Last week, we learned about **closure** and **equivalence** of regular languages.

The class of regular languages is closed under the

- union
- concatenation
- star

regular operations.
The class of regular languages is closed under the
- union
- concatenation
- star

regular operations

if \(L_1 \) and \(L_2 \) are regular,
then so are

\[L_1 \cup L_2 \]

\[L_1 \cdot L_2 \]

\[L_1^* \]

Last week, we learned about closure and equivalence of regular languages

This week we’ll look at REX, the third way of representing regular languages

is equivalent to

\[\text{DFA} \cong \text{NFA} \]
Are REX, NFA and DFA all equivalent?

\[
\text{DFA} \sim \text{NFA} \sim \text{REX}
\]

We'll then start asking ourselves whether all languages are regular

\[
L_1 = \{0^n1^n \mid n \geq 0\}
\]

\[
L_2 = \{w \mid w \text{ has an equal number of 0s and 1s}\}
\]

\[
L_3 = \{w \mid w \text{ has an equal number of occurrences of 01 and 10}\}
\]

(only one of them actually is)

Three tough languages

1) \(L_1 = \{0^n1^n \mid n \geq 0\}\)

2) \(L_2 = \{w \mid w \text{ has an equal number of 0s and 1s}\}\)

3) \(L_3 = \{w \mid w \text{ has an equal number of occurrences of 01 and 10 as substrings}\}\)
Three tough languages

1) \(L_1 = \{0^n1^n \mid n \geq 0 \} \)

2) \(L_2 = \{w \mid w \text{ has an equal number of 0s and 1s} \} \)

3) \(L_3 = \{w \mid w \text{ has an equal number of occurrences of 01 and 10 as substrings} \} \)

- In order to fully understand regular languages, we also must understand their limitations!

Pigeonhole principle

- Consider language \(L \), which contains word \(w \in L \).
- Consider an FA which accepts \(L \), with \(n < |w| \) states.
- Then, when accepting \(w \), the FA must visit at least one state twice.

This is according to the pigeonhole (a.k.a. Dirichlet) principle:
- If \(m > n \) pigeons are put into \(n \) pigeonholes, there's a hole with more than one pigeon.
- That's a pretty fancy name for a boring observation...

Languages with unbounded strings

- Consequently, regular languages with unbounded strings can only be recognized by FA (finite! bounded!) automata if these long strings loop.

- The FA can enter the loop once, twice, ..., and not at all.
- That is, language \(L \) contains all \(\{xz, xyz, xy^2z, xy^3z, ... \} \).
Pumping Lemma

• Theorem:

Given a regular language \(L \), there is a number \(p \) (the pumping number) such that:
any string \(u \) in \(L \) of length \(\geq p \) is pumpable within its first \(p \) letters.

• A string \(u \in L \) with \(|u| \geq p \) is pumpable if it can be split in 3 parts \(xyz \) s.t.:
 - \(|y| \geq 1 \) (mid-portion \(y \) is non-empty)
 - \(|xy| \leq p \) (pumping occurs in first \(p \) letters)
 - \(xyz \in L \) for all \(i \geq 0 \) (can pump \(y \)-portion)

• If there is no such \(p \), then the language is not regular

Pumping Lemma Example

• Let \(L \) be the language \(\{0^n1^n \mid n \geq 0 \} \)
• Assume (for the sake of contradiction) that \(L \) is regular
• Let \(p \) be the pumping length. Let \(u \) be the string \(0^p1^p \).
• Let’s check string \(u \) against the pumping lemma:
 "In other words, for all \(u \in L \) with \(|u| \geq p \) we can write:
 - \(u = xyz \) (\(x \) is a prefix, \(z \) is a suffix)
 - \(|y| \geq 1 \) (mid-portion \(y \) is non-empty)
 - \(|xy| \leq p \) (pumping occurs in first \(p \) letters)
 - \(xy^iz \in L \) for all \(i \geq 0 \) (can pump \(y \)-portion)"
Let’s make the example a bit harder…

- Let L be the language \(\{ w | w \text{ has an equal number of 0s and 1s} \} \)
- Assume (for the sake of contradiction) that L is regular
- Let \(p \) be the pumping length. Let \(u \) be the string \(0^p1^p \).
- Let’s check string \(u \) against the pumping lemma:
 - “In other words, for all \(u \in L \) with \(|u| \geq p \) we can write:
 - \(u = xyz \) \hspace{1em} (x is a prefix, z is a suffix)
 - \(|y| \geq 1 \) \hspace{1em} (mid-portion \(y \) is non-empty)
 - \(|xy| \leq p \) \hspace{1em} (pumping occurs in first \(p \) letters)
 - \(xy^iz \in L \) for all \(i \geq 0 \) \hspace{1em} (can pump \(y \)-portion)”

Now you try…

- Is \(L_1 = \{ ww | w \in \{0, 1\}^* \} \) regular?
- Is \(L_2 = \{1^n | n \text{ being a prime number} \} \) regular?

