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Motivation

I Multiprocessor systems
I Speed up time-sharing

applications
I How to parallelize easily and

e�ciently?

I Concurrent access to shared
memory
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Locking

I Coarse-grained or �ne-grained

I Di�cult to program when # of
locks is large

I Problems: deadlocks, priority
inversions, convoying

I Race conditions

I Other solutions?

Ioana Giurgiu Software transactional memory



Transactional memory (Herlihy et. al, ISCA'93)

I Architectural support for lock-free data structures

I Based on LL/SC

I Changes cache
coherence protocols

I Instructions
I LT, LTX, ST
I COMMIT,

ABORT
I VALIDATE

I NOT HERE YET
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Software transactional memory (Shavit et. al, PODC'95)

Software method to support �exible transactional
programming of synchronization operations

I Transactional model

I Transaction = atomic sequence of steps
I Protect access to shared objects

I Only for static transactions

I Easier to program

I Higher performance than locks?
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Transactional locking II Dice et. al, DISC'06

"If we implemented �ne-grained locking with the same
simplicity of coarse-grained, we would never think of building a
transactional memory"

I Fits any memory lifecycle (GC, malloc/free)

I Safe → consistent memory states

I Performance
I 10x faster than single locks on RBTs
I Better than all lock-based & non-blocking STMs
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Transactional locking II (cont.)

1. Use commit-time locking instead of encounter-time locking

I Encounter-time locking (Ennals, Saha): quick reads of freshly
written values in memory by the read-only transaction

I Commit-time locking: memory locked only during the commit
phase

I Under high loads, better performance
I Works with malloc/free
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Transactional locking II (cont.)

2. Use global version clock for validation

I Why a clock?
I Lock STMs � inconsistent

states
I Need validation

periodically

I Shared global version clock
I Incremented by write

transactions
I Read by all transactions
I State always consistent
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Transactional locking II (cont.)

3. Locks to shared data?

I PO (per object): lock per shared object
I Insertion of lock �elds

I PS (per stripe): array of locks per memory stripe
I Each transactable location is mapped to a stripe
I No changes to data structure
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Transactional locking II (cont.)

Read-only transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I If lock value ≤ RV → commit
I If lock value > RV → abort
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Transactional locking II (cont.)

Write transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I Lock value ≤ RV
I Maintain read/write set

I Lock write set
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Transactional locking II (cont.)

Write transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I Lock value ≤ RV
I Maintain read/write set

I Lock write set

I WV ← increment(Clock)

I Validate each lock value ≤ RV
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Transactional locking II (cont.)

Write transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I Lock value ≤ RV
I Maintain read/write set

I Lock write set

I WV ← increment(Clock)

I Validate each lock value ≤ RV

I Release locks with value ← WV
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Transactional locking II (cont.)

Small RBT: 30% put, 30% delete, 40% get/16-proc SunV890
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Transactional locking II (cont.)

Large RBT: 5% put, 5% delete, 90% get/16-proc SunV890
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Transactional locking II (cont.)

Speedup � Large RBT � 5% puts, 5% deletes, 90% gets
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Transactional locking II (cont.)

Conclusions

I STM scalability is comparable with hand-crafted, but
overheads are much higher

I Read set and validation cost a�ect performance

I No meltdown under contention

I Seamless operation with malloc/free
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LSA-STM Felber et. al, TPDS'08

Current trade-o� between consistency and performance
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LSA-STM (cont.)

Lazy snapshot algorithm speeds up transactions for large data
sets, while reducing the overhead of incremental validation

How? Time-based algorithms allow to keep multiple versions
of objects for RO transactions
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LSA-STM (cont.)

I Global clock CT counts # of commits

I STM objects (A,B,C) have multiple versions
I Each version has a validity range Rv relative to CT
I Most recent version has upper bound ∞
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LSA-STM (cont.)

I Every transaction maintains a snapshot with a validity range
RT

I Snapshot =
⋂

of the accessed versions' validity range
I Initialized to [ST , ∞]
I If snapshot == nonempty → commit
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LSA-STM (cont.)

I When a transaction T reads an object
I The version's validity range must

⋂
T's snapshot

I Snapshot bounds are adjusted to the
⋂

I Validity range ends at time of the read
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LSA-STM (cont.)

I If T's snapshot
⋂

with the latest version's validity range
I No need to update the snapshot
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LSA-STM (cont.)

I If T's snapshot does not
⋂

with the latest version's validity
range

I Extend snapshot (may fail)

I Read-only transactions can use old versions
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LSA-STM (cont.)

I Extension tries to increase the upper bound of the snapshot
I Check if all read versions are valid
I If yes, snapshot's upper bound = CT (now)
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LSA-STM (cont.)

I Extension may increase the lower bound of the snapshot
I = largest lower bound among the validity ranges of accessed

versions
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LSA-STM (cont.)

I Read-only transactions can commit if snapshot is not ∅
I No need to extend range to CT
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LSA-STM (cont.)

I Update transactions create new versions of modi�ed objects
when commiting at CT

I Validity range of new objects starts at CT

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Upon commit, an update transaction tries to acquire a new,
unique commit timestamp at CT

I Transaction can commit i� the snapshot can be extended to
CT - 1
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LSA-STM (cont.)

How to program?
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LSA-STM (cont.)

How to program?
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LSA-STM (cont.)

Performance evaluation

I Java implementation

I Sun Fire T2000 8 core UltraSparc T1 processor (8-core
Niagara)

I SXM: visible reads

I ASTM: invisible reads, incremental validation

I LSA: time-based invisible reads
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LSA-STM (cont.)

Linked list: 256 elements
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LSA-STM (cont.)

RBT: 65536 elements
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LSA-STM (cont.)

Conclusions

I High performance and consistency

I Obstruction-free implementation in Java
I Weakest guarantee for a system
I At least one thread makes progress
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Multiplayer gaming
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Multiplayer gaming (cont.)

Parallelization of SynQuake (Lupei et. al, Eurosys'10)

Why? Scale the game server

I SynQuake
I Extracts data structures and features of Q3
I Driven with synthetic workload (game actions, hot-spot

scenarios)

I libTM (Lupei et al., Interact'09)

I C/C++ support
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Multiplayer gaming (cont.)

Areanode tree

I Binary space partitioning tree (each node = speci�c map
region)

I E�cient searching for all entities that a player interacts with
I By recursively dividing the map into submaps (median on X

and Y)
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Multiplayer gaming (cont.)

I 8 cores → 2 Xeon Quad-Core @ 3GHz

I 600 to 2000 players

I 1000 server frames on a 1024 x 1024 map

I areanode tree depth = 8
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Multiplayer gaming (cont.)

Default setting: 4 quests with low/medium/high contention
overload
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Multiplayer gaming (cont.)

Scalability vs. processing time
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Conclusions

I STMs are a viable alternative to locks

I Di�erent �avors: TL2, LSA

I SynQuake

I Easier to program than locks

I Better performance for higher degree of concurrency

I Higher overheads

I Integration with existing languages

I Support in hardware...?
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