.1 (Byzantine). A node which can have arbitrary behavior is
called byzantine. This includes “anything imaginable”, e.g., not sending any
messages at all, or sending different and wrong messages to different neighbors,
or lying about the input value.

Remarks:

• Byzantine behavior also includes collusion, i.e., all byzantine nodes
are being controlled by the same adversary.

• We assume that any two nodes communicate directly, and that no
node can forge an incorrect sender address. This is a requirement, such
that a single byzantine node cannot simply impersonate all nodes!

• We call non-byzantine nodes correct nodes.

Definition 17.2 (Byzantine Agreement). Finding consensus as in Definition
16.1 in a system with byzantine nodes is called byzantine agreement. An algo-
rithm is f -resilient if it still works correctly with f byzantine nodes.

Remarks:

• As for consensus (Definition 16.1) we also need agreement, termination
and validity. Agreement and termination are straight-forward, but
what about validity?

189

190 CHAPTER 17. BYZANTINE AGREEMENT

17.1 Validity

Definition 17.3 (Any-Input Validity). The decision value must be the input
value of any node.

Remarks:

• This is the validity definition we implicitly used for consensus, in Def-
inition 16.1.

• Does this definition still make sense in the presence of byzantine
nodes? What if byzantine nodes lie about their inputs?

• We would wish for a validity definition which differentiates between
byzantine and correct inputs.

Definition 17.4 (Correct-Input Validity). The decision value must be the input
value of a correct node.

Remarks:

• Unfortunately, implementing correct-input validity does not seem to
be easy, as a byzantine node following the protocol but lying about
its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 17.5 (All-Same Validity). If all correct nodes start with the same
input v, the decision value must be v.

Remarks:

• If the decision values are binary, then correct-input validity is induced
by all-same validity.

• If the input values are not binary, but for example from sensors that
deliever values in R, all-same validity is in most scenarios not really
useful.

Definition 17.6 (Median Validity). If the input values are orderable, e.g. v ∈
R, byzantine outliers can be prevented by agreeing on a value close to the median
of the correct input values, where close is a function of the number of byzantine
nodes f .

Remarks:

• Is byzantine agreement possible? If yes, with what validity condition?

• Let us try to find an algorithm which tolerates 1 single byzantine node,
first restricting to the so-called synchronous model.

Model 17.7 (synchronous). In the synchronous model, nodes operate in syn-
chronous rounds. In each round, each node may send a message to the other
nodes, receive the messages sent by the other nodes, and do some local compu-
tation.

Definition 17.8 (synchronous runtime). For algorithms in the synchronous
model, the runtime is simply the number of rounds from the start of the execution
to its completion in the worst case (every legal input, every execution scenario).



17.2. HOW MANY BYZANTINE NODES? 191

17.2 How Many Byzantine Nodes?

Algorithm 17.9 Byzantine Agreement with f = 1.

1: Code for node u, with input value x:

Round 1

2: Send tuple(u, x) to all other nodes
3: Receive tuple(v, y) from all other nodes v
4: Store all received tuple(v, y) in a set Su

Round 2

5: Send set Su to all other nodes
6: Receive sets Sv from all nodes v
7: T = set of tuple(v, y) seen in at least two sets Sv, including own Su
8: Let tuple(v, y) ∈ T be the tuple with the smallest value y
9: Decide on value y

Remarks:

• Byzantine nodes may not follow the protocol and send syntactically in-
correct messages. Such messages can easily be deteced and discarded.
It is worse if byzantine nodes send syntactically correct messages, but
with a bogus content, e.g., they send different messages to different
nodes.

• Some of these mistakes cannot easily be detected: For example, if a
byzantine node sends different values to different nodes in the first
round; such values will be put into Su. However, some mistakes can
and must be detected: Observe that all nodes only relay information
in Round 2, and do not say anything about their own value. So, if a
byzantine node sends a set Sv which contains a tuple(v, y), this tuple
must be removed by u from Sv upon receiving it (Line 6).

• Recall that we assumed that nodes cannot forge their source address;
thus, if a node receives tuple(v, y) in Round 1, it is guaranteed that
this message was sent by v.

Lemma 17.10. If n ≥ 4, all correct nodes have the same set T .

Proof. With f = 1 and n ≥ 4 we have at least 3 correct nodes. A correct node
will see every correct value at least twice, once directly from another correct
node, and once through the third correct node. So all correct values are in T .
If the byzantine node sends the same value to at least 2 other (correct) nodes,
all correct nodes will see the value twice, so all add it to set T . If the byzantine
node sends all different values to the correct nodes, none of these values will
end up in any set T .

