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Multi-Core Computing
with Transactional Memory



Overview

 Introduction
 Difficulties with parallel (multi-core) programming
 A (partial) solution: Transactional Memory
 Contention Management
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Multi-cores will be everywhere 

 To increase computing speed, traditionally the 
clock speed of a CPU was increased 
 Problem: Overheating

 New approach: Have many cores on a single die
 Multi-core chips are used in every PC and soon 

in every mobile phone
 It is likely that we see a doubling of cores every 2 

years like we saw a doubling of clock speed
 BUT: Parallel programming brings new problems 

and adds complexity for software engineers

Johannes Schneider and Prof. Roger Wattenhofer 3



Why is parallel programming more difficult?

 We need synchronization…
 Parallel reservation system for cinema tickets without 

synchronization
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Time Thread 1
- Return 5 tickets

n = Number of 
sold tickets

Thread 2
- Buy 3 tickets

0 100
1 Read n (Return 100) 100

2 100 Read n (Return 100)
3 New value for n: 100-5 =95

Set n to 95
95

4 103 New value for n: 100+3=103
Set n to 103



Two kinds of parallelism

 Data parallelism
 different data for each thread (running on a core)
 every core works separately
 No overlapping, no problem! 
 Ex.: Each thread sorts a given set of data unknown to other threads

 Task parallelism
 several tasks working on same/overlapping data
 Ex.: All threads insert/delete elements in the same tree
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Concurrent programming today
 Synchronization using locks or monitors
 Locks implemented via test-and-set or compare and swap 

operations
 Monitor : Mutual exclusion

 e.g. java “synchronized method”
 Easy but slow -> only 1 thread runs at a time

 Coarse grained  vs.   fine grained locking
easy but slow program    difficult, cumbersome but fast programs
Little(no) parallelism         lots of code, deadlocks…

Thread 1                 Thread 2
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lock all data
modify/use data
unlock all data

lock Element A
lock Element B
modify/use A,B
lock Element C
modify/use A,B,C
unlock A
modify/use B,C
unlock B,C

lock Element B
lock Element A
modify/use A,B

unlock A,B

Deadlock possible: Thread 1 
locks A, while Thread 2 locks 
B, then both are stuck…

Only 1 thread can operate on 
the data
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Example: Deleting an element from a linked list

 Sequential code/Coarse grained locking
 < 10 lines of code

 Concurrent linked list: See below…
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More problems with locking - Composability

 How to compose objects/components using locks
 If locks are external then programmer must handle locking 

himself 
 cumbersome(lots of code), error-prone (deadlocks)

 If locks are internal then it is not possible to achieve all 
desired behaviors
 Example: Hash table T1 (contains number 1) and T2 (empty) 

No duplicates, each element unique
2 threads moving elements between tables
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Algorithm Move(Element e, Table from, Table to)
if from.find(e) then

to.insert(e)
from.delete(e)

end if
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Example continued…

 Threads might be delayed for some reasons: interrupts, 
cache miss…

 Where is the ‘1’?
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Transactional memory(TM) - a (partial) solution

 Simple for the programmer

 Composable

 Many TM systems (internally) still use locks
 But the TM system (not the programmer) cares about 
 Performance
 Progress/correctness (no deadlocks...)

Johannes Schneider and Prof. Roger Wattenhofer

Begin transaction
modify/use data
End transaction

Algorithm Move(Element e, Table from, Table to)
Begin Transaction
if from.find(e) then

…
End Transaction

Method Table.find(Element e) 
Begin transaction

…
End transaction
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What is a transaction?

 Nothing new, has been used in databases for a long time
 Characterized by 3 properties (ACI)
 Atomicity

 Either a transaction finishes all its operations or no operation has an effect on the 
system

 Consistency
 All objects are in a valid state before and after the transaction

 Isolation
 A transaction cannot access or see data in an intermediate (possibly invalid) state 

of any parallel running transactions.

 For databases also durability
 If a transaction has completed, its changes are permanent 

 Written on a disk not just in memory
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Implementation of a TM system

 Systems exist in hardware, software and as a mix (hybrid)
 (Usually) transactions are executed optimistically
 i.e. without knowing whether they use the same data

 If transactions work on 
 different data, everything is ok
 modify the same data, conflicts arise that must be resolved…

 Transactions might get delayed (has to wait) or aborted.

 A transaction keeps track of all modified values and 
restores all values, if it is aborted due to a conflict.

