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ABSTRACT
The gathering problem, where n autonomous robots with restricted
capabilities are required to meet in a single point of the plane, is
widely studied. We consider the case that robots are limited to
see only robots within a bounded vicinity and present an algorithm
achieving gathering in O(n2) rounds in expectation. A round con-
sists of a movement of all robots, in random order. All previous
algorithms with a proven time bound assume global view on the
configuration of all robots.

General Terms
Algorithms, Performance, Theory

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: Modes of Computation; F2.2
[Theory of Computation]: Nonnumerical Algorithms and Prob-
lems

Keywords
swarm robotics, local algorithms, distributed algorithms, gathering,
geometric networks

1. INTRODUCTION
Over the last decade, there was a trend to consider large scale

systems of autonomous robots with limited capabilities instead of
systems with few but powerful computing entities. Such systems
often are resilient against transient failures, scale well and behave
well under dynamics. Yet it is not obvious which kinds of tasks ro-
bots with limited capabilities are able to solve. One challenge that
gained great interest in recent years due to its simplicity is to gather
a group of n robots in a common point. Most research focused on

∗Partially supported by the EU within FP7-ICT-2007-1 under con-
tract no. 215270 (FRONTS) and DFG-project “Smart Teams”
within the SPP 1183 “Organic Computing” and International Grad-
uate School "Dynamic Intelligent Systems"

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’10, June 13–15, 2010, Thira, Santorini, Greece.
Copyright 2010 ACM 978-1-4503-0079-7/10/06 ...$10.00.

the question of which robot capabilities are crucial in which time
model to solve the gathering problem in finite time, often assum-
ing the robots to have a global view on the current situation. Some
work also exists about robots with a local view [10, 3, 2]. Here,
the robots normally have a circular visibility range with a constant
radius. However, apart from few exceptions, no runtime bounds are
given. Considering locality is reasonable in large robotic systems
to guarantee scalability. Moreover, in many practical applications
global knowledge is not accessible to the robots. The main con-
tribution of this paper is an algorithm that terminates in expected
O(n2) rounds, while our robots only have knowledge about their
local environment from a constant visibility range.

Related work.
In the literature, several robot abilities are distinguished. When

considering the gathering problem, robots are normally assumed to
be oblivious, which means that the robots do not remember any-
thing from the past. When taking a decision, they therefore rely
only on the information which is available in the environment. An-
other common robot constraint is anonymity. In this case, robots
do not know ID numbers and they cannot distinguish their neigh-
bors from each other. Another type of constraint is the compass-
model. If all robots use the same coordinate system, some tasks are
easier to solve than if the robots’ local coordinate systems can be
arbitrarily distorted and scaled (the robots are called disoriented).
There also exist some compass models in between. For example,
the robots can share the directions of the coordinate system, but the
axis-scales can be different.

Several time models were proposed. If no runtime bounds but
convergence or termination is considered, asynchronous models are
often used. In such models, robots may become active at any time,
their algorithm executions may be split over several activation pe-
riods. In the most general case, the only restriction is that, on an
infinite time scale, every robot is activated infinitely often. Time
in such a setting is typically defined in terms of rounds. A round
finishes as soon as every robot was active at least once. Such asyn-
chronous models typically exclude the problem of concurrency, and
therefore maybe interfering activations. This problem is crucial for
many synchronous time models.

