
Chapter 13

Stabilization

A large branch of research in distributed computing deals with fault-tolerance.
Being able to tolerate a considerable fraction of failing or even malisciously be-
having (“Byzantine”) nodes while trying to reach consensus (on e.g. the output
of a function) among the nodes that work properly is crucial for building reli-
able systems. However, consensus protocols require that a majority of the nodes
remains non-faulty all the time.

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself ?

13.1 Self-Stabilization

Definition 13.1 (Self-Stabilization). A distributed system is self-stabilizing if,
starting from an arbitrary state, it is guaranteed to converge to a legitimate
state. If the system is in a legitimate state, it is guaranteed to remain there,
provided that no further faults happen. A state is legitimate if the state satisfies
the specifications of the distributed system.

Remarks:

• What kind of transient failures can we tolerate? An adversary can crash
nodes, or make nodes behave Byzantine. Indeed, temporarily an adversary
can do harm in even worse ways, e.g. by corrupting the volatile memory
of a node (without the node noticing), or by corrupting messages on the
fly (without anybody noticing). However, as all failures are transient,
eventually all nodes must work correctly again, that is, crashed nodes
get resurrected, Byzantine nodes stop being malicious, messages are being
delivered reliably, and the memory of the nodes is secure.

• Clearly, the read only memory (ROM) must be taboo at all times for
the adversary. No system can repair itself if the program code itself or
constants are corrupted. The adversary can only corrupt the variables in
the volatile random access memory (RAM).

123



124 CHAPTER 13. STABILIZATION

Definition 13.2 (Time Complexity). The time complexity of a self-stabilizing
system is the time that passed after the last (transient) failure until the system
has converged to a legitimate state again, staying legitimate.

Remarks:

• Self-stabilization enables a distributed system to recover from a transient
fault regardless of its nature. A self-stabilizing system does not have to
be initialized as it eventually (after convergence) will behave correctly.

• Self-stabilization was introduced in a paper by Edsger W. Dijkstra in 1974,
in the context of a token ring network. A token ring is an early form of
local area network where nodes are arranged in a ring, communicating by
a token. The system is correct if there is exactly one token in the ring.

• Let’s have a look at one of Dijkstra’s simple solutions. Given an oriented
ring, we simply call the clockwise neighbor parent (p), and the counter-
clockwise neighbor child (c). Also, there is a leader node v0. Every node v

is in a state S(v) ∈ {0, 1, . . . , n}, perpetually informing its child about its
state. The token is implicitly passed on by nodes switching state. Upon
noticing a change of the parent state S(p), node v executes the following
code:

Algorithm 44 Self-stabilizing Token Ring

1: if v = v0 then

2: if S(v) = S(p) then
3: S(v) := S(v) + 1 (mod n)
4: end if

5: else

6: S(v) := S(p)
7: end if

Theorem 13.3. Algorithm 44 stabilizes correctly.

Proof: As long as some nodes or edges are faulty, anything can happen. In self-
stabilization, we only consider the system after it is correct (at time t0, however
starting in an arbitrary state).
Every node apart from leader v0 will always attain the state of its parent.

It may happen that one node after the other will learn the current state of the
leader. In this case the system stabilizes after the leader increases its state at
most n time units after time t0. It may however be that the leader increases its
state even if the system is not stable, e.g. because its parent or parent’s parent
accidentally had the same state at time t0.
The leader will increase its state possibly multiple times without reaching

stability, however, at some point the leader will reach state s, a state that no
other node had at time t0. (Since there are n nodes and n states, this will
eventually happen.) At this point the system must stabilize because the leader
cannot push for s+ 1 (mod n) until every node (including its parent) has s.
After stabilization, there will always be only one node changing its state,

i.e., the system remains in a legitimate state.



13.1. SELF-STABILIZATION 125

Remarks:

• For his work Dijkstra received the 2002 ACM PODC Influential Paper
Award. Dijkstra passed away shortly after receiving the award. With
Dijkstra being such an eminent person in distributed computing (e.g. con-
currency, semaphores, mutual exclusion, deadlock, finding shortest paths
in graphs, fault-tolerance, self-stabilization), the award was renamed Eds-
ger W. Dijkstra Prize in Distributed Computing.

