
1Johannes Schneider and Prof. Roger Wattenhofer

Multi-Core Computing
with Transactional Memory

Overview

 Introduction
 Difficulties with parallel (multi-core) programming
 A (partial) solution: Transactional Memory
 Contention Management

Johannes Schneider and Prof. Roger Wattenhofer 2

Multi-cores will be everywhere

 To increase computing speed, traditionally the
clock speed of a CPU was increased
 Problem: Overheating

 New approach: Have many cores on a single die
 Multi-core chips are used in every PC and soon

in every mobile phone
 It is likely that we see a doubling of cores every 2

years like we saw a doubling of clock speed
 BUT: Parallel programming brings new problems

and adds complexity for software engineers

Johannes Schneider and Prof. Roger Wattenhofer 3

Why is parallel programming more difficult?

 We need synchronization…
 Parallel reservation system for cinema tickets without

synchronization

Johannes Schneider and Prof. Roger Wattenhofer 4

Time Thread 1
- Return 5 tickets

n = Number of
sold tickets

Thread 2
- Buy 3 tickets

0 100
1 Read n (Return 100) 100

2 100 Read n (Return 100)
3 New value for n: 100-5 =95

Set n to 95
95

4 103 New value for n: 100+3=103
Set n to 103

Two kinds of parallelism

 Data parallelism
 different data for each thread (running on a core)
 every core works separately
 No overlapping, no problem!
 Ex.: Each thread sorts a given set of data unknown to other threads

 Task parallelism
 several tasks working on same/overlapping data
 Ex.: All threads insert/delete elements in the same tree

Johannes Schneider and Prof. Roger Wattenhofer 5

Concurrent programming today
 Synchronization using locks or monitors
 Locks implemented via test-and-set or compare and swap

operations
 Monitor : Mutual exclusion

 e.g. java “synchronized method”
 Easy but slow -> only 1 thread runs at a time

 Coarse grained vs. fine grained locking
easy but slow program difficult, cumbersome but fast programs
Little(no) parallelism lots of code, deadlocks…

Thread 1 Thread 2

Johannes Schneider and Prof. Roger Wattenhofer

lock all data
modify/use data
unlock all data

lock Element A
lock Element B
modify/use A,B
lock Element C
modify/use A,B,C
unlock A
modify/use B,C
unlock B,C

lock Element B
lock Element A
modify/use A,B

unlock A,B

Deadlock possible: Thread 1
locks A, while Thread 2 locks
B, then both are stuck…

Only 1 thread can operate on
the data

6

Example: Deleting an element from a linked list

 Sequential code/Coarse grained locking
 < 10 lines of code

 Concurrent linked list: See below…

Johannes Schneider and Prof. Roger Wattenhofer 7

More problems with locking - Composability

 How to compose objects/components using locks
 If locks are external then programmer must handle locking

himself
 cumbersome(lots of code), error-prone (deadlocks)

 If locks are internal then it is not possible to achieve all
desired behaviors
 Example: Hash table T1 (contains number 1) and T2 (empty)

No duplicates, each element unique
2 threads moving elements between tables

Johannes Schneider and Prof. Roger Wattenhofer

Algorithm Move(Element e, Table from, Table to)
if from.find(e) then

to.insert(e)
from.delete(e)

end if

8

Example continued…

 Threads might be delayed for some reasons: interrupts,
cache miss…

 Where is the ‘1’?
Johannes Schneider and Prof. Roger Wattenhofer 9

1

Transactional memory(TM) - a (partial) solution

 Simple for the programmer

 Composable

 Many TM systems (internally) still use locks
 But the TM system (not the programmer) cares about
 Performance
 Progress/correctness (no deadlocks...)

Johannes Schneider and Prof. Roger Wattenhofer

Begin transaction
modify/use data
End transaction

Algorithm Move(Element e, Table from, Table to)
Begin Transaction
if from.find(e) then

…
End Transaction

Method Table.find(Element e)
Begin transaction

…
End transaction

10

What is a transaction?

 Nothing new, has been used in databases for a long time
 Characterized by 3 properties (ACI)
 Atomicity

 Either a transaction finishes all its operations or no operation has an effect on the
system

 Consistency
 All objects are in a valid state before and after the transaction

 Isolation
 A transaction cannot access or see data in an intermediate (possibly invalid) state

of any parallel running transactions.