Theorem 17.11. Algorithm 17.9 reaches byzantine agreement if n ≥ 4.

192 CHAPTER 17. BYZANTINE AGREEMENT

Proof. We need to show agreement, any-input validity and termination. With
Lemma 17.10 we know that all correct nodes have the same set T , and therefore
agree on the same minimum value. The nodes agree on a value proposed by any
node, so any-input validity holds. Moreover, the algorithm terminates after two
rounds.

Remarks:

• If n > 4 the byzantine node can put multiple values into T .

• The idea of this algorithm can be generalized for any f and n >
3f . In the generalization, every node sends in every of f + 1 rounds
all information it learned so far to all other nodes. In other words,
message size increases exponentially with f .

• Does Algorithm 17.9 also work with n = 3?

Theorem 17.12. Three nodes cannot reach byzantine agreement with all-same
validity if one node among them is byzantine.

Proof. We have three nodes u, v, w. In order to achieve all-same validity, a
correct node must decide on its own value if another node supports that value.
The third node might disagree, but that node could be byzantine. If correct
node u has input 0 and correct node v has input 1, the byzantine node w can
fool them by telling u that its value is 0 and simultaneously telling v that its
value is 1. This leads to u and v deciding on their own values, which results in
violating the agreement condition. Even if u talks to v, and they figure out that
they have different assumptions about w’s value, u cannot distinguish whether
w or v is byzantine.

Theorem 17.13. A network with n nodes cannot reach byzantine agreement
with f ≥ n/3 byzantine nodes.

Proof. Let us assume (for the sake of contradiction) that there exists an algo-
rithm A that reaches byzantine agreement for n nodes with f ≥ n/3 byzantine
nodes. With A, we can solve byzantine agreement with 3 nodes. For simplicity,
we call the 3 nodes u, v, w supernodes.

Each supernode simulates n/3 nodes, either bn/3c or dn/3e, if n is not di-
visible by 3. Each simulated node starts with the input of its supernode. Now
the three supernodes simulate algorithm A. The single byzantine supernode
simulates dn/3e byzantine nodes. As algorithm A promises to solve byzantine
agreement for f ≥ n/3, A has to be able to handle dn/3e byzantine nodes.
Algorithm A guarantees that the correct nodes simulated by the correct two su-
pernodes will achieve byzantine agreement. So the two correct supernodes can
just take the value of their simulated nodes (these values have to be the same
by the agreement property), and we have achieved agreement for three supern-
odes, one of them byzantine. This contradicts Lemma 17.12, hence algorithm
A cannot exist.



17.3. THE KING ALGORITHM 193

17.3 The King Algorithm

Algorithm 17.14 King Algorithm (for f < n/3)

1: x = my input value
2: for phase = 1 to f + 1 do

Round 1

3: Broadcast value(x)

Round 2

4: if some value(y) at least n− f times then
5: Broadcast propose(y)
6: end if
7: if some propose(z) received more than f times then
8: x = z
9: end if

Round 3

10: Let node vi be the predefined king of this phase i
11: The king vi broadcasts its current value w
12: if received strictly less than n− f propose(x) then
13: x = w
14: end if
15: end for

Lemma 17.15. Algorithm 17.14 fulfills the all-same validity.

Proof. If all correct nodes start with the same value, all correct nodes propose
it in Round 2. All correct nodes will receive at least n − f proposals, i.e., all
correct nodes will stick with this value, and never change it to the king’s value.
This holds for all phases.

Lemma 17.16. If a correct node proposes x, no other correct node proposes y,
with y 6= x, if n > 3f .

Proof. Assume (for the sake of contradiction) that a correct node proposes value
x and another correct node proposes value y. Since a good node only proposes
a value if it heard at least n−f value messages, we know that both nodes must
have received their value from at least n− 2f distinct correct nodes (as at most
f nodes can behave byzantine and send x to one node and y to the other one).
Hence, there must be a total of at least 2(n − 2f) + f = 2n − 3f nodes in the
system. Using 3f < n, we have 2n− 3f > n nodes, a contradiction.

Lemma 17.17. There is at least one phase with a correct king.

Proof. There are f + 1 phases, each with a different king. As there are only f
byzantine nodes, one king must be correct.

Lemma 17.18. After a round with a correct king, the correct nodes will not
change their values v anymore, if n > 3f .

