Tell Me Who I Am: An Interactive Recommendation System

N. Alon, B. Awerbuch, Y. Azar, B. Patt-Shamir

Richard Huber

Publication

- Theory of Computing Systems
- Volume 45
- August 2009

- Tel Aviv University, Israel
- John Hopkins University, Baltimore, USA

Experiment

- Travel in a foreign country
- Unknown language
- Learn to know the night life subculture
- Not allowed to talk to each other

Experiment

- Problem:
- 5 typical drinks
- money for 3 drinks
- Waitress asks whether you liked the drink
- Idea: Human preferences correlate

Eidgenössische Technische Hochschule Zürich

Experiment

- http://demo.racerfish.com

Players and Billboard

How can a player find out his preferences with only a few probes?

Statement of the Problem

- n players and m objects
- each player has an unknown yes/no grade for each object
- Parallel rounds: in each round each player
" reads the shared billboard
" probes one object
" writes the result of the probe on the billboard
- For each player: output a vector as close as possible to that player's original preference vector

Statement of the Problem (Formal)

- Input:
- A set P of n players and a set O of m objects
- A vector $v(p) \in\{\text { yes , no }\}^{m}$ for each player p
- Output:
- An estimate vector $w(p) \in\{\text { yes ,no }\}^{m}$ for each player p
- Goal:
- Minimize $\operatorname{dist}(v(p), w(p))$ for each player p $\operatorname{dist}(x, y)$ is the Hamming distance
- Minimize the number of probes

Input Characteristic

- Diameter of a subset $A \subset P$

$$
D(A)=\max \{\operatorname{dist}(v(p), v(q)) \mid p, q \in A\}
$$

- (α, D)-typical set: Subset $A \subset P$ with

$$
\begin{aligned}
& |A| \geqslant \alpha n, \quad 0 \leqslant \alpha \leqslant 1 \\
& D(A) \leqslant D, \quad D \geqslant 0
\end{aligned}
$$

Approximation Quality

- Discrepancy of a subset $A \subset P$

$$
\Delta(A)=\max \{\operatorname{dist}(w(p), v(p)) \mid p \in A\}
$$

- Stretch of a subset $A \subset P$

$$
\rho(A)=\frac{\Delta(A)}{D(A)}
$$

The CHOOSE_CLOSEST Problem

- Input
- A set V of preference Vectors with $|V|=k$
- A player p with (initially unknown) preference vector $v(p)$
- Output
- A vector $w_{\text {min }} \in V$ such that

$$
\operatorname{dist}\left(w_{\min }, v(p)\right) \leqslant \operatorname{dist}(w, v(p)), w \in V
$$

	Object 1 Object 2 Object 3		
Player p	yes	yes	no
v_{1}	yes	no	no
$\mathrm{V} \quad \mathrm{V}_{2}$	yes	no	yes
V_{3}	no	yes	yes

The SELECT Algorithm

- Solves an adapted version of the CHOOSE_CLOSEST problem
- Adaptions:
- Additional input D
- There is a vector $w \in V$ such that $\operatorname{dist}(w, v(p)) \leqslant D$

The SELECT Algorithm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(D=1\)} \& \multicolumn{7}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
\[
X(V)
\] \\
Object 1 Object 2 Object 3 Object 4 Object 5Object 6Object
\end{tabular}}} \\
\hline \& \& \& \& \& \& \& \\
\hline Player p \& ? \& ? \& ? \& ? \& ? \& ? \& ? \\
\hline \multirow[t]{3}{*}{V
V
v

v} \& yes \& no \& yes \& no \& no \& yes \& yes

\hline \& yes \& no \& no \& yes \& yes \& no \& no

\hline \& yes \& yes \& no \& yes \& yes \& no \& no

\hline
\end{tabular}

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$D=1$} \& \multicolumn{7}{|l|}{\multirow[t]{2}{*}{X(V)
Object 1 Object 2 Object 3 Object 4 Object 50bject 60bject 7}}

\hline \& \& \& \& \& \& \&

\hline Player p \& ? \& ? \& ? \& ? \& ? \& ? \& ?

\hline \multirow[t]{3}{*}{V
V
v_{1}

v_{3}} \& yes \& no \& yes \& no \& no \& yes \& yes

\hline \& yes \& no \& no \& yes \& yes \& no \& no

\hline \& yes \& yes \& no \& yes \& yes \& no \& no

\hline
\end{tabular}

1) Reapeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$D=1$} \& \multicolumn{7}{|l|}{\multirow[t]{2}{*}{X(V)
Object 1 Object 2 Object 3 Object 4 Object 5Object 6Object 7}}

\hline \& \& \& \& \& \& \&

\hline Player p \& ? \& no \& ? \& ? \& ? \& ? \& ?