For the gathering problem, it was shown recently in [8] that ro-
bots which are anonymous, disoriented, oblivious and cannot com-
municate are able to gather in a so called semi-synchronous time
model if and only if n is odd. In [18] and [12], the effect of com-
pass models is studied under various aspects. Another focus are
negative results, showing under which circumstances robots cannot
gather (e.g. [17]). If at least one robot behaves maliciously, gather-
ing is only possible if there are at least three robots in total [1]. In
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[5], the authors not only restrict the robots by prohibiting commu-
nication, memory and a common coordinate system, but they also
use robots which have an extent. The challenge here is that the view
of a robot can be blocked by another robot. Again, the results are
stated without runtime bounds. In [4], upper bounds of O(n2) for
the easier convergence problem in several time models are shown,
but with robots having a global view. There are algorithms with
local view and runtime statements for similar problems, such as
transforming a long winding chain of robots into a short one [14, 9,
6]. There is also work for gathering on graphs instead of Euclidean
spaces [7, 13, 15]. The authors in [11] point out that having no
further assumptions on the robots leads to an exponentional lower
bound for randomized algorithms for gathering and propose a lin-
ear time gathering algorithm, on the base of multiplicity detection.
However, in contrast to our work, their algorithm is not local and
randomization is inherently needed. The results in [16], [3] and
[2] are the closest to ours. In [16], robots converge to the convex
hull of some stationary devices, [3] solves the robot convergence
and [2] the robot gathering problem locally. All three algorithms
basically let a robot move to the center of the smallest enclosing
circle around its neighbors. It is shown that the algorithms solve
the respective problems in finite time, but no runtime bounds are
given.

Problem description and notation.
We are given a set N of n robots in the plane. We assume a

discrete time model. A configuration at time t is described by the
robot positions p1(t), ..., pn(t) at time t. The configuration at time
0 is called start configuration. If clear from the context, we will
sometimes also refer to a robot ri’s position by ri. Gt denotes the
unit disk graph on the positions. d(ri,r j) describes the (Euclidean)
distance between the two robots ri and r j (d(ri,r j) varies over time,
but it will always be clear from the context). Two robots are con-
nected, if they are within distance 1 of each other. We call this
distance the connection range. We assume G0 to be connected. To
make sure that the robots do not split into several groups, our algo-
rithm will keep Gt connected at all times. In contrast, the viewing
range defines the locality: Robots can see all robots within distance
2 and therefore twice as far as the connection range. (For our algo-
rithm it would suffice if every robot knew the positions of all robots
within its 2-hop neighborhood, but using the Euclidean distance for
the viewing range simplifies the description.)

The goal is to gather the robots in one point, using the restricted
robots as described in the robot model. In order to measure the
quality of the algorithm, we count the number of rounds (see Round
model) until they have gathered.

When a robot executes the algorithm, it computes target posi-
tions for itself and neighboring robots. These positions are reached
before the next time step starts.

Our analysis is based on the convex hull of the robots. We dis-
tinguish the global convex hull CH(t) at time t, which describes the
convex hull of all robot positions at time t, and the local convex hull
Cr(t) of a robot r at time t. The local convex hull is the convex hull
of all robots which are within viewing range of r at time t.

Round model.
One of the most common round models for robot formation prob-

lems is the asynchronous round model. Time is modeled as a se-
quence of discrete points of time (time steps). In each time step at
most one robot is active. A round ends as soon as each robot has
been active at least once. This model assumes that robots are never
active concurrently, so no conflicts among these actions of active
robots have to be handled. Usually, the analysis of robotic strate-

gies in this model is done assuming activation of robots in worst
case order in each round.

In this paper we assume weaker models for activation: In the
random order model, we assume that, in each step, a randomly,
uniformly chosen robot becomes active. The choices in different
steps are independent. Note that the expected number of steps per
round is O(n logn) in this model.

In the random permutation model, we assume a fixed random
permutation of the robots to be initially chosen. This permutation
then prescribes the order of activation in each round. Note that each
round takes exactly n steps in this model.

These time models are used for the analysis of our algorithm.
Implementations should be distributed and should allow parallel
activations of robots. For example, a slight variant of the random
order model can be implemented as follows: We assume synchro-
nized time steps. In each step, each robot wakes up with some
given probability p. An awaken robot becomes active, if no other
robot in its connection range is awaken. Note that several robots
may now be active concurrently. But as their connection ranges are
disjoint, no interference between the actions initiated by the active
robots will appear. Choosing p= 1/n leads to a round model which
is very close to the random activation model (up to a slightly non-
uniform probability distribution, because a robot with few neigh-
bors has a slightly larger probability for becoming active than one
with many neighbors).

In Section 4, we will present a variant of this model which uses
a probability for wake-up which is dependent on the number of
neighbors in Gt . It employs a distributed protocol for handling in-
terferences which is tailored to our gathering algorithm. We will
prove a O(n2) bound for the expected number of time steps instead
of rounds in this model.