194 CHAPTER 17. BYZANTINE AGREEMENT

Proof. If all correct nodes change their values to the king’s value, all correct
nodes have the same value. If some correct node does not change its value to
the king’s value, it received a proposal at least n − f times, therefore at least
n−2f correct nodes broadcasted this proposal. Thus, all correct nodes received
it at least n − 2f > f times (using n > 3f), therefore all correct nodes set
their value to the proposed value, including the correct king. Note that only
one value can be proposed more than f times, which follows from Lemma 17.16.
With Lemma 17.15, no node will change its value after this round.

Theorem 17.19. Algorithm 17.14 solves byzantine agreement.

Proof. The king algorithm reaches agreement as either all correct nodes start
with the same value, or they agree on the same value latest after the phase
where a correct node was king according to Lemmas 17.17 and 17.18. Because
of Lemma 17.15 we know that they will stick with this value. Termination is
guaranteed after 3(f + 1) rounds, and all-same validity is proved in Lemma
17.15.

Remarks:

• Algorithm 17.14 requires f + 1 predefined kings. We assume that the
kings (and their order) are given. Finding the kings indeed would be
a byzantine agreement task by itself, so this must be done before the
execution of the King algorithm.

• Do algorithms exist which do not need predefined kings? Yes, see
Section 17.5.

• Can we solve byzantine agreement (or at least consensus) in less than
f + 1 rounds?

17.4 Lower Bound on Number of Rounds

Theorem 17.20. A synchronous algorithm solving consensus in the presence
of f crashing nodes needs at least f+1 rounds, if nodes decide for the minimum
seen value.

Proof. Let us assume (for the sake of contradiction) that some algorithm A
solves consensus in f rounds. Some node u1 has the smallest input value x, but
in the first round u1 can send its information (including information about its
value x) to only some other node u2 before u1 crashes. Unfortunately, in the
second round, the only witness u2 of x also sends x to exactly one other node u3

before u2 crashes. This will be repeated, so in round f only node uf+1 knows
about the smallest value x. As the algorithm terminates in round f , node uf+1

will decide on value x, all other surviving (correct) nodes will decide on values
larger than x.



17.5. ASYNCHRONOUS BYZANTINE AGREEMENT 195

Remarks:

• A general proof without the restriction to decide for the minimum
value exists as well.

• Since byzantine nodes can also just crash, this lower bound also holds
for byzantine agreement, so Algorithm 17.14 has an asymptotically
optimal runtime.

• So far all our byzantine agreement algorithms assume the synchronous
model. Can byzantine agreement be solved in the asynchronous model?

17.5 Asynchronous Byzantine Agreement

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/9)

1: xi ∈ {0, 1} / input bit
2: r = 1 / round
3: decided = false
4: Broadcast propose(xi,r)
5: repeat
6: Wait until n− f propose messages of current round r arrived
7: if at least n− 2f propose messages contain the same value x then
8: xi = x, decided = true
9: else if at least n− 4f propose messages contain the same value x then

10: xi = x
11: else
12: choose xi randomly, with Pr[xi = 0] = Pr[xi = 1] = 1/2
13: end if
14: r = r + 1
15: Broadcast propose(xi,r)
16: until decided (see Line 8)
17: decision = xi

Lemma 17.22. Assume n > 9f . If a correct node chooses value x in Line 10,
then no other correct node chooses value y 6= x in Line 10.

Proof. For the sake of contradiction, assume that both 0 and 1 are chosen in Line
10. This means that both 0 and 1 had been proposed by at least n− 5f correct
nodes. In other words, we have a total of at least 2(n−5f)+f = n+(n−9f) > n
nodes. Contradiction!

Theorem 17.23. Algorithm 17.21 solves binary byzantine agreement as in Def-
inition 17.2 for up to f < n/9 byzantine nodes.

Proof. First note that it is not a problem to wait for n− f propose messages in
Line 6, since at most f nodes are byzantine. If all correct nodes have the same
input value x, then all (except the f byzantine nodes) will propose the same
value x. Thus, every node receives at least n−2f propose messages containing x,
deciding on x in the first round already. We have established all-same validity!

196 CHAPTER 17. BYZANTINE AGREEMENT

If the correct nodes have different (binary) input values, the validity condition
becomes trivial as any result is fine.