\hline \multirow[t]{3}{*}{V
V
v_{1}

v_{3}} \& yes \& no \& yes \& no \& no \& yes \& yes

\hline \& yes \& no \& no \& yes \& yes \& no \& no

\hline \& yes \& yes \& no \& yes \& yes \& no \& no

\hline
\end{tabular}

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{$D=1$} \& \multicolumn{7}{|l|}{\multirow[t]{2}{*}{X(V)
Object 1 Object 2 Object 3 Object 4 Object 5Object 6Object 7}}

\hline \& \& \& \& \& \& \&

\hline Player p \& ? \& no \& ? \& ? \& ? \& ? \& ?

\hline \multirow[t]{3}{*}{V
V
v_{1}

v_{3}} \& yes \& no \& yes \& no \& no \& yes \& yes

\hline \& yes \& no \& no \& yes \& yes \& no \& no

\hline \& yes \& yes \& no \& yes \& yes \& no \& no

\hline
\end{tabular}

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	X(V)						
	Object 1 Object 2 Object 3 Object 4 Object 50bject 6Object 7						
Player p	?	no	?	?	?	?	?
v_{1}	yes	no	yes	no	no	yes	yes
$\checkmark \quad \mathrm{V}_{2}$	yes	no	no	yes	yes	no	no
v_{3}	yes	yes	no	yes	yes	no	no

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	X(V)						
	Object 1 Object 2 Object 3 Object 4 Object 50bject 6Object 7						
Player p	?	no	no	?	?	?	?
v_{1}	yes	no	yes	no	no	yes	yes
$\checkmark \quad \mathrm{V}_{2}$	yes	no	no	yes	yes	no	no
v_{3}	yes	yes	no	yes	yes	no	no

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	X(V)						
	Object 1 Object 2 Object 3 Object 4 Object 50bject 6Object 7						
Player p	?	no	no	?	?	?	?
 V v v	yes	no	yes	no	no	yes	yes
	yes	no	no	yes	yes	no	no
	yes	yes	no	yes	yes	no	no

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	X (V)						
	bject	ject	ject			?	$?$
Player p	?	no	no	?	?		
v_{1}	yes	no	yes	no	no	yes	yes
$\checkmark \mathrm{v}$	yes	no	no	yes	yes	no	no
v_{3}	yes	yes	no	yes	yes	no	no

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	X(V)						
	Object 1 Object 2 Object 3 Object 4 Object 50bject 6Object 7						
Player p	?	no	no	yes	?	?	?
 V v v	yes	no	yes	no	no	yes	yes
	yes	no	no	yes	yes	no	no
	yes	yes	no	yes	yes	no	no

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	$X(V)$ Object 1 Object 2 Object 3 Object 4 Object 5Object 6Object						
Player p	?	no	no	yes	?	?	?
$\begin{array}{cc}\mathrm{V} & \mathrm{v}_{2} \\ & \mathrm{v}_{3}\end{array}$	yes	no	yes	no	no	yes	yes
	yes	no	no	yes	yes	no	no
	yes	yes	no	yes	yes	no	no

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	X(V)						
	bject 1 Object 2 Object 3 Object 4 Object 50 bject 60 bject						
Player p	?	no	no	yes	?	?	?
v_{1}	yes	no	yes	no	no	yes	yes
$\checkmark \quad \mathrm{v}_{2}$	yes	no	no	yes	yes	no	no
v_{3}	yes	yes	no	yes	yes	no	no

1) Repeat

1a) Let $X(V)$ be the set of Objects on which some two vectors in V differ.
1b) Execute Probe on the first coordinate in $X(V)$ that has not been probed yet.
1c) Remove from V any vector with more than D disagreements with $v(p)$.
Until all coordinates in $\mathrm{X}(\mathrm{V})$ are probed or $\mathrm{X}(\mathrm{V})$ is empty.

The SELECT Algorithm

$D=1$	Object 1	Y Object 2 Object 3 Object 4			bject 50 bject 60 bject 7		
Player p	?	no	no	yes	?	?	?
v_{1}	yes	no	yes	no	no	yes	yes
$\mathrm{V} \quad \mathrm{V}_{2}$	yes	no	no	yes	yes	no	no
v_{3}	yes	yes	no	yes	yes	no	no

2) Let Y be the set of objects probed by p. Output the vector closest to $v(p)$ regarding only the objects in Y .

