

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

FS 2010

Prof. R. Wattenhofer / C. Lenzen

Principles of Distributed Computing Exercise 3

1 Deterministic distributed algorithms in the port-numbering model

Deterministic algorithms in the port-numbering model are very limited. Prove that¹ the following problems cannot be solved in this model at all (**hint:** consider cycles):

- a) Find a maximal independent set.
- b) Find a maximal matching.
- c) Find a factor $100^{100^{100}}$ approximation of maximum-size independent set.
- d) Find any node coloring.
- e) Find any edge coloring.
- f) Find a factor-1.999 approximation of minimum-size vertex cover.

How would your answers to the above questions change if you considered randomized algorithms in the port-numering model, i.e., each node has access to an unlimited source of random bits?

Hint: When condisering randomized algorithms, try to solve leader election with non-zero probability first.

2 Calculations with the \log^* function

In the lecture, we have seen how to obtain an approximation to a minimum-size weighted vertex cover in $O(\Delta + \log^* k)$ rounds, where $k := (W(\Delta!)^{\Delta})^{\Delta}$ and weights are from $1, \ldots, W$. We now want to check that indeed $O(\Delta + \log^* k) \subseteq O(\Delta + \log^* W)$ as stated in the lecture.²

a) Define $M = \max \{W, \Delta, 4\}$. Show that $k \leq M^{2M^3}$.

Hint: You can use very crude and simple estimates.

- **b)** Show that $2 \log M \leq M$ and hence $\log k \leq 2M^3 \log M \leq M^4$.
- c) Conclude that $\log \log k \leq 4 \log M$, and show that $\log^* k \in O(\log^* M)$.
- d) Infer that $\log^* k \in O(\log^*(\Delta) + \log^*(W))$.
- e) To complete the analysis, show that $\Delta + \log^* k \in O(\Delta + \log^* W)$.

 $^{^{1}}$ in the worst case – omitting this phrase is a common abuse of language whenever it is clear from the context that one is interested in worst-case analysis

²When using Big-O notation, frequently \leq , <, etc. are used in the notation. However, one has to keep in mind that e.g. O(n) describes a set of functions—both f(n) = 0 and g(n) = 100n + 20000 are in O(n), but certainly are very different!