What about agreement? Let u be the first node to decide on value x (in
Line 8). Due to asynchrony another node v received messages from a different
subset of the nodes, however, at most f senders may be different. Taking
into account that byzantine nodes may lie (send different propose messages to
different nodes), f additional propose messages received by v may differ from
those received by u. Since node u had at least n − 2f propose messages with
value x, node v has at least n− 4f propose messages with value x. Hence every
correct node will propose x in the next round, and then decide on x.

So we only need to worry about termination: We have already seen that as
soon as one correct node terminates (Line 8) everybody terminates in the next
round. So what are the chances that some node u terminates in Line 8? Well,
we can hope that all correct nodes randomly propose the same value (in Line
12). Maybe there are some nodes not choosing at random (entering Line 10
instead of 12), but according to Lemma 17.22 they will all propose the same.

Thus, at worst all n−f correct nodes need to randomly choose the same bit,
which happens with probability 2−(n−f)+1. If so, all correct nodes will send the
same propose message, and the algorithm terminates. So the expected running
time is exponential in the number of nodes n.

Remarks:

• This Algorithm is a proof of concept that asynchronous byzantine
agreement can be achieved. Unfortunately this algorithm is not useful
in practice, because of its runtime.

• For a long time, there was no algorithm with subexponential runtime.
The currently fastest algorithm has an expected runtime of O(n2.5)
but only tolerates f ≤ 1/500n many byzantine nodes. This algorithm
works along the lines of the shared coin algorithm; additionally nodes
try to detect which nodes are byzantine.

Chapter Notes

The project which started the study of byzantine failures was called SIFT and
was founded by NASA [WLG+78], and the research regarding byzantine agree-
ment started to get significant attention with the results by Pease, Shostak, and
Lamport [PSL80, LSP82]. In [PSL80] they presented the generalized version
of Algorithm 17.9 and also showed that byzantine agreement is unsolvable for
n ≤ 3f . The algorithm presented in that paper is nowadays called Exponential
Information Gathering (EIG), due to the exponential size of the messages.

There are many algorithms for the byzantine agreement problem. For ex-
ample the Queen Algorithm [BG89] which has a better runtime than the King
algorithm [BGP89], but tolerates less failures. That byzantine agreement re-
quires at least f + 1 many rounds was shown by Dolev and Strong [DS83],
based on a more complicated proof from Fischer and Lynch [FL82].

While many algorithms for the synchronous model have been around for a
long time, the asynchronous model is a lot harder. The only results were by Ben-
Or and Bracha. Ben-Or [Ben83] was able to tolerate f < n/5. Bracha [BT85]



BIBLIOGRAPHY 197

improved this tolerance to f < n/3. The first algorithm with a polynomial
expected runtime was found by King and Saia [KS13] just recently.

Nearly all developed algorithms only satisfy all-same validity. There are a
few exceptions, e.g., correct-input validity [FG03], available if the initial values
are from a finite domain, or median validity [SW15] if the input values are
orderable.

Before the term byzantine was coined, the terms Albanian Generals or Chi-
nese Generals were used in order to describe malicious behavior. When the
involved researchers met people from these countries they moved – for obvious
reasons – to the historic term byzantine [LSP82].

This chapter was written in collaboration with Barbara Keller.

Bibliography

[Ben83] Michael Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In Proceed-
ings of the second annual ACM symposium on Principles of distrib-
uted computing, pages 27–30. ACM, 1983.

[BG89] Piotr Berman and Juan A Garay. Asymptotically optimal distributed
consensus. Springer, 1989.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards
optimal distributed consensus (extended abstract). In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, pages
410–415, 1989.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broad-
cast protocols. Journal of the ACM (JACM), 32(4):824–840, 1985.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656–666,
1983.

[FG03] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols
for strong and differential consensus. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing,
pages 211–220. ACM, 2003.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. 14(4):183–186, June 1982.

[KS13] Valerie King and Jared Saia. Byzantine agreement in polynomial
expected time:[extended abstract]. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 401–410.
ACM, 2013.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382–401, 1982.

198 CHAPTER 17. BYZANTINE AGREEMENT

[PSL80] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reach-
ing agreement in the presence of faults. J. ACM, 27(2):228–234,
1980.

[SW15] David Stolz and Roger Wattenhofer. Byzantine Agreement with
Median Validity. In 19th International Conference on Priniciples of
Distributed Systems (OPODIS), Rennes, France, 2015.

[WLG+78] John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green,
Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shostak, and
Charles B. Weinstock. Sift: Design and analysis of a fault-tolerant
computer for aircraft control. In Proceedings of the IEEE, pages
1240–1255, 1978.