 For databases also durability
 If a transaction has completed, its changes are permanent

 Written on a disk not just in memory

Johannes Schneider and Prof. Roger Wattenhofer 11

Implementation of a TM system

 Systems exist in hardware, software and as a mix (hybrid)
 (Usually) transactions are executed optimistically
 i.e. without knowing whether they use the same data

 If transactions work on
 different data, everything is ok
 modify the same data, conflicts arise that must be resolved…

 Transactions might get delayed (has to wait) or aborted.

 A transaction keeps track of all modified values and
restores all values, if it is aborted due to a conflict.

 A transaction successfully finishes with a commit
 Only after the commit, other transactions notice its changes.

Johannes Schneider and Prof. Roger Wattenhofer 12

 A contention manager can abort or delay a transaction
 Important impact on performance
 Example
 Initially: A=1, B=1

T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict

…
A:=2

abort (undo all changes, i.e. set A:=1)
and restart

T1Trans.1

…
A:=2

Trans. 2

B:=2
…
A:=3conflict

abort (set B:=1) and
restart, retry or wait

Conflicts – A contention manager decides

Johannes Schneider and Prof. Roger Wattenhofer 13

Just another example of a contention manager

Johannes Schneider and Prof. Roger Wattenhofer

T1Trans. 1 T1Trans. 2

…

A:=2
conflict

A:=2

Abort

A:=1
…

14

Why is TM only a partial solution? – Open issues

 I/O support
 Imagine a document is printed within a transaction and the

transaction gets aborted => waste of paper

 Interaction with old, non-transactional (legacy) code
 Efficiency
 TM still too slow, but catching up quickly…

 Despite the problems:
 TM system already on the market, partially supporting hardware TM
 many software TM libraries exist

Johannes Schneider and Prof. Roger Wattenhofer 15

Open issues from a research perspective

 Why research?
 Help understanding to improve efficiency
 create (provable) secure systems

 System model not sufficient
 PRAM: assumes threads are synchronous

only read/write access to memory
(e.g. no test and set)

no multilevel caching

 How to resolve conflicts?
 What is the ‘best’ contention manager?

Johannes Schneider and Prof. Roger Wattenhofer 16

Some theory on contention management

 Model: n transactions (and threads) starting concurrently
on n cores

 S (shared) resources (variables/objects)
 Transaction = sequence of operations
 Operation:
 takes 1 time unit
 2 kinds: Write, compute/abort/commit
 Write = modify (shared) resource and lock it until commit

 A conflict arises if transaction A wants to lock a resource
that is already locked by B

Johannes Schneider and Prof. Roger Wattenhofer 17

Model continued…

 A transaction demands unknown resources
 Dynamic data structures change over time
 Eg.:Binary tree, a transaction wants to insert 3

Initially: Must lock/modify right pointer of node 1

Assume transaction got aborted and another transaction
inserted 4 meanwhile.
Now: Must lock/modify left pointer of node 4

 Duration(number of operations) is fixed
 Not true, but mostly only a constant factor away

 Model is a simplification
 Ex.: There are also reads
 Ex.: a write access, does not always require a resource to be locked

Johannes Schneider and Prof. Roger Wattenhofer

1

1

4

3

3

18

-> only 1 thread at a time

Contention manager (CM)

 Distributed
 Each thread has its own manager

 Does not know future(potential) conflicts
 Conflicts also not learnable, might change
 Online scheduling problem

Manager 1 Manager 2 Manager 3

Johannes Schneider and Prof. Roger Wattenhofer

T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict

…
A:=2

T1Trans.3

…
C:=2

Manager 2
resolves conflict

19

Properties of a contention manager

 Throughput
 Makespan = How long it takes until all n transactions committed =

length of a schedule
 Schedule of transactions defined by decisions of CM
 Look at worst case
 Competitive ratio = makespan my CM / makespan optimal CM

 Oblivious adversary = knows my CM (not random choices)
 Optimal CM knows decisions of adversary and all conflicts…

 Progress guarantees
 wait freedom (strongest guarantee)

 all threads(transactions) make progress in a finite number of steps
 lock freedom

 one thread makes progress in a finite number of steps
 obstruction freedom (weakest)

 a thread makes progress in a finite number of steps in absence of contention (no
conflicts, no shared data)

Johannes Schneider and Prof. Roger Wattenhofer 20

Example of a CM
 Strategy: Be aggressive
 If a transaction A wants a resource locked by B, then B is aborted

 Throughput?
 (Possibly) none

 Livelock: Transactions repeatedly abort each other
 Eg: 2 Transactions that write/lock the same resource

 Progress guarantees?
 Obstruction freedom

Johannes Schneider and Prof. Roger Wattenhofer

T1Trans. 1

T1Trans. 2

A:=2
…

Conflict, Trans. 1 aborts and restarts
A:=1
…

A:=1
…

Conflict, Trans. 2 aborts and restarts

A:=2
…

…

21

 How long does it take to compute a good schedule?
 = Is it NP-hard to approximate the optimal makespan by a constant factor?