• Although one might think the time complexity of the algorithm is quite
bad, it is asymptotically optimal.

• It can be a lot of fun designing self-stabilizing algorithms. Let us try
to build a system, where the nodes organize themselves as a maximal
independent set (MIS, Chapter 10):

Algorithm 45 Self-stabilizing MIS

Require: Node IDs
Every node v executes the following code:

1: do atomically

2: Join MIS if no neighbor with larger ID joins MIS
3: Send (node ID, MIS or not MIS) to all neighbors
4: end do

Remarks:

• Note that the main idea of Algorithm 45 is from Algorithm 35, Chapter 10.

• As long as some nodes are faulty, anything can happen: Faulty nodes may
for instance decide to join the MIS, but report to their neighbors that
they did not join the MIS. Similarly messages may be corrupted during
transport. As soon as the system (nodes, messages) is correct, however,
the system will converge to a MIS. (The arguments are the same as in
Chapter 10).

• Self-stabilizing algorithms always run in an infinite loop, because transient
failures can hit the system at any time. Without the infinite loop, an ad-
versary can always corrupt the solution “after” the algorithm terminated.

• The problem of Algorithm 45 is its time complexity, which may be linear
in the number of nodes. This is not very exciting. We need something
better! Since Algorithm 45 was just the self-stabilizing variant of the slow
MIS Algorithm 35, maybe we can hope to “self-stabilize” some of our fast
algorithms from Chapter 10?

• Yes, we can! Indeed there is a general transformation that takes any
local algorithm (efficient but not fault-tolerant) and turns it into a self-
stabilizing algorithm, keeping the same level of efficiency and efficacy. We
present the general transformation below.



126 CHAPTER 13. STABILIZATION

Theorem 13.4 (Transformation). We are given a deterministic local algorithm
A that computes a solution of a given problem in k synchronous communication
rounds. Using our transformation, we get a self-stabilizing system with time
complexity k. In other words, if the adversary does not corrupt the system for k

time units, the solution is stable. In addition, if the adversary does not corrupt
any node or message closer than distance k from a node u, node u will be stable.

Proof: In the proof, we present the transformation. First, however, we need to
be more formal about the deterministic local algorithm A. In A, each node of
the network computes its decision in k phases. In phase i, node u computes
its local variables according to its local variables and received messages of the
earlier phases. Then node u sends its messages of phase i to its neighbors.
Finally node u receives the messages of phase i from its neighbors. The set of
local variables of node u in phase i is given by Li

u. (In the very first phase, node
u initializes its local variables with L1

u.) The message sent from node u to node
v in phase i is denoted by mi

u,v. Since the algorithm A is deterministic, node u

can compute its local variables Li
u and messages mi

u,∗ of phase i from its state
of earlier phases, by simply applying functions fL and fm. In particular,

Li
u = fL(u, Li−1

u , mi−1

∗,u ), for i > 1, and (13.1)

mi
u,v = fm(u, v, Li

u), for i ≥ 1. (13.2)

The self-stabilizing algorithm needs to simulate all the k phases of the local
algorithm A in parallel. Each node u stores its local variables L1

u, . . . , Lk
u as well

as all messages received m1

∗,u, . . . , mk
∗,u in two tables in RAM. For simplicity,

each node u also stores all the sent messages m1

u,∗, . . . , m
k
u,∗ in a third table. If

a message or a local variable for a particular phase is unknown, the entry in the
table will be marked with a special value ⊥ (“unknown”). Initially, all entries
in the table are ⊥.
Clearly, in the self-stabilizing model, an adversary can choose to change

table values at all times, and even reset these values to ⊥. Our self-stabilizing
algorithm needs to constantly work against this adversary. In particular, each
node u runs these two procedures constantly:

• For all neighbors: Send each neighbor v a message containing the complete
row of messages of algorithmA, that is, send the vector (m1

u,v, . . . , mk
u,v) to

neighbor v. Similarly, if neighbor u receives such a vector from neighbor
v, then neighbor u replaces neighbor v’s row in the table of incoming
messages by the received vector (m1

v,u, . . . , mk
v,u).

