

Tell Me Who I Am: An Interactive Recommendation System

N. Alon, B. Awerbuch, Y. Azar, B. Patt-Shamir

Richard Huber

Publication

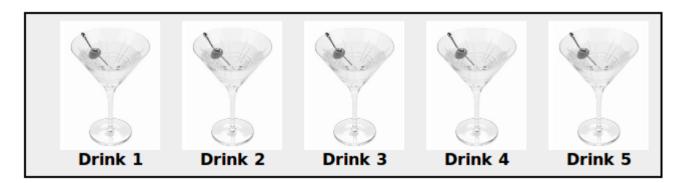
- Theory of Computing Systems
 - Volume 45
 - August 2009

- Tel Aviv University, Israel
- John Hopkins University, Baltimore, USA

Experiment

- Travel in a foreign country
- Unknown language
- Learn to know the night life subculture
- Not allowed to talk to each other

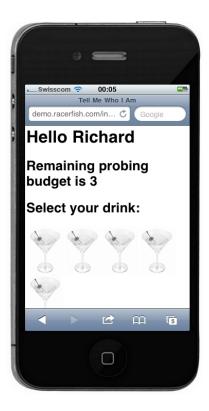
Experiment



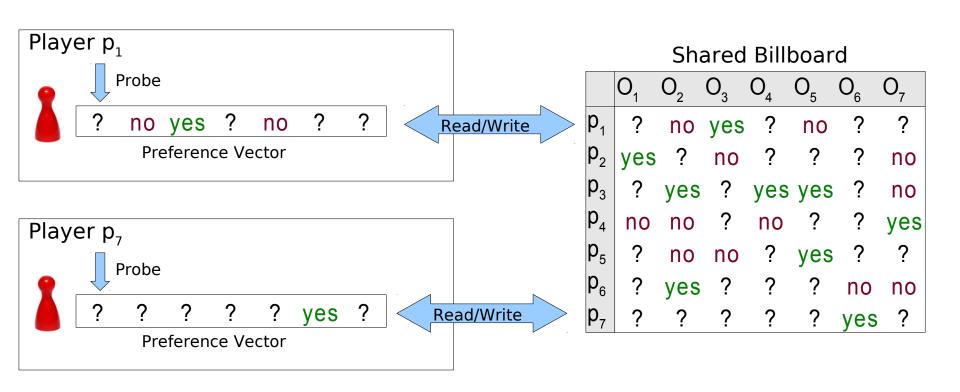
- Problem:
 - 5 typical drinks
 - money for 3 drinks
- Waitress asks whether you liked the drink
- Idea: Human preferences correlate

Experiment

http://demo.racerfish.com



Players and Billboard



How can a player find out his preferences with only a few probes?

Statement of the Problem

- n players and m objects
- each player has an unknown yes/no grade for each object
- Parallel rounds: in each round each player
 - reads the shared billboard
 - probes one object
 - writes the result of the probe on the billboard
- For each player: output a vector as close as possible to that player's original preference vector

Statement of the Problem (Formal)

Input:

- A set P of n players and a set O of m objects
- A vector $v(p) \in \{ves, no\}^m$ for each player p

Output:

• An estimate vector $w(p) \in \{yes, no\}^m$ for each player p

Goal:

- Minimize dist(v(p), w(p)) for each player p dist(x, y) is the Hamming distance
- Minimize the number of probes

Input Characteristic

• **Diameter** of a subset $A \subset P$

$$D(A) = max\{dist(v(p), v(q))|p, q \in A\}$$

• (α, D) -typical set: Subset $A \subseteq P$ with

$$|A| \ge \alpha n$$
, $0 \le \alpha \le 1$

$$D(A) \leq D$$
, $D \geq 0$

Approximation Quality

• **Discrepancy** of a subset $A \subset P$

$$\Delta(A) = \max\{dist(w(p), v(p)) | p \in A\}$$

• Stretch of a subset $A \subset P$

$$\rho(A) = \frac{\Delta(A)}{D(A)}$$

The CHOOSE_CLOSEST Problem

- Input
 - A set V of preference Vectors with |V| = k
 - A player p with (initially unknown) preference vector v(p)
- Output
 - A vector $w_{min} \in V$ such that

$$dist(w_{min}, v(p)) \leq dist(w, v(p)), w \in V$$

		Object 1	Object 2	Object 3
Play	er p	yes	yes	no
	V ₁	yes	no	no
V	V_2	yes	no	yes
	V ₃	no	yes	yes