Eidgenössische Technische Hochschule Zürich

The SELECT Algorithm

$D=1$	Object 1 Object 2 Object 3 Object 4						
Player p	?	no	no	yes	?	?	?
v_{1}	yes	no	yes	no	no	yes	yes
V V_{2}	yes	no	no	yes	yes	no	no
v_{3}	yes	yes	no	yes	yes	no	no

2) Let Y be the set of objects probed by p. Output the vector closest to $v(p)$ regarding only the objects in Y.

The SELECT Algorithm: Correctness

- Any vector removed from V is at distance more than D from $v(p)$.
- All distinguishing coordinates of the remaining vectors were probed.
- Distance to $\mathrm{v}(\mathrm{p})$ exactly known up to a common additive term.

The SELECT Algorithm: Cost

- Each probe exposes at least one disagreement.
- No vector remains in V after finding D+1 disagreements
- After k(D+1) probes, no vector remains in V (k is the number of Vectors in V)
- Total cost upper bounded by k(D+1)

The ZERO_RADIUS Algorithm

- Input:
- A set of players P and a set of objects O
- Parameter $\alpha, \quad 0 \leqslant \alpha \leqslant 1$
- Output:
- The correct vector for all players in a ($\alpha, 0$)-typical set
- Fails with probability $n^{-\Omega(1)}$
- Terminates after $o\left(\frac{\log (n)}{\alpha}\right)$ probes

The ZERO_RADIUS Algorithm

1) If $\min (|P|,|O|) \leqslant \frac{c \ln n}{\alpha}$ probe all objects and return

The ZERO_RADIUS Algorithm
 2) Partition randomly $P=P_{1} \cup P_{2}$ and $O=O_{1} \cup O_{2}$

The ZERO_RADIUS Algorithm

3) Recursively execute ZERO_RADIUS for the yellow areas

The ZERO_RADIUS Algorithm

 3) Recursively execute ZERO_RADIUS for the yellow areas

The ZERO_RADIUS Algorithm

3) Recursively execute ZERO_RADIUS for the yellow areas

The ZERO_RADIUS Algorithm

4) Consider only vectors, which are returned by a $\alpha / 2$ fraction of the players.

The ZERO_RADIUS Algorithm

5) Execute SELECT for the green areas with the $\alpha / 2$ remaining orange vectors as input and $\mathrm{D}=0$

ZERO_RADIUS: Cost Analysis

- Step 1) Probing whole sub-area
- Executed at most once by each player
- How many objects probed by each player?

- Recursive halving maintains $|O| \approx|P| \cdot m / n$
- $n<m$:
- Recursion stops when $|P|=O^{\prime}(\log n / \alpha)$
- Player probes $O^{\prime}(m / n \cdot \log n / \alpha)$ objects
- $n \geqslant m$:
- Recursion stops when $|O|=O^{\prime}(\log n / \alpha)$
- Player probes $O^{\prime}(\log n / \alpha)$ objects
- Total cost of step 1) per player is $O^{\prime}([m / n\rceil \log n / \alpha)$

ZERO_RADIUS: Cost Analysis

- Step 5) (call to SELECT)
* Call SELECT with $O^{(}(1 / \alpha)$ candidates and $\mathrm{D}=0$
- Recursion depth upper bounded by $O^{\prime}(\log n)$

- Total cost per player upper bounded by $O^{\prime}(\log n / \alpha)$
- ZERO_RADIUS terminates after

$$
O^{\prime}\left(\left[\frac{m}{n}\right\rceil \frac{\log n}{\alpha}\right)+O^{\circ}\left(\frac{\log n}{\alpha}\right)=O^{\prime}\left(\left\lceil\frac{m}{n}\right\rceil \frac{\log n}{\alpha}\right)
$$

probes

Summary

- SELECT
- Find closest of k vectors within distance D
- $k(D+1)$
- ZERO_RADIUS
- Find correct preference vector for players in ($\alpha, 0$)-typical sets
- $O^{\prime}(\lceil m / n\rceil \log n / \alpha)$

The SMALL_RADIUS Algorithm

- Input
- Parameter $\alpha, \quad 0 \leqslant \alpha \leqslant 1$
- Parameter $D=O^{\prime}(\log n)$
- Output
- An estimate vector $w(p)$ for every player p which is a member of a (α, D)-typical set A with

$$
\begin{aligned}
& \operatorname{dist}(w(p), v(p)) \leqslant 5 \mathrm{D}, \quad p \in A \\
& \Rightarrow \Delta(A) \leqslant 5 \mathrm{D} \\
& \Rightarrow \rho(A) \leqslant 5
\end{aligned}
$$

