An application of the Cole-Vishkin algorithm: approximating vertex covers in anonymous networks

Jukka Suomela
Principles of Distributed Computing
10 March 2010

Vertex cover problem

- Vertex cover for a graph G:
- Subset C of nodes that "covers" all edges: each edge incident to
 at least one node in C
- Minimum vertex cover:
- Vertex cover with the smallest number of nodes
- Minimum-weight vertex cover:
- Vertex cover with the smallest total weight

Vertex cover problem

- Classical NP-hard optimisation problem: given a graph G, find a minimum vertex cover

- Simple 2-approximation algorithm:
- Find a maximal matching, output all endpoints

- At most 2 times as large as minimum VC
- No polynomial-time algorithm with approximation factor 1.9999 known

Research question

- Can we find a 2-approximation of a minimum vertex cover in a distributed setting?

- Focus:
- Fast, synchronous, deterministic distributed algorithms
- Port-numbering model

Distributed algorithms

- Communication graph G

- Node = computer
- Edge = communication link

Distributed algorithms

- All nodes are identical, run the same algorithm
- We can choose the algorithm
- An adversary chooses the structure of G
- Our algorithm must produce a valid vertex cover in any graph G

Synchronous distributed algorithms

1. Each node reads its own local input:

- node identifier
- if we assume unique node IDs
- node weight
- if we study weighted graphs

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds

Synchronous distributed algorithms

1. Each node reads its own local input
2. Repeat synchronous communication rounds until all nodes have announced their local outputs

- 1 = in vertex cover

Synchronous distributed algorithms

- Running time = number of rounds

- Worst-case analysis

Distributed algorithms: two models

1. Unique identifiers

- The standard model commonly used in the field

2. Port-numbering model

- Much weaker model of computation
- Our focus today

Model 1: Unique identifiers

- Node identifiers are a permutation of 1, 2, ..., n
- Or a subset of 1, 2, ..., poly(n)
- Permutation chosen by adversary

Model 2:

Port-numbering model

- No unique identifiers
- A node of degree d can refer to its neighbours by integers 1, 2, ..., d
- Port-numbering chosen by adversary

Cole-Vishkin algorithm

- Colour reduction technique
- For cycles and trees - similar ideas can be used in more general graphs as well
- Replaces a k-colouring with an $\mathrm{O}(\log k)$-colouring in one round
- Repeated application: replaces a k-colouring with a 6-colouring in $O\left(\log ^{*} k\right)$ rounds
- Simple additional tricks can be used to find a 3-colouring

Cole-Vishkin algorithm

- Colour reduction technique
- If we have unique identifiers:
- Interpret unique IDs as an n-colouring
- Cole-Vishkin finds a 3 -colouring in $O\left(\log ^{*} n\right)$ rounds
- However, we can't use this trick in the port-numbering model
- And we are trying to find a vertex cover, not a colouring!

Vertex cover in the port-numbering model

- Convenient to study a more general problem: minimum-weight vertex cover
- More general problems are sometimes easier to solve?

Notation:
$w(v)=$ weight of v

Edge packings and vertex covers

- Edge packing: weight $y(e) \geq 0$ for each edge e
- Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v]=$ total weight of edges incident to v

Edge packings and vertex covers

- Edge packing: weight $y(e) \geq 0$ for each edge e
- Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v]=$ total weight of edges incident to v

Edge packings and vertex covers

- Edge packing: weight $y(e) \geq 0$ for each edge e
- Packing constraint: $y[v] \leq w(v)$ for each node v, where $y[v]=$ total weight of edges incident to v

Edge packings and vertex covers

- Node v is saturated if $y[v]=w(v)$
- Total weight of edges incident to v is equal to $w(v)$, i.e., the packing constraint holds with equality
$y[v]=w(v)$
$y[v]<w(v)$

Edge packings and vertex covers

- Edge e is saturated if at least one endpoint of e is saturated
- Equivalently: edge weight $y(e)$ can't be increased

Edge packings and vertex covers

- Maximal edge packing: all edges saturated \Leftrightarrow none of the edge weights $y(e)$ can be increased \Leftrightarrow saturated nodes form a vertex cover!

Edge packings and vertex covers

- Minimum-weight vertex cover C^{*} difficult to find:
- Centralised setting: NP-hard
- Distributed setting: integer problem (choose 0 or 1), symmetry-breaking issues
- Maximal edge packing y easy to find:
- Centralised setting: trivial greedy algorithm
- Distributed setting: linear problem, no symmetry-breaking issues (?)

Edge packings and vertex covers

- Minimum-weight vertex cover C^{*} difficult to find
- Maximal edge packing y easy to find?
- Saturated nodes $C(y)$ in y : 2-approximation of C^{*}
- Textbook proof: LP-duality, relaxed complementary slackness
- Minimum-weight fractional vertex cover and maximum-weight edge packing are dual problems
- But we there's a simple and more elementary proof...