- Solves an adapted version of the CHOOSE_CLOSEST problem
- Adaptions:
 - Additional input D
 - There is a vector $w \in V$ such that $dist(w, v(p)) \leq D$

D=1	1				X(V)			
υ =.	_	Object 1	l Object 2	2 Object	3 Object	4 Object	50bject	60bject 7
Playe	r p	?	?	?	?	?	?	?
,	V ₁	yes	no	yes	no	no	yes	yes
V '	V ₂	yes	no	no	yes	yes	no	no
,	V_3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D=	1				X(V)			
D =		Object 1	Object 2	Object	3 Object 4	4 Object	50bject	60bject 7
Playe	er p	?	?	?	?	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V_3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D=1				X(V)			
D=I	Object	1 Object	2 Object	3 Object	4 Object	5Object	60bject 7
Player	p ?	no	?	?	?	?	?
V ₁	yes	no	yes	no	no	yes	yes
V V ₂	yes	no	no	yes	yes	no	no
V ₃	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D=1				X(V)			
D=I	Object	1 Object	2 Object	3 Object	4 Object	5Object	60bject 7
Player	p ?	no	?	?	?	?	?
V ₁	yes	no	yes	no	no	yes	yes
V V ₂	yes	no	no	yes	yes	no	no
V ₃	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D-'	1				X(V)			
D=1	_	Object 1	Object 2	Object 3	Object 4	Object 5	Object 6	Object 7
Playe	r p	?	no	?	?	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V_3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D=	1				X(V)			
υ =		Object 1	Object 2	2 Object 3	3 Object	4 Object	50bject	60bject 7
Playe	er p	?	no	no	?	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V_3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D_1					X(V)			
D=1	Ok	oject 1	Object	2 Object 3	3 Object	4 Object	50bject	60bject 7
Player	р	?	no	no	?	?	?	?
V ₁	ı	yes	no	yes	no	no	yes	yes
$V V_2$	2	yes	no	no	yes	yes	no	no
V ₃	3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D_1					X(V)			
D=1	Ok	oject 1	Object	2 Object 3	3 Object	4 Object	50bject	60bject 7
Player	р	?	no	no	?	?	?	?
V ₁	ı	yes	no	yes	no	no	yes	yes
$V V_2$	2	yes	no	no	yes	yes	no	no
V ₃	3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D=	. 1				X(V)			
D =	· Т	Object 1	Object 2	2 Object 3	3 Object	4 Object	50bject	60bject 7
Play	er p	?	no	no	yes	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V_3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D=	_ 1				X(V)			
D =		Object 1	Object 2	Object 3	Object 4	Object 5	Object 6	Object 7
Play	er p	?	no	no	yes	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V_3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D=	_ 1				X(V)			
D -	- т	Object 1	Object 2	2 Object 3	Object	4 Object	50bject	60bject 7
Play	er p	?	no	no	yes	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V_3	yes	yes	no	yes	yes	no	no

- 1a) Let X(V) be the set of Objects on which some two vectors in V differ.
- 1b) Execute Probe on the first coordinate in X(V) that has not been probed yet.
- 1c) Remove from V any vector with more than D disagreements with v(p). Until all coordinates in X(V) are probed or X(V) is empty.

D _	_ 1			Υ				
D=	- T	Object 1	Object	2 Object 3	3 Object 4	Object	50bject	60bject 7
Play	er p	?	no	no	yes	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V ₃	yes	yes	no	yes	yes	no	no

2) Let Y be the set of objects probed by p. Output the vector closest to v(p) regarding only the objects in Y.

D _	_ 1			Y				
D=	- T	Object 1	Object	2 Object 3	3 Object 4	Object	50bject	60bject 7
Play	er p	?	no	no	yes	?	?	?
	V ₁	yes	no	yes	no	no	yes	yes
V	V_2	yes	no	no	yes	yes	no	no
	V_3	yes	yes	no	yes	yes	no	no

2) Let Y be the set of objects probed by p. Output the vector closest to v(p) regarding only the objects in Y.