Automata & languages
A primer on the Theory of Computation

Part 1 regular language
Part 2 context-free language
Part 3 turing machine

regular language
context-free language
turing machine
Motivation

• Why is a language such as \(\{0^n1^n \mid n \geq 0\} \) not regular?!

• It’s really simple! All you need to keep track is the number of 0’s...

In this chapter we first study context-free grammars
 – More powerful than regular languages
 – Recursive structure
 – Developed for human languages
 – Important for engineers (parsers, protocols, etc.)

Example

• Palindromes, for example, are not regular.
• But there is a pattern.

• Q: If you have one palindrome, how can you generate another?
• A: Generate palindromes recursively as follows:
 – Base case: \(\varepsilon \), 0 and 1 are palindromes.
 – Recursion: If \(x \) is a palindrome, then so are \(0x0 \) and \(1x1 \).

Notation:

\[
\begin{align*}
 x & \rightarrow \varepsilon \mid 0 \mid 1 \mid 0x0 \mid 1x1.
\end{align*}
\]

– Each pipe (“\|”) is an or, just as in UNIX regexp’s.
– In fact, all palindromes can be generated from \(\varepsilon \) using these rules.
Example

• Palindromes, for example, are not regular.
• But there is a pattern.

• Q: If you have one palindrome, how can you generate another?
• A: Generate palindromes recursively as follows:
 – Base case: ε, 0 and 1 are palindromes.
 – Recursion: If x is a palindrome, then so are 0x0 and 1x1.

• Notation:
 – Each pipe (“|”) is an or, just as in UNIX regexp’s.
 – In fact, all palindromes can be generated from ε using these rules.

• Q: How would you generate 11011011?

Context Free Grammars (CFG): Definition

• Definition: A context free grammar consists of (V, Σ, R, S) with:
 – V: a finite set of variables (or symbols, or non-terminals)
 – Σ: a finite set of terminals (or the alphabet)
 – R: a finite set of rules (or productions)
 of the form v → w with v ∈ V, and w ∈ (Σ ∪ V)*
 (read: “v yields w” or “v produces w”)
 – S ∈ V: the start symbol.

• Q: What are (V, Σ, R, S) for our palindrome example?

Derivations and Language

• Definition: The derivation symbol “⇒” (read “1-step derives” or “1-step produces”) is a relation between strings in (Σ ∪ V)*. We write x ⇒ y if x and y can be broken up as x = svt and y = swt with v → w being a production in R.
Example: Infix Expressions

- Infix expressions involving \{+, \times, a, b, c, (,)\}
- \(E\) stands for an expression (most general)
- \(F\) stands for factor (a multiplicative part)
- \(T\) stands for term (a product of factors)
- \(V\) stands for a variable: \(a, b, \text{ or } c\)

- Grammar is given by:
 - \(E \rightarrow T \mid E + T\)
 - \(T \rightarrow F \mid T \times F\)
 - \(F \rightarrow V \mid (E)\)
 - \(V \rightarrow a \mid b \mid c\)

- Convention: Start variable is the first one in grammar \((E)\)

Example: Infix Expressions

- Consider the string \(u\) given by \(a \times b + (c + (a + c))\)
- This is a valid infix expression. Can be generated from \(E\).

1. A sum of two expressions, so first production must be \(E \Rightarrow E + T\)
2. Sub-expression \(a \times b\) is a product, so a term so generated by sequence \(E + T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow * a \times b + T\)
3. Second sub-expression is a factor only because a parenthesized sum. \(a \times b + T \Rightarrow a \times b + F \Rightarrow a \times b + (E) \Rightarrow a \times b + (E + T)\)
4. \(E \Rightarrow E + T \Rightarrow T + T \Rightarrow T \times F + T \Rightarrow T \times F + T \Rightarrow * a \times F + T \Rightarrow a \times V + T \Rightarrow a \times V + T \Rightarrow a \times V + T \Rightarrow \)

- Derivations and Language

- Definition: The derivation symbol \(\Rightarrow\) (read "1-step derives" or "1-step produces") is a relation between strings in \((\Sigma \cup \{\}_v)^*\). We write \(x \Rightarrow y\) if \(x\) and \(y\) can be broken up as \(x = svt\) and \(y = swt\) with \(v \Rightarrow w\) being a production in \(R\).

Derivations and Language

- Definition: The derivation symbol \(\Rightarrow^*\), (read "derives" or "produces" or "yields") is a relation between strings in \((\Sigma \cup \{\}_v)^*\). We write \(x \Rightarrow^* y\) if there is a sequence of 1-step productions from \(x\) to \(y\). I.e., there are strings \(x_i\) with \(i\) ranging from 0 to \(n\) such that \(x = x_0, y = x_n\), and \(x_0 \Rightarrow x_1 \Rightarrow x_2 \Rightarrow x_3 \Rightarrow \ldots \Rightarrow x_{n-1} \Rightarrow x_n\).