Edge packings and vertex covers

$\sum_{v \in C(y)} w(v)$
$=\sum_{v \in C(y)} y[v]$
$=\sum_{e \in E} y(e)|e \cap C(y)|$
$\leq 2 \sum_{e \in E} y(e)\left|e \cap C^{*}\right|$
$=2 \sum_{v \in C^{*}} y[v]$
$\leq 2 \sum_{v \in C^{*}} W(v)$

Total weight of saturated nodes
Saturated nodes have $y[v]=w(v)$
Interchange the order of summation
Each edge is covered at least once by C^{*} and at most twice by $C(y)$

Interchange the order of summation
All nodes have $y[v] \leq w(v)$

Edge packings and vertex covers

Part I: Summary

- Goal:
- Find a 2-approximation of minimum-weight vertex cover
- Deterministic algorithm in the port-numbering model
- Idea:
- Find a maximal edge packing, take saturated nodes
- Part II:
- Begin with a "greedy but safe" algorithm
- We will see later how the Cole-Vishkin technique helps

Part II:

Finding a maximal edge packing

Finding a maximal edge packing: phase I

- $y[v]=$ total weight of edges incident to node v
- Residual capacity of node $v: r(v)=w(v)-y[v]$
- Saturated node:
$r(v)=0$

Finding a maximal edge packing: phase I

Start with a trivial edge packing $y(e)=0$

Finding a maximal edge packing: phase I

Each node v offers $r(v) / \operatorname{deg}(v)$ units to each incident edge

Finding a maximal edge packing: basic idea

Each edge accepts the smallest of the 2 offers it received

Increase $y(e)$ by this amount

- Safe, can't violate packing constraints

Finding a maximal edge packing: phase I

Update residuals...

Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges...

Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat... Offers...

Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat... Offers...

Increase weights...

Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...
Offers...
Increase weights...
Update residuals...

Finding a maximal edge packing: phase I

Update residuals, discard saturated nodes and edges, repeat...
Offers...
Increase weights...
Update residuals and graph, etc.

Finding a maximal edge packing: phase I

This is a simple deterministic distributed algorithm
We are making some progress towards finding a maximal edge packing - but...

Finding a maximal edge packing: phase I

This is a simple deterministic distributed algorithm
We are making some progress towards finding a maximal edge packing - but this is too slow!

Finding a maximal edge packing: colouring trick

- Offer is a local minimum:
- Node will be saturated
- And all edges incident to it will be saturated as well

Finding a maximal edge packing: colouring trick

- Offer is a local minimum:
- Node will be saturated
- Otherwise there is a neighbour with a different offer:

- Interpret the offer sequences as "colours"
- Nodes u and v have different colours:
$\{u, v\}$ is multicoloured

Finding a maximal edge packing: colouring trick

- Some progress guaranteed:
- On each iteration, for each node, at least one incident edge becomes saturated or multicoloured
- Such edges are be discarded in phase I: node degrees decrease by at least one on each iteration
- Hence in Δ iterations all edges are saturated or multicoloured
Δ = maximum degree

Finding a maximal edge packing: colouring trick

- Phase I: in Δ rounds all edges are saturated or multicoloured
- Saturated edges are good we're trying to construct a maximal edge packing
- Why are the multicoloured edges useful?

Finding a maximal edge packing: colouring trick

- Phase I: in Δ rounds all edges are saturated or multicoloured
- Saturated edges are good we're trying to construct a maximal edge packing
- Why are the multicoloured edges useful?
- Let's focus on unsaturated nodes and edges

Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers
- Assume that node weights are integers $1,2, \ldots, W$
- Let's analyse the offers more carefully in that case...
(2, 2/3, 1/6, 1/12)
(2, 2/3, 1/6, 1/24)

Finding a maximal edge packing: colouring trick

- Offers are rationals of the form $q /(\Delta!)^{\Delta}$
- Proof idea: multiply weights by $(\Delta!)^{\Delta}$
- Then $r(v)$ is a multiple of $(\Delta!)^{\Delta}$ before iteration 1
- Offer $r(v) / \operatorname{deg}(v)$ is a multiple of $(\Delta!)^{\Delta-1}$ on iteration 1
- $r(v)$ is a multiple of $(\Delta!)^{\Delta-1}$ after iteration 1
... (more formally: proof by induction)
- $r(v)$ is a multiple of Δ ! before iteration Δ
- Offers are integers on iteration Δ

Finding a maximal edge packing: colouring trick

- Offers are rationals of the form $q /(\Delta!)^{\Delta}$
- Proof idea: if we multiplied weights by $(\Delta!)^{\Delta}$, then the offers would integers throughout the algorithm
- Without scaling, we get in the worst case $q /(\Delta!)^{\Delta}$
- If node weights are integers $1,2, \ldots, W$, then offers are rationals between 0 and W
- Offer of v is at most $r(v) \leq w(v) \leq W$
- There are at most $W(\Delta!)^{\Delta}$ possible offers!