The SELECT Algorithm: Correctness

- Any vector removed from V is at distance more than D from v(p).
- All distinguishing coordinates of the remaining vectors were probed.
- Distance to v(p) exactly known up to a common additive term.

The SELECT Algorithm: Cost

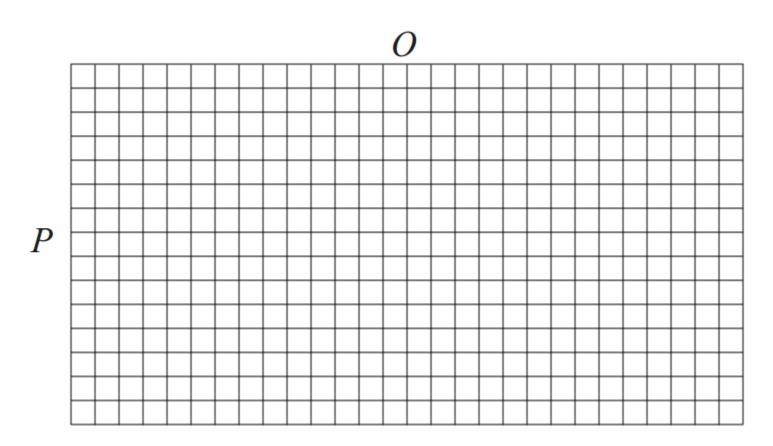
- Each probe exposes at least one disagreement.
- No vector remains in V after finding D+1 disagreements
- After k(D+1) probes, no vector remains in V
 (k is the number of Vectors in V)
- Total cost upper bounded by k(D+1)

- Input:
 - A set of players P and a set of objects O
 - Parameter α , $0 \le \alpha \le 1$
- Output:
 - The correct vector for all players in a $(\alpha, 0)$ -typical set
- Fails with probability $n^{-\Omega(1)}$
- Terminates after $O\left(\frac{\log(n)}{\alpha}\right)$ probes

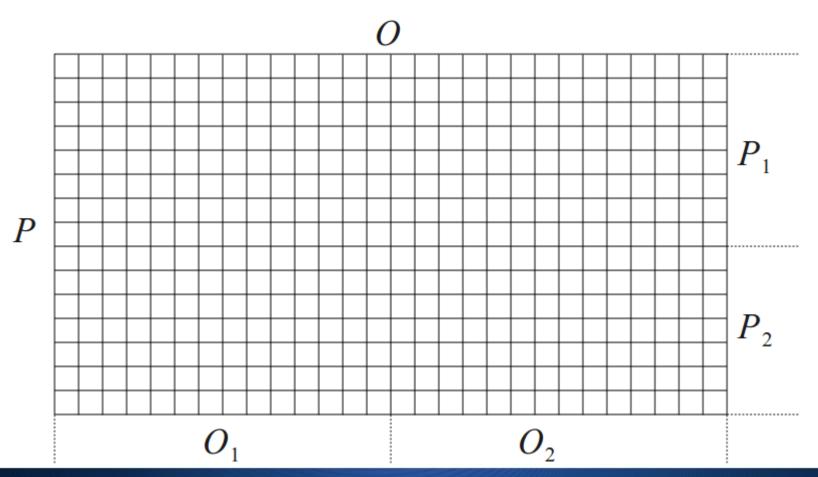
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The ZERO_RADIUS Algorithm