Robot model.
We use robots with limited capabilities, trying to understand

which capabilities are necessary to prove runtime bounds for the
gathering problem with local view. Our robots

• have a limited viewing range

• are oblivious (they do not have memory)

• do not have a common coordinate system

• can assign target positions to robots connected with them (the
robots thus need to be able to communicate)

• can measure positions of robots within viewing distance rel-
ative to their own position accurately

• can compute complex geometric properties (straight lines
through given points, angles, ...)

• can share a position with another robot.

The possibility to assign target positions to neighbors makes the
robot model more powerful than the ones studied in the literature.
On the other hand, we use the strong restriction of a local viewing
range. Note further that communication cannot be used to perform
complex tasks, since when using oblivious robots, all gathered in-
formation is lost after one step. Consequently, when active, a robot
can

• see all positions of robots within its viewing range relative to
its own position

• compute target positions for all robots within its connection
range.
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• tell robots within its connection range their target positions

• move to its own target position (In our strategy, the maximum
travelled distance in one step is 2)

When inactive, a robot can

• be told a target position

• move to this target position (In our strategy, the maximum
travelled distance in one step is 3)

As soon as two robots share the same position, our algorithm will
keep the robots together. So we say that two robots fuse when they
share the same position for the first time. Concerning the round
model, they now act as one robot, that is, their probability to be
activated in a time step t is equal to the probability of non-fused
robots.

2. DESCRIPTION OF THE
ALGORITHM

The main idea of the algorithm is as follows. Each robot that
is a vertex of the convex hull of the robot positions within its local
viewing range tries to decrease the area that is covered by the robots
as much as possible under the constraint that the unit disk graph of
the robots remains connected. In addition, if there are too many ro-
bots in a given area, the complexity of the problem will be reduced
by fusing single robots into one. As soon as all robots are close to-
gether, they can gather in one final step. Note that robots assuming
to be a vertex of the global convex hull of robots but which are only
a vertex of their local convex hull do not do any harm, because they
never leave the global convex hull of robots. Note further that since
the robots have a limited viewing range, we must guarantee that the
robots do not split into several groups which will never find each
other again.

We can now formally describe the algorithm LOCALGATHER-
ING. It is executed by robot r at the time t in which it is active.

See Figure 1 for an illustration of Step 3b of the algorithm. Note
that the algorithm is deterministic. We will bound the expected
value for the number of rounds until all robots have gathered in one
point in the next section; the only randomness used is the stochas-
tic round model. In particular, the algorithm can also be executed
in an asynchronous worst case round model, the only difference is
that we cannot guarantee the runtime in this case.

3. ANALYSIS OF THE ALGORITHM
This section is dedicated to the analysis of the correctness and

runtime of the algorithm LOCALGATHERING. We will first show
some preliminaries and then analyze the runtime, measured in the
number of rounds needed until the robots have gathered. This num-
ber will be shown to be O(n2) in expectation, where the random-
ness comes only from the stochastic round model, while the algo-
rithm itself is deterministic.

Preliminaries.
In order to prove that the robots gather in one point, we first show

that Gt stays connected at all times and thus that the robots do not
split into several groups. We prove this in the following lemma.

LEMMA 3.1. If the network is connected before a robot r exe-
cutes the algorithm, it is still connected afterwards.

LOCALGATHERING: The algorithm for robot r at time t:

1. Compute the sets Ar and Br of the robots within the view-
ing resp. connection range of r. Let Cr denote the convex
hull of Ar.

2. (Termination) If Ar = Br (i.e. no robots from Ar have dis-
tance between 1 and 2 to r), then move all robots from Ar
to the position pt(r) of r.

3. Else (Br is a proper subset of Ar)

3.a (Fusion) If the positions in Br can be rearranged such that
the resulting new set A′r is still contained in Cr, is still
connected, and at least two robots share the same position
(are fused), perform this rearrangement. Fused robots will
alway have the same position from now on.

