
Chapter 2

Leader Election

2.1 Anonymous Leader Election

Some algorithms (e.g. the slow tree coloring algorithm 4) ask for a special node,
a so-called “leader”. Computing a leader is a most simple form of symmetry
breaking. Algorithms based on leaders do generally not exhibit a high degree
of parallelism, and therefore often suffer from poor time complexity. However,
sometimes it is still useful to have a leader to make critical decisions in an easy
(though non-distributed!) way.

The process of choosing a leader is known as leader election. Although leader
election is a simple form of symmetry breaking, there are some remarkable issues
that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. The ring is the “dro-
sophila” of distributed computing as many interesting challenges already reveal
the root of the problem in the special case of the ring. Paying special attention
to the ring also makes sense from a practical point of view as some real world
systems are based on a ring topology, e.g., the token ring standard for local area
networks.

Problem 2.1 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

• More formally, nodes are in one of three states: undecided, leader, not
leader. Initially every node is in the undecided state. When leaving the
undecided state, a node goes into a final state (leader or not leader).

Definition 2.2 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.

Definition 2.3 (Uniform). An algorithm is called uniform if the number of
nodes n is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

Whether a leader can be elected in an anonymous system depends on whether
the network is symmetric (ring, complete graph, complete bipartite graph, etc.)
or asymmetric (star, single node with highest degree, etc.). Simplifying slightly,
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in this context a symmetric graph is a graph in which the extended neighborhood
of each node has the same structure. We will now show that non-uniform
anonymous leader election for synchronous rings is impossible. The idea is that
in a ring, symmetry can always be maintained.

Lemma 2.4. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sk.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 1.6). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 2.5 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 2.4): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 2.1 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

• Sense of direction is the ability of nodes to distinguish neighbor nodes in
an anonymous setting. In a ring, for example, a node can distinguish the
clockwise and the counterclockwise neighbor. Sense of direction does not
help in anonymous leader election.

• Theorem 2.5 also holds for other symmetric network topologies (e.g., com-
plete graphs, complete bipartite graphs, . . . ).

• Note that Theorem 2.5 does not hold for randomized algorithms; if nodes
are allowed to toss a coin, symmetries can be broken.

2.2 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 1.10. Through-
out this section we assume non-anonymity; each node has a unique identifier
as proposed in Assumption 1.2. Having ID’s seems to lead to a trivial leader
election algorithm, as we can simply elect the node with, e.g., the highest ID.

Theorem 2.6 (Analysis of Algorithm 8). Algorithm 8 is correct. The time
complexity is O(n). The message complexity is O(n2).

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,
eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n2.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 1.11) we assume that
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Algorithm 8 Clockwise

1: Each node v executes the following code:
2: v sends a message with its identifier (for simplicity also v) to its clockwise
neighbor. {If node v already received a message w with w > v, then node
v can skip this step; if node v receives its first message w with w < v, then
node v will immediately send v.}

3: if v receives a message w with w > v then

4: v forwards w to its clockwise neighbor
5: v decides not to be the leader, if it has not done so already.
6: else if v receives its own identifier v then

7: v decides to be the leader
8: end if

each message takes at most one time unit to arrive at its destination. After at
most n − 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n − 1. Every other node decides before
node z.

Remarks:

• Note that in Algorithm 8 nodes need to distinguish between clockwise
and counterclockwise neighbors. In fact they do not: It is okay to simply
send your own identifier to any neighbor, and forward a message m to the
neighbor you did not receive the message m from. So nodes only need to
be able to distinguish their two neighbors.

• Can we improve this algorithm?

Theorem 2.7 (Analysis of Algorithm 9). Algorithm 9 is correct. The time
complexity is O(n). The message complexity is O(n log n).

Proof: Correctness is as in Theorem 2.6. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2, 4, 8, 16, . . . , 2 · 2k with k ≤ log(n + 1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2r (or less) survives round r. That is, node v is the only node in its
2r-neighborhood that remains active in round r + 1. Since this is the same for
every node, less than n/2r nodes are active in round r+1. Being active in round
r costs 2 · 2 · 2r messages. Therefore, round r costs at most 2 · 2 · 2r · n

2r−1 = 8n
messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

Remarks:

• This algorithm is asynchronous and uniform as well.

• The question may arise whether one can design an algorithm with an even
lower message complexity. We answer this question in the next section.
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Algorithm 9 Radius Growth (For readability we provide pseudo-code only; for
a formal version please consult [Attiya/Welch Alg. 3.1])

1: Each node v does the following:
2: Initially all nodes are active. {all nodes may still become leaders}
3: Whenever a node v sees a message w with w > v, then v decides to not be
a leader and becomes passive.

