Donnybrook: Enabling Large-Scale, High-Speed, Peer-to-Peer Games

Ashwin Bharambe
Jeffrey Pang
Srinivasan Seshan
Xinyu Zhuang

John R. Douceur
Jacob R. Lorch
Thomas Moscibroda

Presenter: Ercan Ucan

Some of the slides are borrowed with permission from J. Pang
Peer-to-Peer (P2P)
High-Speed

Inter-object writes must be reflected very quickly
High-Speed

20 updates/sec
≈ 16 kbps per player
Delay must be < 150ms
[Beigbeder ‘04]
Large-Scale
Challenge:

- Many console games are peer hosted to save costs
- Limits high-speed games to 32 players
- Large scale, high-speed, peer management

Challenge: How to achieve all 3?

- No gaming architecture does it yet!
3 problems in peer managed games

- Insufficient capacity

 Key Limitation is upload capacity

- Resource heterogeneity

 How to schedule sending messages?

- Interest heterogeneity

 Leverage spare upload capacity to help forward updates and keep 100-150 ms latency
Area-of-Interest (AOI) Filtering

- Only receive updates from players in your AOI
 - Colyseus [Bharambe ‘06]
 - VON [Hu ‘06]
 - SimMUD [Knutsson ‘04]

- Problems:
 - Open-area maps, large battles
 - Region populations naturally follow a power-law
 [Bharambe ‘06, Pittman ‘07]

Requirement: ~1000 players in same AOI
Motivation and Goals

• Donnybrook: Interest Sets
 • Reduces mean bandwidth demands

• Donnybrook: Update Dissemination
 • Handles interest and bandwidth heterogeneity
- **Intuition**: A human can only focus on a constant number of objects at once [Cowan ‘01, Robson ‘81]
- Only need a constant number of high accuracy replicas
- **Interest Set**: The 5 players that I am most interested in
 - *Subscribe* to these players to receive 20 updates/sec
 - Only get 1 update/sec from everyone else
Smoothing Infrequent Updates

- Send *guidance* (predictions) instead of state updates
- *Guidable AI* extrapolates transitions between points
 - E.g., game path-finding code

- **Problem**: Predictions are not always accurate
 - Interactions appear inconsistent
 - Jarring if player is paying attention
Interest Sets

• How to estimate human attention?
 • Attention(i) = how much I am focused on player i

\[
\text{Attention}(i) = f_{\text{proximity}}(d_i) + f_{\text{aim}}(\theta_i) + f_{\text{interaction-recency}}(t_i)
\]
Not in Interest Set

= Interest Set
Interest Sets: Weights
Dissemination (Main requirements)

- Strict delay bound (150ms)
- Frequent membership changes (68% turnover/sec)
- Bandwidth heterogeneity
- Many overlapping groups
 - Previous overlay multicast:
 - Unstructured [Narada, NICE]: Hard to meet 2 and 4
 - Structured [Splitstream]: Hard to meet 1 and 3

Problem: subscriber-initiated tree construction needs lots of coordination overhead or is inflexible
Randomized source-initiated tree construction

- Well connected peers join **forwarding pool**
 - Based on relative bandwidth and latency thresholds
- These nodes advertise their forwarding capacity
 - Piggy-backed on low freq. updates
- Sources randomly pick enough forwarders to satisfy needs each frame
 - Avoids need for coordination
 - Fixed tree depth to bound delay
Dissemination

• Main requirements:

 ● Strict delay bound: constant tree depth
 ● Freq. membership changes: uncoordinated tree construction
 ● Bandwidth heterogeneity: high bandwidth forwarding pool
 ● Many overlapping groups: shared forwarding resources

Trade-off: If too many sources pick the same forwarder then the forwarder must drop some updates--Leave some headroom (advertise only ½ forwarder capacity)

drops happen rarely and only cause loss for 1 frame (5-10% loss is OK [Beigbeder ‘04])
Guidance Forwarding

- Every player needs guidance from every other once a sec
- Non-forwarding pool players contribute spare bandwidth to forwarding guidance
- Nodes coordinate to match sources to forwarders (configuration changes rarely)
- Sources send fresh guidance to a forwarder once a frame
- Forwarders stagger guidance to avoid queuing delay

Ensures all recipients get guidance at most 1 frame old (plus transmission delay)
User Study

- LoBW-IS vs. LoBW: 12 trials
- LoBW-IS vs. HiBW: 32 trials
- 88 total participants

How often did you play FPS games in the past?

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every Day</td>
<td>62%</td>
</tr>
<tr>
<td>Every Week</td>
<td>25%</td>
</tr>
<tr>
<td>Less Often</td>
<td>13%</td>
</tr>
</tbody>
</table>
User Study Procedure

- Before experiment, practice on HiBW
- Tell players two Quake III “servers” exist: A and B
- Start playing on A, can vote to switch to B

- When both players vote, game continues on B
- Can vote to switch back and forth
- Analog to how players choose game servers (if good, stay, otherwise leave and try another)

- Play new game on least-used version so they can compare
How long does a pair play on each version?
User Study

How long before a player wants to switch?
User Study

LoBW-Donny vs. LoBW

- LoBW: 96%
- LoBW-Donny: 4%

LoBW-Donny vs. HiBW

- HiBW: 52%
- LoBW-Donny: 31%
- No Pref.: 17%

Survey: Was A or B more Fun?
User Study: Limitations

- Only 2 human players
 - Tried to keep human subjects focus on each other
 - How well interest sets work on human players

- Only 32 players in total
 - Human cognition does not change
 - Can estimate and tune the interest set size better.
Evaluation: Updates on time

Enough updates are delivered on time at all scales
Most peers have < 768 kbps, some have much more
Donnybrook enables 100s of players in many BW models
Evaluation: Updates on time

Enough updates are delivered at all supported scales
Evaluation: Interest Set Size

Performance is not sensitive to interest set size
Players with lots of subscribers still deliver enough updates
Donnybrook performs better than other approaches
Evaluation: Guidance staleness

Guidance is almost never stale
Donnybrook: Summary

Key techniques:
- Interest Sets:
 - Reduce BW demands
- Update dissemination:
 - Handles heterogeneity

Ongoing Work:
- 1000 Player deployment