Discrete Event Systems
Solution to Exercise Sheet 10

1 Comparison of Finite Automata

Here are two simple finite automata:

For each, we have a one bit encoding for the states (x_A and x_B), one binary output (y_A and y_B), and one common binary input (u). We want to verify whether or not these two automata are equivalent. This can be done through the following steps:

a) Express the characteristic function of the transition relation for both automaton, $\psi_r(x, x', u)$.

b) Express the joint transition function, ψ_f.

Reminder: $\psi_f(x_A, x'_A, x_B, x'_B) = (\exists u : \psi_A(x_A, x'_A, u) \cdot \psi_B(x_B, x'_B, u))$.

c) Express the characteristic function of the reachable states, $\psi_X(x_A, x_B)$.

d) Express the characteristic function of the reachable output, $\psi_Y(y_A, y_B)$.

e) Are the two automata equivalent? **Hint:** Evaluate, for example, $\psi_Y(0, 1)$.

\[
\psi_A(x_A, x'_A, u) = x_A x'_A u + x_A x'_A u + x_A x'_A u + x_A x'_A u
\]
\[
\psi_B(x_B, x'_B, u) = x_B x'_B u + x_B x'_B u + x_B x'_B u + x_B x'_B u
\]

\[
\psi_f(x_A, x'_A, x_B, x'_B) = (x_A x'_A + x_A x'_A) \cdot (x_B x'_B + x_B x'_B) + (x_A x'_A + x_A x'_A) \cdot (x_B x'_B + x_B x'_B)
\]
\[
= x_A x'_A x_B x'_B + x_A x'_A x_B x'_B + x_A x'_A x_B x'_B + x_A x'_A x_B x'_B
\]
\[
= \psi_X x_B x'_B + \psi_X x_B x'_B + x_A x'_A x_B x'_B + x_A x'_A x_B x'_B
\]

\[
\psi_X = \exists x_A x'_A x_B x'_B + x_A x'_A x_B x'_B
\]

\[
\psi_Y(0, 1) = \psi_X 0, 1
\]

\[
\Rightarrow \psi_X = \exists x_A x'_A x_B x'_B + x_A x'_A x_B x'_B
\]
d) Here you first need to express the output function of each automaton, that is the feasible combinations of states and outputs,

\[\psi_A = \overline{x_A}y_A + x_Ay_A \quad \text{and} \quad \psi_B = \overline{x_B}y_B + x_By_B \]

Then the reachable outputs are the combination of the reachable states and the outputs functions, that is,

\[\psi_Y(y_A, y_B) = (\exists (x_A, x_B) : \psi_X \cdot \psi_A \cdot \psi_B) \]

\[= y_Ay_B + \overline{y_A}y_B + \overline{y_A}y_B \]

e) From the reachable output function, we see that these automata are not equivalent. Indeed, there exists a reachable output admissible \(\psi_Y((y_A, y_B) = (0, 1)) = 1 \) for which \(y_A \neq y_B \).

Another way of saying looking at it: \(\psi_Y \cdot (y_A \neq y_B) \neq 0 \), where \((y_A \neq y_B) = y_Ay_B + y_A\overline{y_B} \).

2 Temporal Logic

a) We consider the following automaton. The property \(a \) is true on the colored states (0 and 3).

For each of the following CTL formula, list all the states for which it holds true.

(i) \(EF \ a \)

(ii) \(EG \ a \)

(iii) \(EX \ AX \ a \)

(iv) \(EF \ (a \ AND \ EX \ NOT(a)) \)

(i) \(Q = \{0, 1, 2, 3\} \)

(ii) \(Q = \{0, 3\} \)

(iii) \((AX \ a) \) holds for \(\{2, 3\} \), thus \(Q = \{1, 2\} \)

(iv) \((a \ AND \ EX \ NOT(a)) \) is true for states where \(a \) is true and there exists a direct successor for which it is not. Only state 0 satisfy this (from it you can transition to 1, where \(a \) does not hold). Moreover, state 0 is reachable for all states in this automaton ("from all states there exists a path going through 0 at some point") Hence \(Q = \{0, 1, 2, 3\} \)

b) Given the transition function \(\psi_f(x, x') \) and the characteristic function \(\psi_Z(x) \) for a set \(Z \), write a small pseudo-code which returns the characteristic function of \(\psi_{AF}Z(x) \). It can be expressed as symbolic boolean functions, like \(x_A'x_B'x_B' + x_Ax_B'x_B' \).

Hint: To do this, simply use the classic boolean operators \(\text{AND}, \text{OR}, \text{NOT} \) and \(! = \). You can also use the operator \(PRE(Q, f) \), which returns the predecessor of the set \(Q \) by the transition function \(f \). That is,

\[PRE(Q, f) = \{ q' : \exists x, \psi_f(q', q) \cdot \psi_Q(q) = 1 \} \]
Hint: It can be useful to reformulate $AF\ Z$ as another CTL formula.

Here, the trick is to remember that $AF\ Z \equiv NOT(EG \ NOT(Z))$. Hence, one can compute the function for $EG \ NOT(Z)$ quite easily (following the procedure given in the lecture) and take the negation in the end. A possible pseudo-code doing this is the following,

Require: ψ_Z, ψ_f

\[
\begin{align*}
current &= NOT(\psi_Z); \\
next &= current \land \psi_{PRE}(current, f); \\
\textbf{while} \ next \neq current \ \textbf{do} & \\
& \quad current = next; \\
& \quad next = current \land \psi_{PRE}(current, f); \\
\textbf{end while} \\
\textbf{return} \ \psi_{AF\ Z} = NOT(current);
\end{align*}
\]

\[\begin{align*}
\triangleright \text{Equivalence in term of sets:} & \\
\triangleright X_0 & \\
\triangleright X_1 = X_0 \cap Pre(X_0, f) & \\
\triangleright X_i! = X_{i-1} & \\
\triangleright X_i = X_{i-1} \cap Pre(X_{i-1}, f) & \\
\triangleright X_f \models EG \ NOT(Z) & \\
\triangleright X_f \models AF \ Z = NOT(EG \ NOT(Z))
\end{align*}\]