Principles of Distributed Computing Exercise 6

1 Shared Sum

In the lecture, we discussed how shared registers can be employed efficiently to allow each process to announce a value to all other processes. Now we look at a different scenario: Each process p_{i} computes a local variable x_{i} and we want to make the sum $x:=\sum_{i=1}^{n} x_{i}$ available to all processes.

We want to guarantee the following: If a process updates x_{i}, it should first ensure that x is updated accordingly before proceeding. However, we do not want to use a large number of registers or a huge register. In the following, you are given a single register which can store $O(\log n)$ bits (the choice of the constant is up to you). Moreover, we assume that " x cannot become too large", i.e., the x_{i} (and thus x) are of size polynomial in n and hence can be encoded using $O(\log n)$ bits.
a) Give a solution using a shared register supporting the fetch-and-add operation with a constant update and access complexity. If possible, prevent both lockouts and deadlocks.
b) Give a solution using a compare-and-swap register, also with constant access complexity. If successful, an update should need a constant number of steps (otherwise the process may retry). Are lockouts excluded?
c) Give a solution using a load-link/store-conditional register. Compare it to the preceding solutions.
d) Assume now that the return value of compare-and-swap is not whether the operation succeeded, but the value stored in the register after the operation. Can the problem still be solved? Proof your claim!

2 Space Efficient Binary Tree Algorithm*

The adaptive collect algorithm using binary trees from the lecture requires to store a complete binary tree of depth $n-1$, resulting in exponential memory requirements.

Suppose the algorithm is modified the following way: Whenever a process leaves a splitter with result left or right it flips a coin to replace this result by left or right with probability $1 / 2$ each. Prove that for this randomized variant of the algorithm it is with high probability ${ }^{1}$ sufficient to allocate memory polynomial in $n!^{2}$

[^0]
[^0]: ${ }^{1}$ I.e., with probability at least $1-1 / n^{c}$ for a choosable constant $c>0$.
 ${ }^{2}$ Problems marked with an asterisk $\left(^{*}\right)$ are hard. Example solutions to these problems will not be provided. However, anybody who solves such a problem will receive a prize!