 A transaction successfully finishes with a commit
 Only after the commit, other transactions notice its changes.
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 A contention manager can abort or delay a transaction
 Important impact on performance
 Example
 Initially: A=1, B=1

T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict

…
A:=2

abort (undo all changes, i.e. set A:=1)
and restart

T1Trans.1

…
A:=2

Trans. 2

B:=2
…
A:=3conflict

abort (set B:=1) and 
restart, retry or wait

Conflicts – A contention manager decides
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Just another example of a contention manager
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T1Trans. 1 T1Trans. 2

…

A:=2
conflict

A:=2

Abort

A:=1
…
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Why is TM only a partial solution? – Open issues

 I/O support
 Imagine a document is printed within a transaction and the 

transaction gets aborted => waste of paper

 Interaction with old, non-transactional (legacy) code  
 Efficiency 
 TM still too slow, but catching up quickly…

 Despite the problems: 
 TM system already on the market, partially supporting hardware TM
 many software TM libraries exist
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Open issues from a research perspective

 Why research?
 Help understanding to improve efficiency
 create (provable) secure systems

 System model not sufficient
 PRAM: assumes threads are synchronous

only read/write access to memory 
(e.g. no test and set)

no multilevel caching

 How to resolve conflicts?
 What is the ‘best’ contention manager?
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Some theory on contention management

 Model: n transactions (and threads) starting concurrently 
on n cores

 S (shared) resources (variables/objects)
 Transaction = sequence of operations
 Operation:
 takes 1 time unit
 2 kinds: Write, compute/abort/commit
 Write = modify (shared) resource and lock it  until commit

 A conflict arises if  transaction A wants to lock a resource 
that is already locked by B
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Model continued…

 A transaction demands unknown resources
 Dynamic data structures change over time
 Eg.:Binary tree, a transaction wants to insert 3 

Initially: Must lock/modify right pointer of node 1

Assume transaction got aborted and another transaction 
inserted 4 meanwhile.
Now: Must lock/modify left pointer of node 4

 Duration(number of operations) is fixed
 Not true, but mostly only a constant factor away

 Model is a simplification
 Ex.: There are also reads
 Ex.: a write access, does not always require a resource to be locked
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1

1

4

3

3
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-> only 1 thread at a time



Contention manager (CM)

 Distributed
 Each thread has its own manager

 Does not know future(potential) conflicts
 Conflicts also not learnable, might change
 Online scheduling problem

Manager 1                  Manager 2                      Manager 3
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T1Trans. 1 T1Trans. 2

B:=2
…
A:=3

conflict

…
A:=2

T1Trans.3

…
C:=2

Manager 2 
resolves conflict
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Properties of a contention manager

 Throughput
 Makespan = How long it takes until all n transactions committed = 

length of a schedule 
 Schedule of transactions defined by decisions of CM
 Look at worst case
 Competitive ratio = makespan my CM / makespan optimal CM

 Oblivious adversary = knows my CM (not random choices)
 Optimal CM knows decisions of adversary and all conflicts…

 Progress guarantees
 wait freedom (strongest guarantee)

 all threads(transactions) make progress in a finite number of steps
 lock freedom

 one thread makes progress in a finite number of steps
 obstruction freedom (weakest)

 a thread makes progress in a finite number of steps in absence of contention (no 
conflicts, no shared data)
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Example of a CM
 Strategy: Be aggressive
 If a transaction A wants a resource locked by B, then B is aborted

 Throughput? 
 (Possibly) none

 Livelock: Transactions repeatedly abort each other
 Eg: 2 Transactions that write/lock the same resource

 Progress guarantees?
 Obstruction freedom
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T1Trans. 1

T1Trans. 2

A:=2
…

Conflict, Trans. 1 aborts and restarts
A:=1
…

A:=1
…

Conflict, Trans. 2 aborts and restarts

A:=2
…

…
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 How long does it take to compute a good schedule?
 = Is it NP-hard to approximate the optimal makespan by a constant factor?

 …as long as approximating an optimal vertex coloring
 Optimal = Minimum number of  colors =
 NP-hard to compute a coloring with

 Reduction to coloring
 Graph -> Scheduling problem -> Schedule -> Coloring 
 Nodes = transactions
 Edges = resources (conflicts)
 Transactions have same duration t (=1)
 Transactions of same color don’t conflict

if resource acquisition takes almost no time, otherwise more complex

 This holds even, if all transactions (potential) conflicts are known and 
transactions don’t change

R14

R17

T7

Problem complexity, it is (NP) hard…
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T1

T2

T3

T4

Time [0,t] [t,2t] [2t,3t]
Trans.
Run&commit

T1,T2,T3 T4,T5,T6 T7,T8



It is hard, so what can be done? Another example…

 CM Strategy: Avoid wasting work 
 Approximate the work done
 Each transaction gets a (unique) timestamp t on startup (and after an 

abort)
 Conflict: The younger transaction, having performed less work, is 

aborted

 Throughput? Progress guarantees?
 Oldest transaction will always commit
 Lock freedom

 At least one out of n cores successfully executes a transaction
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T1Tr. 1, t = 0
T1Tr. 2, t = 2

A:=2
Conflict, Trans. 2 aborts and restarts

A:=1
…

Conflict, Trans. 2 aborts and restarts A:=2
…

A:=2

t=3

t=4 23



Competitive ratio of the time stamp manager

 S resources
 n transactions that start concurrently
 Assume each transaction Ti locks a resource directly after 

its start for its whole duration tTi

 Observe: At most S transactions can run in parallel
 If S+1 run in parallel at least 2 must attempt to lock the same 

resource

 Thus the optimal makespan is at least: 
 Makespan CM timestamp is at most:
 all run sequentially in the worst case

 Competitive ratio = timestamp/ optimal 
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T1Aborted Trans. 