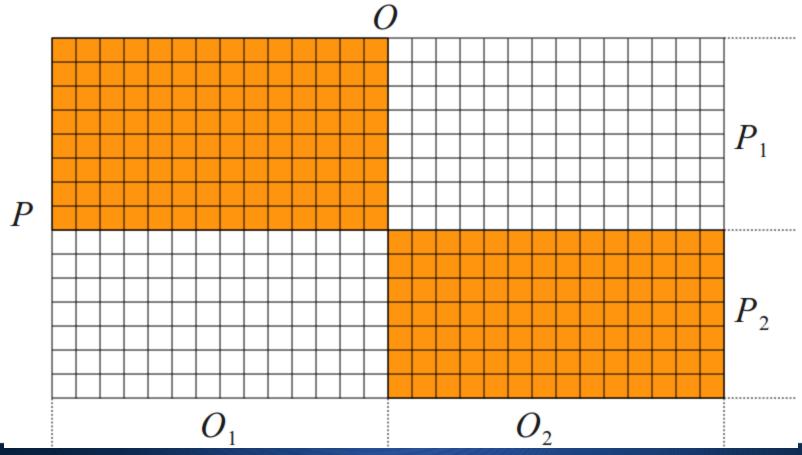
1) If $min(|P|, |O|) \le \frac{c \ln n}{\alpha}$ probe all objects and return



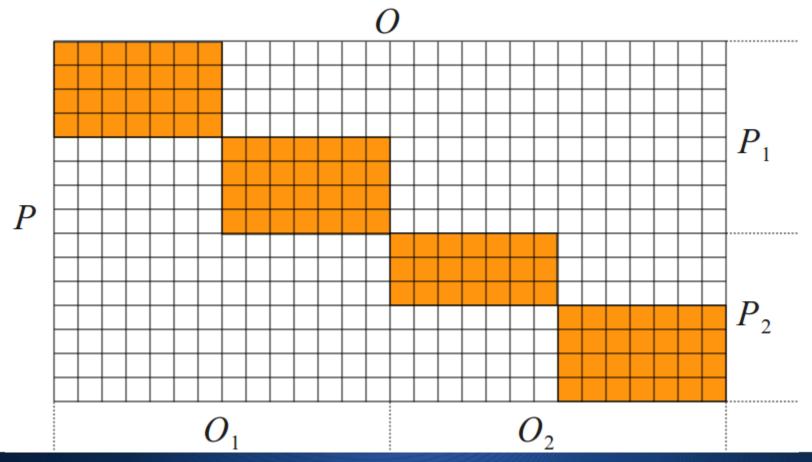
2) Partition randomly $P = P_1 \cup P_2$ and $O = O_1 \cup O_2$



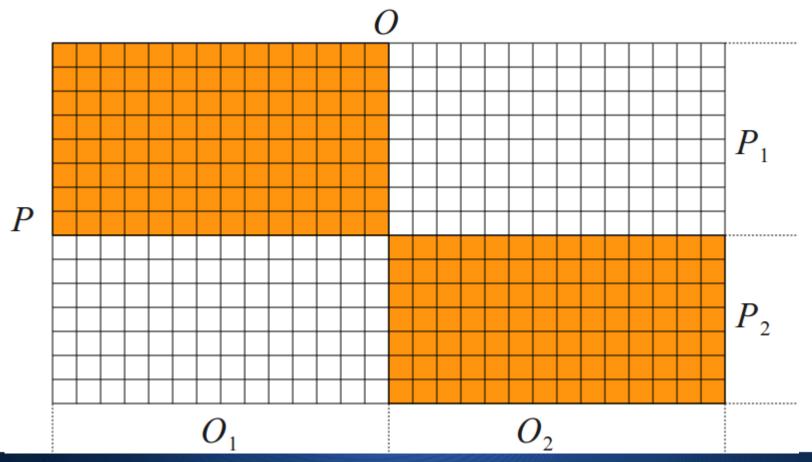
3) Recursively execute ZERO_RADIUS for the yellow areas



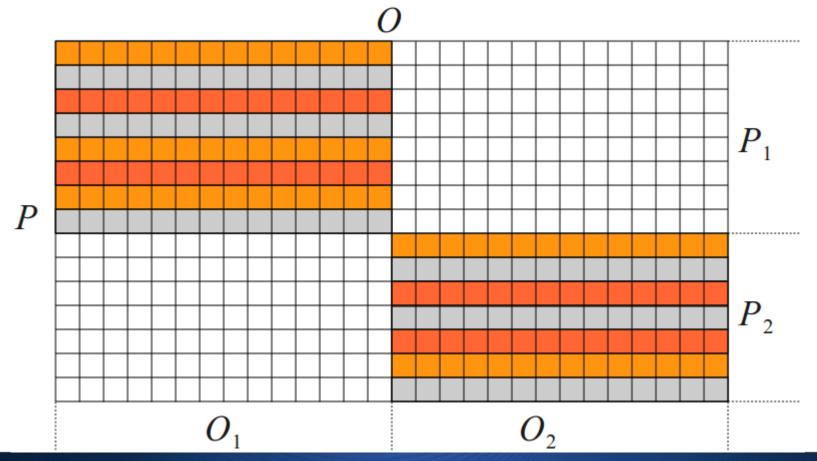
3) Recursively execute ZERO_RADIUS for the yellow areas