 …as long as approximating an optimal vertex coloring
 Optimal = Minimum number of colors =
 NP-hard to compute a coloring with

 Reduction to coloring
 Graph -> Scheduling problem -> Schedule -> Coloring
 Nodes = transactions
 Edges = resources (conflicts)
 Transactions have same duration t (=1)
 Transactions of same color don’t conflict

if resource acquisition takes almost no time, otherwise more complex

 This holds even, if all transactions (potential) conflicts are known and
transactions don’t change

R14

R17

T7

Problem complexity, it is (NP) hard…

22Johannes Schneider and Prof. Roger Wattenhofer

T1

T2

T3

T4

Time [0,t] [t,2t] [2t,3t]
Trans.
Run&commit

T1,T2,T3 T4,T5,T6 T7,T8

It is hard, so what can be done? Another example…

 CM Strategy: Avoid wasting work
 Approximate the work done
 Each transaction gets a (unique) timestamp t on startup (and after an

abort)
 Conflict: The younger transaction, having performed less work, is

aborted

 Throughput? Progress guarantees?
 Oldest transaction will always commit
 Lock freedom

 At least one out of n cores successfully executes a transaction

Johannes Schneider and Prof. Roger Wattenhofer

T1Tr. 1, t = 0
T1Tr. 2, t = 2

A:=2
Conflict, Trans. 2 aborts and restarts

A:=1
…

Conflict, Trans. 2 aborts and restarts A:=2
…

A:=2

t=3

t=4 23

Competitive ratio of the time stamp manager

 S resources
 n transactions that start concurrently
 Assume each transaction Ti locks a resource directly after

its start for its whole duration tTi

 Observe: At most S transactions can run in parallel
 If S+1 run in parallel at least 2 must attempt to lock the same

resource

 Thus the optimal makespan is at least:
 Makespan CM timestamp is at most:
 all run sequentially in the worst case

 Competitive ratio = timestamp/ optimal

Johannes Schneider and Prof. Roger Wattenhofer 24

T1Aborted Trans.

R0:=1

Lower bound on competitive ratio
 Thm: Competitive ratio of any CM (deterministic and randomized) is

Ω(n) if number of resources S >= n
 Proof (only for deterministic CM)

 Any CM must abort ½ of all transactions ST, say SA
 Adversary knows the aborted trans. SA
 She/he lets all of them lock the same resource R0
 All aborted transaction (½ n) must run sequentially
 Optimal lets all transactions SA commit and aborts the other ½

Johannes Schneider and Prof. Roger Wattenhofer 25

T1Trans. 1

R1:=1
R2:=1

T1Trans. 2

R2:=1
R1:=1

T1Trans. 3

R3:=1
R4:=1

T1Trans. 4

R4:=1
R3:=1

…

T1Aborted Trans.

R0:=1

Analysis of algorithm timestamp revisited

 For the lower bound the adversary reduced the parallelism
dramatically
 This is unlikely to happen

 Assume the demanded resources don’t change over time
 i.e. the adversary cannot reduce parallelism at run-time

 Is the competitive ratio still Ω(n) (for S>=n)?
 Yes (proof next slide)
 All transactions start concurrently
 Adversary knows timestamps of all transactions

Proof

Johannes Schneider and Prof. Roger Wattenhofer
27

T1Tr. 1,t=0

R1:=1

R2:=1

T1Tr. 2,t=1

R2:=1

R3:=1

T1Tr. 3,t=2

R3:=1

R4:=1

T1Tr. 4, t=3

R4:=1

R3:=1

…

Duration tT = n

R2:=1

R3:=1

R3:=1

R4:=1

R4:=1

R3:=1

R3:=1

R4:=1

R3:=1

time

Proof continued...