3.b (Reduction) If fusion is not possible and r lies on the
boundary of Cr, they do the following:

(a) Compute the two first intersections of the bound-
ary of Cr with the boundary of r’s connection range
if started from pr(t) in clockwise/ counterclock-
wise direction. (Note that these are the intersections
which are in maximum distance to each other.)

(b) Compute the line segment l between these intersec-
tions.

(c) Move all robots on r’s side of l to their respective
closest point on l.

PROOF. If the action in step 2 of the algorithm is executed, no
robot was in the viewing, but not the connection range of r. There-
fore, the robots which are moved to pr(t) were only connected to
robots which are moved to the same point, keeping the connection.
If r executes the action in step 3a of the algorithm, the robots in r’s
viewing range stay connected by definition. Moreover, since only
robots within r’s connection range are moved, edges of the unit disk
graph Gt ending outside r’s viewing range are not affected.

Now let r be a robot executing the action in step 3b of the algo-
rithm in time step t. Since again only robots within r’s connection
range are moved, we only need to prove that all robots in the local
convex hull Cr(t) stay connected. For these robots (we now denote
them by R), the straight line s which contains l separates R in two
disjoint subsets R1 and R2 (let R1 contain the robots on l). See Fig-
ure 1 for an illustration. Let R1 be the subset which contains r, and
let v be an arbitrary robot from R1. According to the algorithm,
all robots from R1 are moved to their projection on l, if it exists,
and otherwise to their closest point on l (which is the closer end of
l). It follows that the distance of v to its neighbors in R1 can only
decrease. If v is moved to its projection on l, by the definition of a
projection its distance to the robots in R2 can also not increase. If
no projection of v on l exists, the movement of v can be split in two:
If v was moved to its projection v′ on s, the distance to its neighbors
in R2 would also not grow. From v′, v can be moved to its target
position by projecting it to another straight line s′: s′ is orthogonal
to l and intersects l in v’s target position (and thus in the end of l
which is closer to v). Again, all robots from R2 are positioned on
the other side of s′ from v’s point of view, and thus its distance to
the robots from R2 can again not increase.

COROLLARY 3.2. If Step 2 of the algorithm (termination) is ex-
ecuted, the algorithm has gathered all robots in one position.
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Figure 1: Illustration of step 3b of the algorithm and its cor-
rectness

Note that in rounds without fusions, if two robots were in each
others connection range before the round, they still are afterwards.

In order to compute the number of rounds until the robots have
gathered, we use two progress measures. Since fused robots never
part again, fusing robots is progress. The other measure is the area
of the convex hull which is truncated in one round. We will prove
that we have progress concerning at least one of the two measures
in each round: Either two robots are fused or the area decreases in
expectation by a constant. Since fused robots never part again, the
first measure is monotonically decreasing. We now show that this
also holds for the second one.

LEMMA 3.3. For all t and t ′ with t ′ > t it holds: CH(t ′) ⊆
CH(t).

PROOF. If robots are rearranged while two robots fuse, a robot
leaves neither the local convex hull nor the global convex hull of ro-
bots. If a vertex r of the convex hull moves itself and neighboring
robots to the line segment l, l is completely inside the local con-
vex hull of r and therefore again no robot leaves the global convex
hull.

The next Lemma states another helpful fact and shows that a
simple implementation of Step 3a of the algorithm is sufficient.

LEMMA 3.4. If |Br| > 16, then Step 3a of the algorithm (Fu-
sion) is always possible.

PROOF. Insert a grid with step width 1 into the intersection of
r′s viewing range and Cr(t). It is always possible to insert such a
grid which has at most 16 points. If there are more robots in r′s
connection range than points on the grid, moving the robots to the
grid points guarantees that the unit disk graph of the robots in r’s
viewing range stays connected and that no robot leaves Cr(t).

Progress in rounds without fusions.
Since we start with n robots, there can be at most n− 1 rounds

in which robots fuse. It remains to bound the number of rounds
without fusions. In order to achieve this, we will prove that the
area of the convex hull is decreased in expectation by a constant in

such rounds (Lemma 3.8). The idea of the proof is to bound the
area which is truncated by a single robot which is a vertex of the
global convex hull of robots (Proposition 3.6). This area directly
depends on the internal angle of the global convex hull at the robot
position at the moment the robot turns active. We show a relation
between the internal angle at this moment and at the beginning of
the round, so that we are able to sum up the progress of all robots
by using the sum of the internal angles of the global convex hull at
the beginning of the round.

