
Software transactional memory

Transactional locking II (Dice et. al, DISC'06)

Time-based STM (Felber et. al, TPDS'08)

Ioana Giurgiu

Mentor: Johannes Schneider

March 16th, 2011

Ioana Giurgiu Software transactional memory



Motivation

I Multiprocessor systems
I Speed up time-sharing

applications
I How to parallelize easily and

e�ciently?

I Concurrent access to shared
memory

Ioana Giurgiu Software transactional memory



Ioana Giurgiu Software transactional memory



Locking

I Coarse-grained or �ne-grained

I Di�cult to program when # of
locks is large

I Problems: deadlocks, priority
inversions, convoying

I Race conditions

I Other solutions?

Ioana Giurgiu Software transactional memory



Transactional memory (Herlihy et. al, ISCA'93)

I Architectural support for lock-free data structures

I Based on LL/SC

I Changes cache
coherence protocols

I Instructions
I LT, LTX, ST
I COMMIT,

ABORT
I VALIDATE

I NOT HERE YET

Ioana Giurgiu Software transactional memory



Software transactional memory (Shavit et. al, PODC'95)

Software method to support �exible transactional
programming of synchronization operations

I Transactional model

I Transaction = atomic sequence of steps
I Protect access to shared objects

I Only for static transactions

I Easier to program

I Higher performance than locks?

Ioana Giurgiu Software transactional memory



Transactional locking II Dice et. al, DISC'06

"If we implemented �ne-grained locking with the same
simplicity of coarse-grained, we would never think of building a
transactional memory"

I Fits any memory lifecycle (GC, malloc/free)

I Safe → consistent memory states

I Performance
I 10x faster than single locks on RBTs
I Better than all lock-based & non-blocking STMs

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

1. Use commit-time locking instead of encounter-time locking

I Encounter-time locking (Ennals, Saha): quick reads of freshly
written values in memory by the read-only transaction

I Commit-time locking: memory locked only during the commit
phase

I Under high loads, better performance
I Works with malloc/free

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

2. Use global version clock for validation

I Why a clock?
I Lock STMs � inconsistent

states
I Need validation

periodically

I Shared global version clock
I Incremented by write

transactions
I Read by all transactions
I State always consistent

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

3. Locks to shared data?

I PO (per object): lock per shared object
I Insertion of lock �elds

I PS (per stripe): array of locks per memory stripe
I Each transactable location is mapped to a stripe
I No changes to data structure

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Read-only transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I If lock value ≤ RV → commit
I If lock value > RV → abort

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Write transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I Lock value ≤ RV
I Maintain read/write set

I Lock write set

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Write transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I Lock value ≤ RV
I Maintain read/write set

I Lock write set

I WV ← increment(Clock)

I Validate each lock value ≤ RV

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Write transactions

I RV ← Clock

I Speculative execution
I Write lock is free
I Lock value ≤ RV
I Maintain read/write set

I Lock write set

I WV ← increment(Clock)

I Validate each lock value ≤ RV

I Release locks with value ← WV

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Small RBT: 30% put, 30% delete, 40% get/16-proc SunV890

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Large RBT: 5% put, 5% delete, 90% get/16-proc SunV890

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Speedup � Large RBT � 5% puts, 5% deletes, 90% gets

Ioana Giurgiu Software transactional memory



Transactional locking II (cont.)

Conclusions

I STM scalability is comparable with hand-crafted, but
overheads are much higher

I Read set and validation cost a�ect performance

I No meltdown under contention

I Seamless operation with malloc/free

Ioana Giurgiu Software transactional memory



LSA-STM Felber et. al, TPDS'08

Current trade-o� between consistency and performance

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

Lazy snapshot algorithm speeds up transactions for large data
sets, while reducing the overhead of incremental validation

How? Time-based algorithms allow to keep multiple versions
of objects for RO transactions

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Global clock CT counts # of commits

I STM objects (A,B,C) have multiple versions
I Each version has a validity range Rv relative to CT
I Most recent version has upper bound ∞

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Every transaction maintains a snapshot with a validity range
RT

I Snapshot =
⋂

of the accessed versions' validity range
I Initialized to [ST , ∞]
I If snapshot == nonempty → commit

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I When a transaction T reads an object
I The version's validity range must

⋂
T's snapshot

I Snapshot bounds are adjusted to the
⋂

I Validity range ends at time of the read

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I If T's snapshot
⋂

with the latest version's validity range
I No need to update the snapshot

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I If T's snapshot does not
⋂

with the latest version's validity
range

I Extend snapshot (may fail)

I Read-only transactions can use old versions

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Extension tries to increase the upper bound of the snapshot
I Check if all read versions are valid
I If yes, snapshot's upper bound = CT (now)

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Extension may increase the lower bound of the snapshot
I = largest lower bound among the validity ranges of accessed

versions

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Read-only transactions can commit if snapshot is not ∅
I No need to extend range to CT

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Update transactions create new versions of modi�ed objects
when commiting at CT

I Validity range of new objects starts at CT

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

I Upon commit, an update transaction tries to acquire a new,
unique commit timestamp at CT

I Transaction can commit i� the snapshot can be extended to
CT - 1

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

How to program?

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

How to program?

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

Performance evaluation

I Java implementation

I Sun Fire T2000 8 core UltraSparc T1 processor (8-core
Niagara)

I SXM: visible reads

I ASTM: invisible reads, incremental validation

I LSA: time-based invisible reads

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

Linked list: 256 elements

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

RBT: 65536 elements

Ioana Giurgiu Software transactional memory



LSA-STM (cont.)

Conclusions

I High performance and consistency

I Obstruction-free implementation in Java
I Weakest guarantee for a system
I At least one thread makes progress

Ioana Giurgiu Software transactional memory



Multiplayer gaming

Ioana Giurgiu Software transactional memory



Multiplayer gaming (cont.)

Parallelization of SynQuake (Lupei et. al, Eurosys'10)

Why? Scale the game server

I SynQuake
I Extracts data structures and features of Q3
I Driven with synthetic workload (game actions, hot-spot

scenarios)

I libTM (Lupei et al., Interact'09)

I C/C++ support

Ioana Giurgiu Software transactional memory



Multiplayer gaming (cont.)

Areanode tree

I Binary space partitioning tree (each node = speci�c map
region)

I E�cient searching for all entities that a player interacts with
I By recursively dividing the map into submaps (median on X

and Y)

Ioana Giurgiu Software transactional memory



Multiplayer gaming (cont.)

I 8 cores → 2 Xeon Quad-Core @ 3GHz

I 600 to 2000 players

I 1000 server frames on a 1024 x 1024 map

I areanode tree depth = 8

Ioana Giurgiu Software transactional memory



Multiplayer gaming (cont.)

Default setting: 4 quests with low/medium/high contention
overload

Ioana Giurgiu Software transactional memory



Multiplayer gaming (cont.)

Scalability vs. processing time

Ioana Giurgiu Software transactional memory



Conclusions

I STMs are a viable alternative to locks

I Di�erent �avors: TL2, LSA

I SynQuake

I Easier to program than locks

I Better performance for higher degree of concurrency

I Higher overheads

I Integration with existing languages

I Support in hardware...?

Ioana Giurgiu Software transactional memory


