# Cheap Labor Can Be Expensive 

Ning Chen, Anna R. Karlin

Michael König

## The Problem



## The Problem



## The Problem



Total price: 5

## The Problem



Total price: 10

## Markets

- Set of agents "E"
- Each agent e $\in E$ has a cost $c(e)$ and bid $b(e)$
- Customer wants to hire a team of agents
- Feasible sets "F" are teams of agents capable of getting the job done


## Feasible Sets



## Cheap Labor Cost



Total price: $\$ 0$
$\rightarrow$ Cheap Labor Cost of this market is $\frac{10}{5}=2$

## Cheap Labor Cost

- Cheap labor cost for a market M :

- $\mathrm{p}_{\mathrm{M}}:=$ total price of M


## Questions up to this point?

## GreedyAlg

1. Find the cheapest feasible set $S \in F$ with respect to costs


## GreedyAlg

2. For each $e \in E$, initialize $b(e)$ to $c(e)$


## GreedyAlg

3. For each $\mathrm{e} \in \mathrm{S}$ :

- Raise $b(e)$ until there is $S^{\prime} \in F$ such that e $\& S^{\prime}$ and $b(S)=b\left(S^{\prime}\right)$



## GreedyAlg

1. Find the cheapest feasible set $S \in F$ with respect to costs
2. For each $e \in E$, initialize $b(e)$ to $c(e)$
3. For each e $\in S$ :

- Raise $b(e)$ until there is $S^{\prime} \in F$ such that $\mathrm{e} \in \mathrm{S}^{\prime}$ and $\mathrm{b}(\mathrm{S})=\mathrm{b}\left(\mathrm{S}^{\prime}\right)$

4. Output the bids $b$ and the winning set $S$

## Tight sets

- For any NE b with winning set S:
- For any e $\in S$, there is another winning feasible set $S^{\prime} \in \mathrm{F}$ with $\mathrm{e} \in \delta^{\prime}$ and $\mathrm{b}(\mathrm{S})=\mathrm{b}\left(S^{\prime}\right)$
- These feasible sets are called tight sets.



## Upper Bound

- The cheap labor cost of any market is at most $|S|$, where $S \in F$ is a feasible set with minimum total cost


Here: $|S|=3$

## Proof of Upper Bound

- It suffices to show:
- For any market M, NE b with winning set S, for any submarket $\mathrm{M}^{\prime}$, best NE $\mathrm{b}^{\prime}$ with winning set $\mathrm{S}^{\prime}$

$$
\mathrm{b}(\mathrm{~S}) \leq|\mathrm{S}| \cdot \mathrm{b}^{\prime}\left(\mathrm{S}^{\prime}\right) \quad \frac{b(S)}{b^{\prime}\left(S^{\prime}\right)} \leq|S|
$$

(we choose b and S to be computed by GreedyAlg)

## Proof of Upper Bound

Case 1: $\mathrm{e} \in \mathrm{S}^{\prime} \backslash \mathrm{S}$

$$
\text { - } \quad b(e)=c(e)
$$

$\rightarrow \mathrm{b}\left(\mathrm{S}^{\prime} \backslash \mathrm{S}\right)=\mathrm{c}\left(\mathrm{S}^{\prime} \backslash \mathrm{S}\right)$

- $b\left(S \backslash S^{\prime}\right) \leq b\left(S^{\prime} \backslash S\right)$
- $c\left(S^{\prime} \backslash S\right) \leq b^{\prime}\left(S^{\prime} \backslash S\right)$
[ S is the winning set]
[bid behavior]
$\rightarrow \mathrm{b}\left(\mathrm{S} \backslash \mathrm{S}^{\prime}\right) \leq \mathrm{b}^{\prime}\left(\mathrm{S}^{\prime} \backslash \mathrm{S}\right)$