Finding a maximal edge packing: colouring trick

- Colours are sequences of Δ offers, which are rational numbers
- Assume that node weights are integers $1,2, \ldots, W$
- Then there are at most $W(\Delta!)^{\Delta}$ possible offers
- And hence only $k=\left(W(\Delta!)^{\Delta}\right)^{\Delta}$ possible colours

$$
(2,2 / 3,1 / 6,1 / 12)
$$

Finding a maximal edge packing: colouring trick

- Only $k=\left(W(\Delta!)^{\Delta}\right)^{\Delta}$ possible colours
- Replace "inconvenient" colours (sequences of rationals) with "convenient" colours (integers 1, 2, ..., k)

Finding a maximal edge packing: phase II

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)

Finding a maximal edge packing: phase II

- We have a proper k-colouring of the unsaturated subgraph
- Orient from lower to higher colour (acyclic directed graph)
- Partition in Δ forests
- Each node assigns its outgoing edges to different forests

Finding a maximal edge packing: phase II

- For each forest in parallel...

Finding a maximal edge packing: phase II

- For each forest in parallel:
- Use Cole-Vishkin style colour reduction algorithm
- Given a k-colouring, finds a 3-colouring in time $O\left(\log ^{*} k\right)$

Finding a maximal edge packing: phase II

- For each forest and each colour $j=1,2,3$ in sequence:
- Consider all outgoing edges of colour-j nodes

Finding a maximal edge packing: phase II

- For each forest and each colour $j=1,2,3$ in sequence:
- Consider all outgoing edges of colour-j nodes

- Node-disjoint stars: easy to saturate all such edges in parallel
- Two simple cases:
- saturate centre

- saturate all leaves

Finding a maximal edge packing: phase II

- This way we can saturate all multicoloured edges:
- Each edge belongs to one forest, and its tail has colour 1, 2, or 3

- We simply go through all forests and all colours and therefore saturate everything

Finding a maximal edge packing: algorithm overview

- Phase I:
- All edges become saturated or multicoloured
- Phase II:
- Multicoloured edges are partitioned in Δ forests
- Forests are 3-coloured
- 3-coloured forests are saturated

Finding a maximal edge packing: running time analysis

- Total running time:
- All edges become saturated or multicoloured: $O(\Delta)$
- Multicoloured forests are 3-coloured: O(log* k)
- 3-coloured forests are saturated: $O(\Delta)$

- $O\left(\Delta+\log ^{*} k\right)=O\left(\Delta+\log ^{*} W\right)$
- k is huge, but log* grows slowly

Finding a maximal edge packing: summary

- Maximal edge packing and 2-approximation of vertex cover in time $O\left(\Delta+\right.$ log* $\left.^{*} W\right)$
- $W=$ maximum node weight
- Unweighted graphs: running time simply $O(\Delta)$, independent of n
- Everything can be implemented in the port-numbering model

Finding a maximal edge packing: recap

Phase I:

- Residuals $r(v)=w(v)-y[v]$
- Offer $r(v) / \operatorname{deg}(v)$
- Accept minimum, increase weights
- Progress: edges become saturated or multicoloured (different offers)

Finding a maximal edge packing: recap

Phase II:

- Saturated edges are already ok, we focus on multicoloured edges
- Colours are sequences of offers, re-colour with integers 1, 2, ..., k
- Partition in Δ forests
- Cole-Vishkin: 3-colouring
- Use colours to saturate all edges

$$
1378((2,2 / 3,1 / 6,1 / 12)
$$

$2789(2,2 / 3,1 / 6,1 / 24)$

Finding a maximal edge packing: some intuition

- Regular graph with uniform weights:
- Symmetry-breaking (e.g., graph colouring) is not possible in the port-numbering model
- But it is trivial to find a maximal edge packing directly
- "Irregular" graph:
- We have symmetry-breaking information, which can be used to find a graph colouring, which can be used to find a maximal edge packing
- Handling these two cases turns out to be enough!

Take-home messages

- Non-trivial problems can be solved in very restrictive models of distributed computing
- Generalise!
- More difficult problems may be easier to solve: vertex cover \rightarrow weighted vertex cover \rightarrow weighted set cover...
- Cole-Vishkin technique is a powerful tool
- Wide range of applications far beyond the textbook examples of colouring cycles with numerical IDs
- log* of almost everything is something reasonable