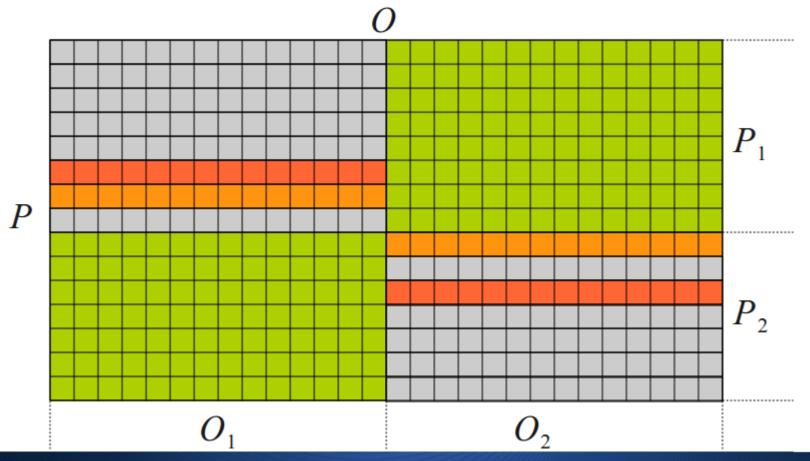
3) Recursively execute ZERO_RADIUS for the yellow areas



4) Consider only vectors, which are returned by a $\alpha/2$ fraction of the players.



5) Execute SELECT for the green areas with the $\alpha/2$ remaining orange vectors as input and D=0



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ZERO_RADIUS: Cost Analysis

- Step 1) Probing whole sub-area
 - Executed at most once by each player
 - How many objects probed by each player?
 - Recursive halving maintains $|O| \approx |P| \cdot m/n$
 - n < m:
 - Recursion stops when $|P| = O(\log n/\alpha)$
 - Player probes $O(m/n \cdot \log n/\alpha)$ objects
 - $n \ge m$:
 - Recursion stops when $|O| = O(\log n/\alpha)$
 - Player probes $O(\log n/\alpha)$ objects
 - Total cost of step 1) per player is $O(\lceil m/n \rceil \log n/\alpha)$

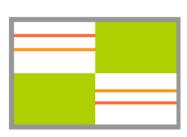
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ZERO_RADIUS: Cost Analysis

- Step 5) (call to SELECT)
 - Call SELECT with $O(1/\alpha)$ candidates and D=0
 - Recursion depth upper bounded by $O(\log n)$
 - Total cost per player upper bounded by $O(\log n/\alpha)$
- ZERO_RADIUS terminates after

$$O\left(\left\lceil \frac{m}{n}\right\rceil \frac{\log n}{\alpha}\right) + O\left(\frac{\log n}{\alpha}\right) = O\left(\left\lceil \frac{m}{n}\right\rceil \frac{\log n}{\alpha}\right)$$

probes



Summary

- SELECT
 - Find closest of k vectors within distance D
 - k(D+1)
- ZERO_RADIUS
 - Find correct preference vector for players in $(\alpha, 0)$ -typical sets
 - $O(\lceil m/n \rceil \log n/\alpha)$

- Input
 - Parameter α , $0 \le \alpha \le 1$
 - Parameter $D = O'(\log n)$
- Output
 - An estimate vector w(p) for every player p which is a member of a (α, D) -typical set A with