Before we start with the proofs, we need to introduce some no-
tation. In this subsection we will always consider a fixed round
without a fusion. Moreover,

• m denotes the number of vertex robots, that is robots which
are a vertex of the global convex hull CH at the beginning of
the round. For ease of description, we renumber the vertex
robots to r1, ...,rm.

• β ∗i is the internal angle of the global convex hull at vertex
robot ri at the beginning of the round.

Now consider a vertex robot ri which is still a vertex of the global
convex hull CH(t) in the first time step t in which it is active in this
round.

• Let p1 and p2 denote the first intersections of the global con-
vex hull CH(t) with the boundary of ri’s connection range
if started from pri(t) in clockwise/ counterclockwise direc-
tion (the intersections which are in maximal distance to each
other). Let T denote the triangle with the vertices pri(t), p1
and p2. Then βi is the internal angle of T in vertex pri(t).

• Let p′1 and p′2 denote the intersections of the local convex
hull Cri and the boundary of ri’s connection range if started
from pri(t) in clockwise/ counterclockwise direction (the in-
tersections which are in maximal distance to each other). Let
T ∗ denote the triangle with the vertices pri(t), p′1 and p′2.
Then αi is the internal angle of T ∗ in vertex pri(t).

Figure 2 illustrates the described angles. Note that αi ≤ βi, since
the global convex hull contains the local convex hull at the begin-
ning of time step t.

In order to bound the area which is truncated by a single robot,
we start by showing that the internal angle of the local convex hull
of this robot cannot be small, since otherwise robots can be fused.

PROPOSITION 3.5. Consider a fixed round in which no robots
are fused. Then αi is greater than π

3 for all robots ri which are a
vertex of the global convex hull in the moment they turn active.

PROOF. If αi ≤ π

3 for a robot ri, there exists one position p from
which all robots are in distance at most 1 which were within view-
ing, but not connection range of pri(t). See Figure 3 for an illustra-
tion. ri can be moved to the point of the local convex hull closest to
the point shown as p in Figure 3. Moreover, because Gt is always
connected, there must have been at least one robot in the connection
range of ri. All these robots can now fuse with ri. Afterwards, no
robots remain in the old connection range of ri and thus the robots
from Cri(t) are connected.

PROPOSITION 3.6. Consider a fixed round in which no robots
are fused, and a robot ri which is a vertex of the global convex hull
in the time step t in which it turns active. The area of the global
convex hull is reduced by at least 1

2 cos( βi
2 ) in this time step.

PROOF. Consider the triangle T as defined above. Since the
global convex hull CH(t) contains the local convex hull Cr(t), no
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Figure 2: Angles used in this subsection. CH indicates the
global convex hull at the beginning of the round. βi and αi are
internal angles of the triangles T and T ∗ at the first time step
in which ri turns active in the round, β ∗i is the internal angle of
the global convex hull at the beginning of the round.

Figure 3: Illustration of a position from which all neighbors
are in connection range. The indicated sector of the circle must
contain the local convex hull, if αi ≤ π

3 .

point of l or the circular segment defined by l and the connection
range of ri can lie strictly inside of T (see Figure 4 for an illustra-
tion). As robot ri moves all robots in its viewing range to this seg-
ment, the triangle T cannot contain any robots at the end of time
step t. Since T is completely contained in the global convex hull,
the area of the global convex hull is reduced by at least the area
of T , which is sin( βi

2 ) · cos( βi
2 ) ≥ sin(αi

2 ) · cos( βi
2 ) ≥

1
2 · cos( βi

2 ),
where the first inequality follows from βi ≥ αi and the second fol-
lows from Proposition 3.5: According to this proposition, αi is at
least π

3 , giving that sin(αi
2 )≥ 1

2 .

The next lemma will be helpful when showing that the convex
hull is reduced in expectation by a constant 1

c . The constant c is the
maximum number of robots that can be within the viewing range
of a robot without fusing at least two of them. Lemma 3.4 states an
upper bound for c of 16.