The SMALL_RADIUS Algorithm

1) Partition randomly $O=O_{1} \cup \ldots \cup O_{s}$ with $s=D^{3 / 2}$

The SMALL_RADIUS Algorithm

2) For every O_{i} execute ZERO_RADIUS with all players and parameter $\alpha / 5$
o

The SMALL_RADIUS Algorithm

3) Within the set O_{i}, only use vectors output by at least $\alpha n / 5$ players

The SMALL_RADIUS Algorithm

4) Within the set O_{i}, player P applies procedure SELECT to the remaining vectors with distance bound D

The SMALL_RADIUS Algorithm

5) Do this K times.

Probability that one of the K independent executions succeed is $1-2^{-\Omega(K)}$

The SMALL_RADIUS Algorithm

6) On the successful executions, all players execute SELECT with distance bound 5D and output the result.

SMALL_RADIUS: Cost

- Step 2): ZERO_RADIUS invoked
" $s=O^{\prime}\left(D^{3 / 2}\right)$ times with n users and m / s objects

$$
O\left(\left(\frac{m}{n}+D^{3 / 2}\right) \cdot \frac{\log n}{\alpha}\right)
$$

- Step 4): SELECT invoked
- $s=O^{\prime}\left(D^{3 / 2}\right)$ times with bound D and at most $O(1 / \alpha)$ candidates $O\left(D^{5 / 2} / \alpha\right)$
- Step 6): SELECT invoked $O^{\prime}(K D)$
- Overall complexity $O \cdot\left(K \frac{m}{\alpha n} D^{3 / 2}(\log n+D)\right)$

Summary

- SELECT
- Find closest of k vectors within distance D
- $k(D+1)$
- ZERO_RADIUS
- Find correct preference vector for players in ($\alpha, 0$)-typical sets
- $O^{\prime}(\lceil m / n\rceil \log n / \alpha)$
- SMALL_RADIUS
- Find preference vectors of (α, D)-typical sets with $\rho \leqslant 5$
- $O\left(K \frac{m}{\alpha n} D^{3 / 2}(\log n+D)\right)$

The LARGE_RADIUS Algorithm

- Input
- Parameter α
- Parameter $D \geqslant \Omega(\log n)$
- Output
- An estimate vector $w(p)$ for every player p which is a member of a (α, D)-typical set A with

$$
\begin{aligned}
& \operatorname{dist}(w(p), v(p))=O^{\prime}(D / \alpha), \quad p \in A \\
& \Rightarrow \Delta(A)=O^{\prime}(D / \alpha) \\
& \Rightarrow \rho(A)=O^{\prime}(1 / \alpha)
\end{aligned}
$$

LARGE_RADIUS: Idea

O

Main Algorithm

- Given α and D
- If $D=0$ use ZERO_RADIUS
- If $D=O$ ' $(\log n)$ use SMALL_RADIUS
- If $D \geqslant \Omega(\log n)$ use LARGE_RADIUS
- For every (α, D)-typical set A
- w.h.p. $\Delta(A)=O(D / \alpha)$
* the number of probes performed by each player is

$$
O\left(\left\lceil\frac{m}{n}\right\rceil \cdot \frac{\log ^{7 / 2} n}{\alpha^{2}}\right)
$$

Unknown Input Characteristics

- Known α, unknown D
- Run $O^{\prime}(\log n)$ independent versions of the main algorithm with $D=\left\{0,2^{1}, 2^{2}, \ldots, 2^{\log n}\right\}$
- Choose closest of allO' $(\log n)$ output vectors
- Increase running time by a factor of O ' $(\log n)$
- Decrease quality of output by a constant factor

$$
O\left(\left\lceil\frac{m}{n}\right\rceil \cdot \frac{\log ^{9 / 2} n}{\alpha^{2}}\right)
$$

Unknown Input Characteristics

- Unknown α, unknown D
- Given $\alpha=>$ number of probing rounds $\tau=O^{\prime}\left(\left[\frac{m}{n}\right\rceil \cdot \frac{\log ^{9 / 2} n}{\alpha^{2}}\right)$
- Start parallel versions with $\alpha\left(\tau=2^{j}\right)$ and unknown D
- After every round, choose closest output vector

Conclusion

- Distributed algorithm for an interactive recommendation system
- No restrictions on the input set
- Has polylogarithmic running time
- First algorithm published that combines these two properties