• Because of the adversary, node u must constantly recompute its local
variables (including the initialization) and outgoing message vectors using
Functions (13.1) and (13.2) respectively.

The proof is by induction. Let N i(u) be the i-neighborhood of node u (that
is, all nodes within distance i of node u). We assume that the adversary has not
corrupted any node in Nk(u) since time t0. At time t0 all nodes in Nk(u) will
check and correct their initialization. Following Equation (13.2), at time t0 all
nodes in Nk(u) will send the correct message entry for the first round (m1

∗,∗) to
all neighbors. Asynchronous messages take at most 1 time unit to be received



13.1. SELF-STABILIZATION 127

at a destination. Hence, using the induction with Equations (13.1) and (13.2)
it follows that at time t0 + i, all nodes in Nk−i(u) have received the correct
messages m1

∗,∗, . . . , m
i
∗,∗. Consequently, at time t0 + k node u has received all

messages of local algorithm A correctly, and will compute the same result value
as in A. �

Remarks:

• Using our transformation (also known as “local checking”), designing self-
stabilizing algorithms just turned from art to craft.

• As we have seen, many local algorithms are randomized. This brings two
additional problems. Firstly, one may not exactly know how long the
algorithm will take. This is not really a problem since we can simply
send around all the messages needed, until the algorithm is finished. The
transformation of Theorem 13.4 works also if nodes just send all messages
that are not ⊥. Secondly, we must be careful about the adversary. In
particular we need to restrict the adversary such that a node can produce
a reproducible sufficiently long string of random bits. This can be achieved
by storing the sufficiently long string along with the program code in the
read only memory (ROM). Alternatively, the algorithm might not store
the random bit string in its ROM, but only the seed for a random bit
generator. We need this in order to keep the adversary from reshuffling
random bits until the bits become “bad”, and the expected (or with high
probability) efficacy or efficiency guarantees of the original local algorithm
A cannot be guaranteed anymore.

• Since most local algorithms have only a few communication rounds, and
only exchange small messages, the memory overhead of the transformation
is usually bearable. In addition, information can often be compressed in a
suitable way so that for many algorithms message size will remain polylog-
arithmic. For example, the information of the fast MIS algorithm (Algo-
rithm 37) consists of a series of random values (one for each round), plus
two boolean values per round. These boolean values represent whether the
node joins the MIS, or whether a neighbor of the node joins the MIS. The
order of the values tells in which round a decision is made. Indeed, the
series of random bits can even be compressed just into the random seed
value, and the neighbors can compute the random values of each round
themselves.

• There is hope that our transformation as well gives good algorithms for
mobile networks, that is for networks where the topology of the network
may change. Indeed, for deterministic local approximation algorithms,
this is true: If the adversary does not change the topology of a node’s
k-neighborhood in time k, the solution will locally be stable again.

• For randomized local approximation algorithms however, this is not that
simple. Assume for example, that we have a randomized local algorithm
for the dominating set problem. An adversary can constantly switch the
topology of the network, until it finds a topology for which the random
bits (which are not really random because these random bits are in ROM)
give a solution with a bad approximation ratio. By defining a weaker



128 CHAPTER 13. STABILIZATION

adversarial model, we can fix this problem. Essentially, the adversary
needs to be oblivious, in the sense that it cannot see the solution. Then it
will not be possible for the adversary to restart the random computation
if the solution is “too good”.

• Self-stabilization is the original approach, and self-organization may be the
general theme, but new buzzwords pop up every now and then, e.g. self-
configuration, self-management, self-regulation, self-repairing, self-heal-
ing, self-optimization, self-adaptivity, or self-protection. Generally all
these are summarized as “self-*”. One computing giant coined the term
“autonomic computing” to reflect the trend of self-managing distributed
systems.