- Definition: Let \(G\) be a context-free grammar. The context-free language (CFL) generated by \(G\) is the set of all terminal strings which are derivable from the start symbol. Symbolically: \(L(G) = \{w \in \Sigma^* \mid S \Rightarrow^* w\}\)
Left- and Right-most derivation

- The derivation on the previous slide was a so-called left-most derivation.
- In a right-most derivation, the variable most to the right is replaced.
 \[-E \Rightarrow E + T \Rightarrow E + F \Rightarrow E + (E) \Rightarrow E + (E + T) \Rightarrow \text{etc.}\]

Ambiguity

- There can be a lot of ambiguity involved in how a string is derived.
- Another way to describe a derivation in a unique way is using derivation trees.

Derivation Trees

- In a derivation tree (or parse tree) each node is a symbol. Each parent is a variable whose children spell out the production from left to right. For example, \(v \Rightarrow abcddefg\):

 ![Derivation Trees Diagram](image)

 - The root is the start variable.
 - The leaves spell out the derived string from left to right.

- On the right, we see a derivation tree for our string \(axb + (c + (a + c))\)
- Derivation trees help understanding semantics! You can tell how expression should be evaluated from the tree.
Ambiguity

- Consider “Hannibal ate rice with Clarice”
- This could either mean
 - Hannibal and Clarice ate rice together.
 - Hannibal ate rice and ate Clarice.
- This ambiguity arises from the fact that the sentence has two different parse-trees, and therefore two different interpretations:

Q: Are there any suspect sentences?

- Clarice played with Hannibal
- Clarice ate rice with onions
- Hannibal ate rice with Clarice
Ambiguity: Definition

- Definition:

 A string x is said to be ambiguous relative the grammar G if there are two essentially different ways to derive x in G.

 - x admits two (or more) different parse-trees
 - equivalently, x admits different left-most [resp. right-most] derivations.

- A grammar G is said to be ambiguous if there is some string x in $L(G)$ which is ambiguous.

Ambiguity

- Answer: $L(G) =$ the language with equal no. of a' s and b' s
- Yes, the language is ambiguous:

CFG’s: Proving Correctness

- The recursive nature of CFG’s means that they are especially amenable to correctness proofs.

- For example let’s consider the grammar

 $$G = (S \rightarrow \varepsilon \mid ab \mid ba \mid aSb \mid bSa \mid SS)$$

 - We claim that $L(G) = L = \{ x \in \{a,b\}^* \mid n_a(x) = n_b(x) \}$,
 where $n_a(x)$ is the number of a’s in x, and $n_b(x)$ is the number of b’s.

 - Proof: To prove that $L = L(G)$ is to show both inclusions:

 i. $L \subseteq L(G)$: Every string in L can be generated by G.
 ii. $L \supseteq L(G)$: G only generate strings of L.
 - This part is easy, so we concentrate on part i.
Proving $L \subseteq L(G)$

- $L \subseteq L(G)$: Show that every string x with the same number of a’s as b’s is generated by G. Prove by induction on the length $n = |x|$.
- Base case: The empty string is derived by $S \rightarrow \varepsilon$.
- Inductive hypothesis: Assume $n > 0$. Let u be the smallest non-empty prefix of x which is also in L.
 - Either there is such a prefix with $|u| < |x|$, then $x = uv$ whereas $v \in L$ as well, and we can use $S \rightarrow SS$ and repeat the argument.
 - Or $x = u$. In this case notice that u can’t start and end in the same letter. If it started and ended with a then write $x = ava$. This means that v must have 2 more b’s than a’s. So somewhere in v the b’s of x catch up to the a’s which means that there’s a smaller prefix in L, contradicting the definition of u as the smallest prefix in L. Thus for some string v in L we have $x = avb$ OR $x = bva$. We can use either $S \rightarrow aSb$ OR $S \rightarrow bSa$.

Designing Context-Free Grammars

- As for regular languages this is a creative process.
- However, if the grammar is the union of simpler grammars, you can design the simpler grammars (with starting symbols S_1, S_2, respectively) first, and then add a new starting symbol/production $S \rightarrow S_1 \mid S_2$.
- If the CFG happens to be regular as well, you can first design the FA, introduce a variable/production for each state of the FA, and then add a rule $x \rightarrow ay$ to the CFG if $\delta(x,a) = y$ is in the FA. If a state x is accepting in FA then add $x \rightarrow \varepsilon$ to CFG. The start symbol of the CFG is of course equivalent to the start state in the FA.
- There are quite a few other tricks. Try yourself...