LEMMA 3.7. A vertex robot ri is never moved by the activation
of another robot prior to its own activation with probability at least

Figure 4: Illustration of the proof of Proposition 3.6

a) 1
c , in the random order model

b) 1
4c , in the random permutation model.

PROOF. At the moment t in which it is active, a robot can only
have c neighbors (in its connection range), since otherwise robots
could be fused. This also holds for all time steps of the current
round before t, because once neighbors, robots stay connected at
least until the next fusion. Therefore, the probability that a vertex
robot ri is active before any of its neighbors in the random order
model is at least

∞

∑
t=0

1
n
(1− c

n
)t =

1
n

1
1− (1− c

n )
=

1
c

In the random permutation model, the probability is at least

1
n
+

(
n−1

∑
t=1

1
n− t

(
t−1

∏
j=0

1− c
n− t

))

Easy computations show that this is ≥ 1
4c .

LEMMA 3.8. Consider a fixed round in which no robots are
fused. The expected value for the area by which the global con-
vex hull is reduced in this round is at least 1

c in the random order
model resp. 1

4c in the random permutation model.

PROOF. Let ri denote a robot which is a vertex of the global
convex hull CH at the beginning of the round. Remember that β ∗i is
the internal angle of CH of robot ri. Since CH is a convex polygon,
the sum of its internal angles is ∑

m
i=1 β ∗i = π · (m− 2). We want

to use this sum of internal angles to determine the area by which
the global convex hull is truncated in this round. Since robot ri

truncates the global convex hull by 1
2 cos( βi

2 ) (Proposition 3.6), we
need a relation between the internal angle of CH in robot ri in the
beginning of the round (β ∗i ) and βi, the internal angle in robot ri of
the triangle T at the beginning of the first time step t in which ri is
active.

Note that ri may have neighbors which were moved by other
robots before. Consider the case that ri is active before any other
robot in its connection range. This means that ri’s position cannot
have changed in this round before time step t. If other robots have
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moved before time step t in this round, they have not left the global
convex hull and thus it can only have shrunk. This means that the
internal angle of the global convex hull in robot ri can only have
decreased: At the beginning of time step t it is smaller than or
equal to β ∗i . Finally, the triangle T is completely contained in the
global convex hull at time step t. It follows that βi is not larger than
the internal angle of the global convex hull at ri at the beginning of
time step t, and thus β ∗i ≥ βi, if ri is the first vertex of the convex
hull which becomes active in its neighborhood.

Now we compute a lower bound for the expected area by which
ri truncates the global convex hull in the time step t in which it
is first active, depending only on its internal angle of the global
convex hull at the beginning of the round. For this, let ai denote
the random variable which describes the area truncated by robot
ri in the round. The following computations are for the random
order model, they can be computed analogously for the random
permutation model.

E[ai] ≥ Pr[ri is the first activated robot in its connection
range] · (area truncated in this case)

=
1
c
· 1

2
cos(

βi

2
)

≥ 1
2c

cos(
β ∗i
2
)

The equality follows from Lemma 3.7. Finally, lower bounding the
cosine in the interval [0; π

2 ] by the straight line g with g(x)= 1− 2
π

x,
we can use the sum of all internal angles of the global convex hull
(∑m

i=1 β ∗i = π · (m− 2)) to estimate the expected truncated area in
the round:

E[
m

∑
i=1

ai] =
m

∑
i=1

E[ai]

≥
m

∑
i=1

1
2c

cos(
β ∗i
2
)

≥ 1
2c

(
m

∑
i=1
− 2

π
·

β ∗i
2

+1

)

=
1
2c

(
m− 1

π

m

∑
i=1

β
∗
i

)

=
1
2c

(
m− 1

π
·π · (m−2)

)
=

1
2c

(m−m+2)

=
1
c

Note that we only use the first time a robot turns active in a round.
If it turns active again, it may reduce the size of the convex hull
further, but it will never increase the convex hull (Lemma 3.3). It
follows that activating robots more than once in a round can only
improve our result.