13.2 Advanced Stabilization

We finish the chapter with a non-trivial example beyond self-stabilization, show-
ing the beauty and potential of the area: In a small town, every evening each
citizen calls all his (or her) friends, asking them whether they will vote for the
Democratic or the Republican party at the next election.1 In our town citizens
listen to their friends, and everybody re-chooses his or her affiliation according
to the majority of friends.2 Is this process going to “stabilize” (in one way or
another)?

Remarks:

• Is eventually everybody voting for the same party? No.

• Will each citizen eventually stay with the same party? No.

• Will citizens that stayed with the same party for some time, stay with
that party forever? No.

• And if their friends also constantly root for the same party? No.

• Will this beast stabilize at all?!? Yes!

Theorem 13.5 (Dems & Reps). Eventually every citizen is rooting for the
same party every other day.

Proof: To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship between citizens as a pair of (directed) edges, one
in each direction. Let us say an edge is currently “bad” if the party of the
advising friend differs from the next-day’s party of the advised friend. In other
words, the edge is bad if the advisor was in the minority. An edge that is not
bad, is “good”.
Consider the out-edges of citizen c on day t, during which (say) c roots for

the Democrats. Assume that during day t, g out-edges of c are good, and b

out-edges are bad. Note that g + b is the degree of c. Since g out-edges were
good, g friends of c root for the Democrats on day t+1. Likewise, b friends of c

root for the Republicans on day t+1. In other words, on the evening of day t+1

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if

you vote for somebody else. As a consequence our example has two parties only.
2Assume for the sake of simplicity that everybody has an odd number of friends.



13.2. ADVANCED STABILIZATION 129

citizen c will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

• g > b: In this case, citizen c will still (or again) root for the Democrats on
day t+ 2. Note that in this case, on day t+ 1, exactly g in-edges of c are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day t+ 1.

• g < b: In this case, citizen c will root for the Republicans on day t + 2.
Note that in this case, on day t+ 1, exactly b in-edges of c are good, and
exactly g in-edges are bad. In other words, the number of bad out-edges
on day t was exactly the number of good in-edges on day t+ 1 (and vice
versa). Since citizen c is rooting for the Republicans, the number of bad
out-edges on day t was strictly larger than the number of bad in-edges on
day t+ 1.

We account for every edge as out-edge on day t, and as in-edge on day t + 1.
Since in both of the above cases the number of bad edges do not increase, the
total number of bad edges B cannot increase. In fact, if any node switches its
party from day t to t+ 2, we know that the total number of bad edges strictly
decreases. But B cannot decrease forever. Once B hits its minimum, the system
stabilizes in the sense that every citizen will either stick with his or her party
forever or flip-flop every day – the system “stabilizes”. �

Remarks:

• The model can be generalized considerably by, for example, adding weights
to vertices (meaning some citizens’ opinions are more important than
others), allowing loops (citizens who consider their own current opinions
as well), allowing tie-breaking mechanisms, and even allowing different
thresholds for party changes.

• How long does it take until the system stabilizes?

• Some of you may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two possible
states, dead or alive. Every cell interacts with its eight neighbors. In each
round, the following transitions occur: Any live cell with fewer than two
live neighbors dies, as if caused by lonelyness. Any live cell with more
than three live neighbors dies, as if by overcrowding. Any live cell with
two or three live neighbors lives on to the next generation. Any dead cell
with exactly three live neighbors is “born” and becomes a live cell. The
initial pattern constitutes the “seed” of the system. The first generation
is created by applying the above rules simultaneously to every cell in the
seed, births and deaths happen simultaneously, and the discrete moment
at which this happens is sometimes called a tick. (In other words, each
generation is a pure function of the one before.) The rules continue to
be applied repeatedly to create further generations. John Conway figured
that these rules were enough to generate interesting situations, including
“breeders” with create “guns” which in turn create “gliders”. As such Life
in some sense answers an old question by John von Neumann, whether
there can be a simple machine that can build copies of itself. In fact Life
is Turing complete, that is, as powerful as any computer.



130 CHAPTER 13. STABILIZATION

Figure 13.1: A “glider gun”. . .

Figure 13.2: . . . in action.