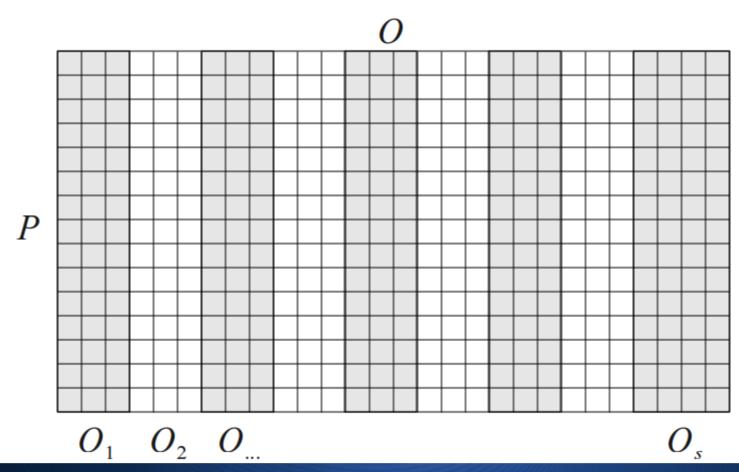
$$dist(w(p), v(p)) \le 5D, p \in A$$

 $\Rightarrow \Delta(A) \le 5D$
 $\Rightarrow \rho(A) \le 5$

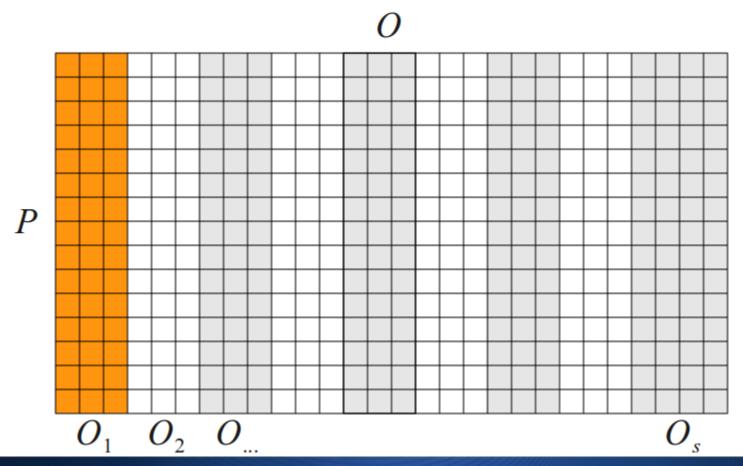
Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

The SMALL_RADIUS Algorithm

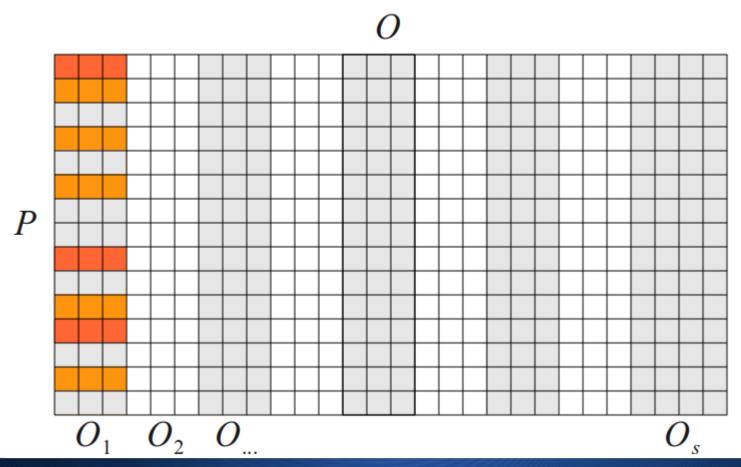
1) Partition randomly $O = O_1 \cup ... \cup O_s$ with $s = D^{3/2}$