 Transaction Ti (>1) aborts at time n-i+1, Trans. 1 commits
 After a restart Transaction Ti (>2) aborts after running for

time n-i+2, Trans. 2 commits
 After the next restart Transaction Ti (>3) aborts after

running for time n-i+3, Trans. 3 commits
 The time until transaction i=n commits is
 Optimal:
 Schedules all transaction Ti with even i then the rest
 O(n)

 Competitive ratio: Ω(n)

28Johannes Schneider and Prof. Roger Wattenhofer

How about a randomized approach?

 Choose a random priority r from [1,n] on startup
 Transaction A with larger or same random number wins

conflict against B
 B aborts and waits
 Restart with a new random number as soon as A either commits or

aborts

Johannes Schneider and Prof. Roger Wattenhofer

16 December David Hasenfratz

T1Tr. 1, r = 3 T1Tr. 2, r = 2

C:=1
…
A:=3

…
A:=2

T1Tr.3, r = 1

…
C:=2

Tr. 3 aborts and waits
Tr. 2 aborts and waits

…
C:=2

r =5
Tr. 3 restarts and chooses new random number

29

Analysis

 Assume:
 (needed) resources are not modified
 Longest transaction takes time t
 Any transaction conflicts with at most d other transactions

 After time 2 t any transaction can restart and draw a new
random number
 Execute for time t-1 and then aborts and wait for at most time t

 Probability highest rand. number: 1/d
 Prob. random number unique:
 Choose d e log n random numbers

and probability to commit is:

Johannes Schneider and Prof. Roger Wattenhofer 30

Analysis continued and evaluation

 Time to choose d e log n random numbers is O(t d log n)

 How good is the algorithm?
 For the analysis of algorithm timestamp d = 2, t = n

 Makespan of randomized CM: O(n log n) with ‘high’ probability
 Deterministic timestamp: O(n2)

 Complexity measure
 Originally: Dependent on number of resources
 Now: Dependent on number of conflicts a transaction faces
 Better?

31Johannes Schneider and Prof. Roger Wattenhofer

Theory and practice

 For most benchmarks our randomized approach and a
timestamp manager achieve comparable throughput

 In general, the quality of a CM varies very much across
different benchmarks
 A CM might be good for one benchmark but bad for another

 A strategy that is (often) good:
 After a conflict do some kind of exponential randomized backoff
 Reduces load on system, resolves livelocks

Johannes Schneider and Prof. Roger Wattenhofer 32

Exponential backoff

 Example: Polka manager
 Approximate work: priority = number of accessed resources
 In case of a conflict: If have higher priority abort the other, if have

lower priority, then perform an exponential backoff
 Say priority difference of the two transactions is r

 Algorithm:
For i = 0..r

If resource not locked then lock it
else wait random time span with mean 2i

After r unsuccessful trials abort transaction with higher priority

Johannes Schneider and Prof. Roger Wattenhofer 33

Semester/master theses

 Check the homepage
 www.dcg.ethz.ch/theses.html

 For TM: Currently, more practical theses
 Programming, but challenging programming…
 Focus improve speed

 Speeding up programs (on multi-core systems)
 Efficient Multicore Systems with Transactional Memory

34Johannes Schneider and Prof. Roger Wattenhofer

http://www.dcg.ethz.ch/theses.html�
http://dcg.ethz.ch/theses/not_assigned/SpeedingUpPrograms.pdf�

That’s it, have a nice vacation!

35Johannes Schneider and Prof. Roger Wattenhofer

	Slide Number 1
	Overview
	Multi-cores will be everywhere
	Why is parallel programming more difficult?
	Two kinds of parallelism
	Concurrent programming today
	Example: Deleting an element from a linked list
	More problems with locking - Composability
	Example continued…
	Transactional memory(TM) - a (partial) solution
	What is a transaction?
	Implementation of a TM system
	Conflicts – A contention manager decides
	Just another example of a contention manager
	Why is TM only a partial solution? – Open issues
	Open issues from a research perspective�
	Some theory on contention management
	Model continued…
	Contention manager (CM)
	Properties of a contention manager
	Example of a CM
	Problem complexity, it is (NP) hard…
	It is hard, so what can be done? Another example…
	Competitive ratio of the time stamp manager
	Lower bound on competitive ratio
	Analysis of algorithm timestamp revisited
	Proof
	Proof continued...
	How about a randomized approach?
	Analysis
	Analysis continued and evaluation
	Theory and practice
	Exponential backoff
	 Semester/master theses
	Slide Number 35