R0:=1

Lower bound on competitive ratio
 Thm: Competitive ratio of any CM (deterministic and randomized) is 

Ω(n) if number of resources S >= n
 Proof (only for deterministic CM)

 Any CM must abort ½ of all transactions ST, say SA
 Adversary knows the aborted trans. SA
 She/he lets all of them lock the same resource R0
 All aborted transaction (½ n) must run sequentially
 Optimal lets all transactions SA commit and aborts the other ½ 
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T1Trans. 1

R1:=1
R2:=1

T1Trans. 2

R2:=1
R1:=1

T1Trans. 3

R3:=1
R4:=1

T1Trans. 4

R4:=1
R3:=1

…

T1Aborted Trans. 

R0:=1



Analysis of algorithm timestamp revisited

 For the lower bound the adversary reduced the parallelism 
dramatically 
 This is unlikely to happen

 Assume the demanded resources don’t change over time
 i.e. the adversary cannot reduce parallelism at run-time

 Is the competitive ratio still Ω(n) (for S>=n)?
 Yes (proof next slide)
 All transactions start concurrently
 Adversary knows timestamps of all transactions



Proof
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T1Tr. 1,t=0

R1:=1

R2:=1

T1Tr. 2,t=1

R2:=1

R3:=1

T1Tr. 3,t=2

R3:=1

R4:=1

T1Tr. 4, t=3

R4:=1

R3:=1

…

Duration tT = n

R2:=1

R3:=1

R3:=1

R4:=1

R4:=1

R3:=1

R3:=1

R4:=1

R3:=1

time



Proof continued...

 Transaction Ti (>1) aborts at time n-i+1, Trans. 1 commits
 After a restart Transaction Ti (>2) aborts after running for 

time n-i+2, Trans. 2 commits
 After the next restart Transaction Ti (>3) aborts after 

running for time n-i+3, Trans. 3 commits
 The time until transaction i=n commits is 
 Optimal:
 Schedules all transaction Ti with even i then the rest
 O(n)

 Competitive ratio: Ω(n)
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How about a randomized approach?

 Choose a random priority r from [1,n] on startup
 Transaction A with larger or same random number wins 

conflict against B
 B aborts and waits
 Restart with a new random number as soon as A either commits or 

aborts
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16 December David Hasenfratz

T1Tr. 1, r = 3 T1Tr. 2, r = 2

C:=1
…
A:=3

…
A:=2

T1Tr.3, r = 1

…
C:=2

Tr. 3 aborts and waits
Tr. 2 aborts and waits

…
C:=2

r =5
Tr. 3 restarts and chooses new random number
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Analysis

 Assume:
 (needed) resources are not modified
 Longest transaction takes time t
 Any transaction conflicts with at most d other transactions

 After time 2 t any transaction can restart and draw a new 
random number
 Execute for time t-1 and then aborts and wait for at most time t

 Probability highest rand. number: 1/d
 Prob. random number unique:
 Choose d e log n random numbers

and probability to commit is:
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Analysis continued and evaluation

 Time to choose d e log n random numbers is O(t d log n)

 How good is the algorithm?
 For the analysis of algorithm timestamp d = 2, t = n

 Makespan of randomized CM:  O(n log n) with ‘high’ probability
 Deterministic timestamp: O(n2)

 Complexity measure
 Originally: Dependent on number of resources
 Now: Dependent on number of conflicts a transaction faces
 Better?
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Theory and practice

 For most benchmarks our randomized approach and a 
timestamp manager achieve comparable throughput

 In general, the quality of a CM varies very much across 
different benchmarks
 A CM might be good for one benchmark but bad for another

 A strategy that is (often) good:
 After a conflict do some kind of exponential randomized backoff
 Reduces load on system, resolves livelocks
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Exponential backoff

 Example: Polka manager
 Approximate work: priority = number of accessed resources
 In case of a conflict: If have higher priority abort the other, if have 

lower priority, then perform an exponential backoff
 Say priority difference of the two transactions is r

 Algorithm:
For i = 0..r

If resource not locked then lock it 
else wait random time span with mean 2i

After r unsuccessful trials abort transaction with higher priority
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Semester/master theses

 Check the homepage
 www.dcg.ethz.ch/theses.html

 For TM: Currently, more practical theses  
 Programming, but challenging programming…
 Focus improve speed

 Speeding up programs (on multi-core systems)
 Efficient Multicore Systems with Transactional Memory
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http://www.dcg.ethz.ch/theses.html�
http://dcg.ethz.ch/theses/not_assigned/SpeedingUpPrograms.pdf�


That’s it, have a nice vacation!
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