4: Active nodes search in an exponentially growing neighborhood (clockwise
and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

5: Nodes (active or passive) receiving a probe message decrement the TTL and
forward the message to the next neighbor; if their ID is larger than the one
in the message, they set the leader bit to zero, as the probing node does
not have the maximum ID. If the TTL is zero, probe messages are returned
to the sender using a reply message. The reply message contains the ID of
the receiver (the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the receiver.

6: Upon receiving the reply message: If there was no node with higher ID
in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

7: If a node v receives its own probe message (not a reply) v decides to be the
leader.

2.3 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first lower
bound. We show that Algorithm 9 is asymptotically optimal.

Definition 2.8 (Execution). An execution of a distributed algorithm is a list of
events, sorted by time. An event is a record (time, node, type, message), where
type is “send” or “receive”.

Remarks:

• We assume throughout this course that no two events happen at exactly
the same time (or one can break ties arbitrarily).

• An execution of an asynchronous algorithm is generally not only deter-
mined by the algorithm but also by a “god-like” scheduler. If more than
one message is in transit, the scheduler can choose which one arrives first.

• If two messages are transmitted over the same directed edge, then it is
sometimes required that the message first transmitted will also be received
first (“FIFO”).

For our lower bound, we assume the following model:
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• We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

• We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

• During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 2.9 (Open Schedule). A schedule is an execution chosen by the
scheduler. A schedule for a ring is open if there is an open edge in the ring.
An open (undirected) edge is an edge where no message traversing the edge has
been received so far.

The proof of the lower bound is by induction. First we show the base case:

Lemma 2.10. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge is.

Proof: Let the two nodes be u and v with u < v. Node u must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges.

Lemma 2.11. By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If M(n/2)
denotes the number of messages already received in each of these schedules, at
least 2M(n/2) + n/4 messages have to be exchanged in order to solve leader
election.

Proof by induction: We divide the ring into two sub-rings R1 and R2 of size
n/2. These subrings cannot be distinguished from rings with n/2 nodes if no
messages are received from “outsiders”. We can ensure this by not scheduling
such messages until we want to. Note that executing both given open schedules
on R1 and R2 “in parallel” is possible because we control not only the scheduling
of the messages, but also when nodes wake up. By doing so, we make sure that
2M(n/2) messages are sent before the nodes in R1 and R2 learn anything of
each other!

Without loss of generality, R1 contains the maximum identifier. Hence, each
node in R2 must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We “play
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god” and look into the future: we check what happens when we close only one
of these connecting edges. With the argument that n/2 new messages must
be received, we know that there is at least one edge that will produce at least
n/4 more messages when being scheduled. This need not to be sent over the
closed link, but because they are caused by a message over this link, they cannot
involve any message along the other open link in distance n/2. We schedule this
edge and the resulting n/4 messages, and leave the other open.

Lemma 2.12. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) ≥ n

4
(log n+ 1).

Proof by induction: For simplicity we assume n being a power of 2. The base
case n = 2 works because of Lemma 2.10 which implies that M(2) ≥ 1 =
2

4
(log 2 + 1). For the induction step, using Lemma 2.11 and the induction
hypothesis we have
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Remarks:

• To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in Ω(g) if there are constants
x0 and c > 0 such that |f(x)| ≥ c|g(x)| for all x ≥ x0. Again we refer
to standard text books for a formal definition. Rewriting Lemma 2.12 we
get:

Theorem 2.13 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Ω(n log n) message com-
plexity.

2.4 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
in this case. The basic idea is very simple: In the synchronous model, not
receiving a message is information as well! First we make some additional
assumptions:

• We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

• We assume that every node starts at the same time.

• The node with the minimum identifier becomes the leader; identifiers are
integers.
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Algorithm 10 Synchronous Leader Election

1: Each node v concurrently executes the following code:
2: The algorithm operates in synchronous phases. Each phase consists of n
time steps. Node v counts phases, starting with 0.

3: if phase = v and v did not yet receive a message then
4: v decides to be the leader
5: v sends the message “v is leader” around the ring
6: end if

Remarks:

• Message complexity is indeed n.

• But the time complexity is huge! If m is the minimum identifier it is m ·n.

• The synchronous start and the non-uniformity assumptions can be drop-
ped by using a wake-up technique (upon receiving a wake-up message,
wake up your clockwise neighbors) and by letting messages travel slowly.

• There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Ω(n log n) as well.

• In general graphs efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see next
chapter), bounding the message complexity is generally more difficult.