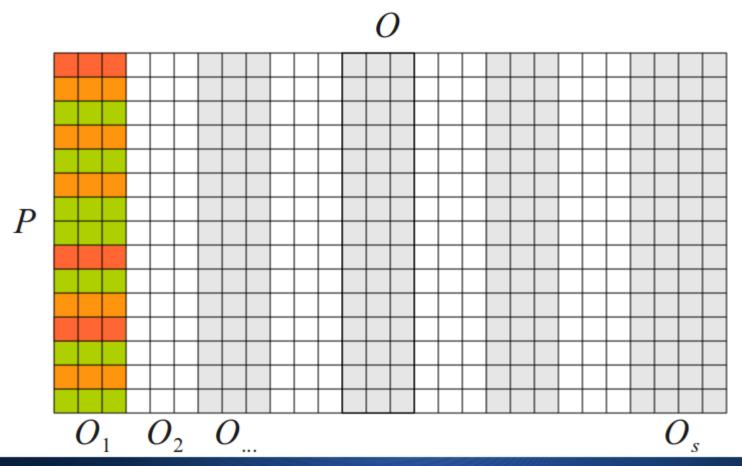
2) For every O_i execute ZERO_RADIUS with all players and parameter $\alpha/5$



3) Within the set O_i , only use vectors output by at least $\alpha n/5$ players

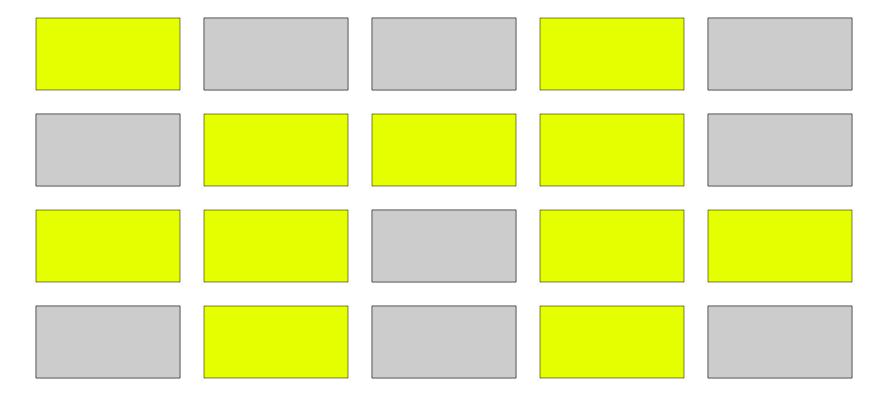


4) Within the set \mathcal{O}_i , player P applies procedure SELECT to the remaining vectors with distance bound D

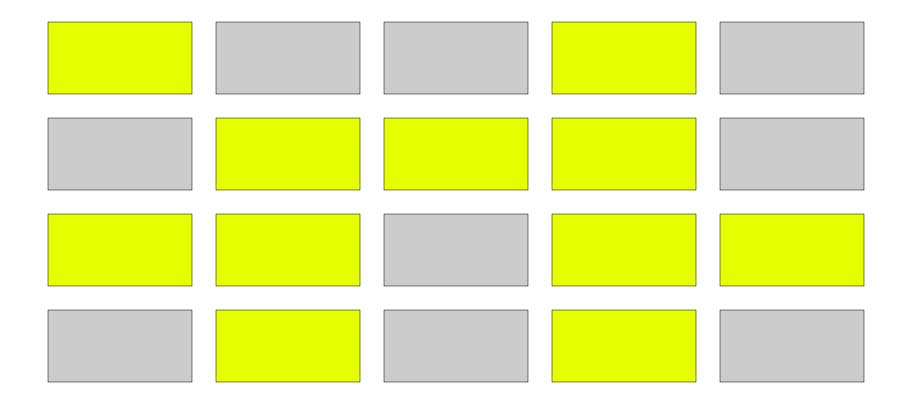


5) Do this *K* times.

Probability that one of the K independent executions succeed is $1-2^{-\Omega(K)}$



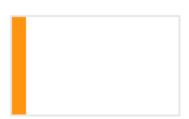
6) On the successful executions, all players execute SELECT with distance bound 5D and output the result.