Runtime of the algorithm.
We can now put together the results to bound the number of

rounds until the robots have gathered.

THEOREM 3.9. Our local gathering algorithm needs expected
O(n2) rounds in the random order and the random permutation
model.

PROOF. In each round, each robot r performs exactly one of the
following three operations:

1. it moves all robots in its viewing range to its own position

2. it fuses two robots

3. if it is a vertex of the convex hull of its neighboring robots,
it truncates a part of this local convex hull, otherwise it does
nothing.

Since the unit disk graph of the robots always stays connected
(Lemma 3.1), the first operation is only executed by a robot r if
all robots are within connection range of r. It follows that after ex-
ecuting the first operation, the gathering has been achieved. Con-
sequently, there is only one round in which this operation is per-
formed.

The second operation can be performed at most n−1 times, since
fused robots never part again and after at most n− 1 fusions, all
robots have fused to one robot.

The global convex hull of the start configuration can have an area
of at most n2, because we assume the Gt to be connected. Since
according to Lemma 3.8 the area of the convex hull is truncated
in expectation by a constant in a round without fusions and since
the area of the global convex hull never increases (Lemma 3.3),
there can be at most O(n2) rounds in expectation without fusions.
Summing up the number of rounds for each operation leads to the
desired bound.

4. VARIANT OF THE ROUND MODEL
So far, we have formulated our round models in a global fashion.

Now we show that a variant also exists which can be implemented
in a distributed synchronous setting.

Consider the following local activation protocol: In a time step,
each robot r first computes the size br of Br, the set of robots within
its connection range. Then it wakes up with probability 1

max(c,br)
,

where c is the maximum number of neighbors a robot can have
without fusing robots. It becomes active if no other robot r1 in Br
with a smaller br1 woke up. If r is active, it performs our local
gathering algorithm.

Note that the parallel executions never interfere. Note further
that such a time step needs a computation of Br, followed by just
one step for parallel executions of our local gathering algorithm.

THEOREM 4.1. Our local gathering algorithm needs expected
O(n2) time steps in the local activation model.

PROOF. Consider a time step.
If no fusion is possible, each robot r wakes up with probability

1
c , and becomes active with probability p ≥ 1

c (1−
1
c )

c−1. As p is
constant, Lemma 3.8 yields that, in such a time step, an expected
constant size part of the convex hull is truncated. Thus, expected
O(n2) time steps without fusion suffice.

If a fusion is possible, br > c holds for some robot r. r wakes
up with probability 1

br
(1− 1

br
)br ≥ 1

e·n . Thus expected O(n2) time
steps in which a fusion is possible suffice to perform all at most
n−1 many fusions.

5. CONCLUSION AND FUTURE WORK
We presented a local gathering algorithm with expected runtime

O(n2). This is the first algorithm that solves the gathering problem
with local view only and provides a runtime guarantee. We use a
randomized round model in order to guarantee in our analysis the
relation between inner angles of the convex hull at the beginning
of a round and at the time in which a robot moves. This is a rather
technical assumption and it would be worthwhile to study whether
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it can be dropped in favor of an asynchronous worst case round
model.

Furthermore, the runtime guarantee comes at the price of robots
being able to move other robots within their vicinity. From an algo-
rithmic point of view, the robots still act locally, for example in the
sense that they do not know the global convex hull but rely only on
the convex hull of robots in their vicinity. Still, this approach makes
it difficult to apply the algorithm in a deterministic synchronous
round model, or even in an asynchronous model where a robot can
start to move while other robots have not reached their target posi-
tion yet. It remains open if a similar runtime bound can be reached
without this robot ability. In particular, having runtime bounds on
the natural local algorithms considered in [16, 2, 3] that do not have
this property would be nice. Our algorithm furthermore relies on
the fact that the robots may look twice as far as needed for the con-
nection of the network, which is not needed in [16, 2, 3]. Another
open question is whether there are local gathering algorithms with
runtime o(n2).

Note further that in order not to increase the convex hull globally,
robots must not increase the convex hull locally. It would be nice
to have lower bounds for any algorithm that obeys this constraint
or at least for our algorithm.
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