Cheap Labor Can Be Expensive

Ning Chen, Anna R. Karlin

Michael König

The Problem

Total price: 5

The Problem

Total price: 10

Markets

- Set of agents "E"
- Each agent e ∈ E has a cost c(e) and bid b(e)
- Customer wants to hire a team of agents
- Feasible sets "F" are teams of agents capable of getting the job done

Feasible Sets

Cheap Labor Cost

Total price: **5**0 \rightarrow Cheap Labor Cost of this market is $\frac{10}{5} = 2$

Cheap Labor Cost

• Cheap labor cost for a market M:

• p_M := total price of M

Questions up to this point?

GreedyAlg

1. Find the cheapest feasible set $S \in F$ with respect to costs

GreedyAlg

2. For each $e \in E$, initialize b(e) to c(e)

GreedyAlg

3. For each $e \in S$:

- $b(S) = \sum_{e \in S} b(e)$
- Raise b(e) until there is $S' \in F$ such that $e \notin S'$ and b(S) = b(S')

GreedyAlg

- 1. Find the cheapest feasible set $S \in F$ with respect to costs
- 2. For each $e \in E$, initialize b(e) to c(e)
- 3. For each $e \in S$:
 - Raise b(e) until there is $S' \in F$ such that $e \in S'$ and b(S) = b(S')
- 4. Output the bids b and the winning set S

Tight sets

- For any NE b with winning set S:
 - For any $e \in S$, there is another winning feasible set $S' \in F$ with $e \in \mathscr{B}'$ and b(S) = b(S')
 - These feasible sets are called **tight sets**.

15

Upper Bound

 The cheap labor cost of any market is at most |S|, where S ∈ F is a feasible set with minimum total cost

Proof of Upper Bound

- It suffices to show:
 - For any market M, NE b with winning set S, for any submarket M', best NE b' with winning set S'

$$b(S) \leq |S| \cdot b'(S')$$

$$\frac{b(S)}{b'(S')} \le |S|$$

(we choose b and S to be computed by GreedyAlg)

→
$$b(S \setminus S') \le b'(S' \setminus S)$$

 $c(S' \setminus S) \leq b'(S' \setminus S)$

 $b(S \setminus S') \leq b(S' \setminus S)$

[S is the winning set] [bid behavior]

- b(e) = c(e) \rightarrow b(S' \ S) = c(S' \ S)
- Case 1: $e \in S' \setminus S$

Proof of Upper Bound

Proof of Upper Bound

Case 2: $e \in S' \cap S$

- For each such e there exists a tight set S^{''}(∈F') such that e ∉ S^{''} and b'(S') = b'(S'').
- We claim b(e) ≤ b'(S'). Otherwise:

$$b(S) = b(S \setminus S'') + b(S \cap S'')$$

$$> b'(S') + b(S \cap S'')$$
[reverse claim]

$$= b'(S'') + b(S \cap S'')$$
[b'(S') = b'(S'')]

$$\ge c(S'') + b(S \cap S'')$$
[bid behavior]

$$\ge c(S'' \setminus S) + b(S \cap S'')$$
[GreedyAlg]

= b(S'') [contradiction: S is the winning set] ₁₉

Proof of Upper Bound

Case 1 ($e \in S' \setminus S$): $b(S \setminus S') \le b'(S' \setminus S)$ Case 2 ($e \in S' \cap S$): $b(e) \le b'(S')$

Putting the cases together: $b(S) = b(S \setminus S') + b(S \cap S')$ $\leq b'(S' \setminus S) + |S \cap S'| \cdot b'(S')$ $\leq |S| \cdot b'(S')$

Perfect Bipartite Matching Markets

• Customer wants to buy edges to obtain a perfect matching in a bipartite graph

Perfect Bipartite Matching Markets

 $p_M = k$ $p_{M'} = 1$ Cheap labor cost = k = O(|V|)

Perfect Bipartite Matching Markets

Matroid Markets

- Agents and feasible sets form a matroid (E, F) $(F \subseteq P(E) \text{ with a bunch of special rules})$
- Cheap labor cost is always 1.
- Natural Occurrence: buying spanning trees

• Purchasing an s-t path in a directed graph

 Observation: There are always at least 2 edge-disjoint paths P₁ and P₂ with b(P₁) = b(P₂) = b(P), where P is the winning path.

- Proof idea:
 - There always are "tight paths" (tight sets)

For any $e \in S$, there is another winning feasible set $S' \in F$ with $e \in \pounds'$ and b(S) = b(S')

- Any prefix of a tight path is optimal (otherwise the winning path would not be winning).
- The union of all tight paths only contains optimal s-t paths and is two-connected.

- Proposition:
 - Pick the two cheapest paths by cost, P_1 and P_2 .
 - $-\min_{G' \subseteq G} p_{G'} = \max\{c(P_1), c(P_2)\}\$ (p_G := total price of G) 2 4 S t 2 3 7

- Now observe that for the two cheapest paths by cost, P1 and P2, c(P₁) + c(P₂) gives an upper bound for p_G.
- Thus, $p_G \le c(P_1) + c(P_2) \le 2 \cdot max\{c(P_1), c(P_2)\} = 2 \cdot p_{G^*}$

 \rightarrow The cheap labor cost for path markets is at most 2.

• This bound is tight:

Conclusion

- Short paper stuffed with proofs
- Exhaustive study of "cheap labor cost" for non-cooperative markets
 - General upper bound |S|
 - Values for common market types

Thanks for your attention!

Questions?