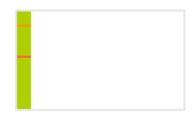
SMALL_RADIUS: Cost

- Step 2): ZERO_RADIUS invoked
 - $s = O(D^{3/2})$ times with n users and m/s objects

$$O\left(\left(\frac{m}{n} + D^{3/2}\right) \cdot \frac{\log n}{\alpha}\right)$$



- Step 4): SELECT invoked
 - $s = O(D^{3/2})$ times with bound D and at most $O(1/\alpha)$ candidates $O(D^{5/2}/\alpha)$



- Step 6): SELECT invoked O (KD)
- Overall complexity $O\left(K\frac{m}{\alpha n}D^{3/2}(\log n + D)\right)$

Summary

- SELECT
 - Find closest of k vectors within distance D
 - k(D+1)
- ZERO_RADIUS
 - Find correct preference vector for players in $(\alpha, 0)$ -typical sets
 - $O(\lceil m/n \rceil \log n/\alpha)$
- SMALL_RADIUS
 - Find preference vectors of (α, D) -typical sets with $\rho \leq 5$
 - $O\left(K\frac{\dot{m}}{\alpha n}D^{3/2}(\log n + D)\right)$

The LARGE_RADIUS Algorithm

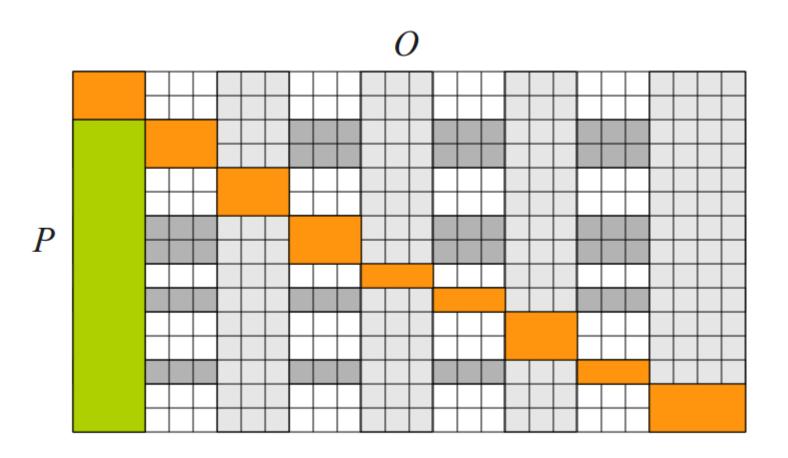
- Input
 - Parameter α
 - Parameter $D \ge \Omega(\log n)$
- Output
 - An estimate vector w(p) for every player p which is a member of a (α, D) -typical set A with

$$dist(w(p), v(p)) = O(D/\alpha), \quad p \in A$$

$$\Rightarrow \Delta(A) = O(D/\alpha)$$

$$\Rightarrow \rho(A) = O(1/\alpha)$$

LARGE_RADIUS: Idea



Main Algorithm

- Given α and D
 - If D=0 use ZERO RADIUS
 - If $D = O(\log n)$ use SMALL_RADIUS
 - If $D \ge \Omega(\log n)$ use LARGE_RADIUS
- For every (α, D) -typical set A
 - w.h.p. $\Delta(A) = O(D/\alpha)$
 - the number of probes performed by each player is

$$O\left(\left\lceil\frac{m}{n}\right\rceil \cdot \frac{\log^{7/2} n}{\alpha^2}\right)$$

Unknown Input Characteristics

- Known α , unknown D
 - Run $O(\log n)$ independent versions of the main algorithm with $D = \{0, 2^1, 2^2, ..., 2^{\log n}\}$
 - Choose closest of all $O(\log n)$ output vectors
 - Increase running time by a factor of $O(\log n)$
 - Decrease quality of output by a constant factor

$$O\left(\left\lceil\frac{m}{n}\right\rceil \cdot \frac{\log^{9/2} n}{\alpha^2}\right)$$

Unknown Input Characteristics

- Unknown α , unknown D
- Given $\alpha = >$ number of probing rounds $\tau = O\left(\left\lceil \frac{m}{n}\right\rceil \cdot \frac{\log^{9/2} n}{\alpha^2}\right)$ Given $\tau = >$ minimum $\alpha(\tau)$

 - Start parallel versions with $\alpha(\tau=2^{j})$ and unknown D
 - After every round, choose closest output vector

Conclusion

- Distributed algorithm for an interactive recommendation system
 - No restrictions on the input set
 - Has polylogarithmic running time
- First algorithm published that combines these two properties