## Proof of Upper Bound

## Case 2: e $\in S^{\prime} \cap S$

- For each such e there exists a tight set $S^{\prime \prime}\left(\in F^{\prime}\right)$ such that e $\in S^{\prime \prime}$ and $b^{\prime}\left(S^{\prime}\right)=b^{\prime}\left(S^{\prime \prime}\right)$.
- We claim $b(e) \leq b^{\prime}\left(S^{\prime}\right)$. Otherwise:

$$
\begin{array}{rlrl}
b(S) & =b\left(S \backslash S^{\prime \prime}\right)+b\left(S \cap S^{\prime \prime}\right) & & \\
& >b^{\prime}\left(S^{\prime}\right) & +b\left(S \cap S^{\prime \prime}\right) & \\
& =b^{\prime}\left(S^{\prime \prime}\right) & +b\left(S \cap S^{\prime \prime}\right) & {\left[b^{\prime}\left(S^{\prime}\right)=b^{\prime}\left(S^{\prime \prime}\right)\right]} \\
& \geq c\left(S^{\prime \prime}\right) & +b\left(S \cap S^{\prime \prime}\right) & \\
& \geq c\left(S^{\prime \prime} \backslash S\right)+b\left(S \cap S^{\prime \prime}\right) & & \\
& =b\left(S^{\prime \prime} \backslash S\right)+b\left(S \cap S^{\prime \prime}\right) & {[\text { Greedyior }]} \\
& =b\left(S^{\prime \prime}\right) & {[\text { contradiction: } S \text { is the winning set }]}
\end{array}
$$

## Proof of Upper Bound

Case $1\left(e \in S^{\prime} \backslash S\right): \quad b\left(S \backslash S^{\prime}\right) \leq b^{\prime}\left(S^{\prime} \backslash S\right)$
Case $2\left(e \in S^{\prime} \cap S\right): b(e) \leq b^{\prime}\left(S^{\prime}\right)$

Putting the cases together:

$$
\begin{aligned}
b(S) & =b\left(S \backslash S^{\prime}\right)+b\left(S \cap S^{\prime}\right) \\
& \leq b^{\prime}\left(S^{\prime} \backslash S\right)+\left|S \cap S^{\prime}\right| \cdot b^{\prime}\left(S^{\prime}\right) \\
& \leq|S| \cdot b^{\prime}\left(S^{\prime}\right)
\end{aligned}
$$

## Perfect Bipartite Matching Markets

- Customer wants to buy edges to obtain a perfect matching in a bipartite graph



## Perfect Bipartite Matching Markets



$$
\mathrm{p}_{\mathrm{M}}=\mathrm{k} \quad \mathrm{p}_{\mathrm{M}^{\prime}}=1 \quad \text { Cheap labor cost }=\mathrm{k}=\mathrm{O}(|\mathrm{~V}|)
$$

## Perfect Bipartite Matching Markets



## Matroid Markets

- Agents and feasible sets form a matroid (E, F) ( $F \subseteq \mathbf{P}(E)$ with a bunch of special rules)
- Cheap labor cost is always 1.
- Natural Occurrence: buying spanning trees



## Path Markets

- Purchasing an s-t path in a directed graph



## Path Markets

- Observation: There are always at least 2 edge-disjoint paths $P_{1}$ and $P_{2}$ with $b\left(P_{1}\right)=b\left(P_{2}\right)=b(P)$, where $P$ is the winning path.



## Path Markets

- Proof idea:

- There always are "tight paths" (tight sets) For any e $\in S$, there is another winning feasible set $S^{\prime} \in F$ with $e \in \delta^{\prime}$ and $b(S)=b\left(S^{\prime}\right)$
- Any prefix of a tight path is optimal (otherwise the winning path would not be winning).
- The union of all tight paths only contains optimal s-t paths and is two-connected.


## Path Markets

- Proposition:
- Pick the two cheapest paths by cost, $\mathrm{P}_{1}$ and $\mathrm{P}_{2}$.
$-\min _{G^{\prime} \subseteq G} p_{G^{\prime}}=\max \left\{c\left(P_{1}\right), c\left(P_{2}\right)\right\}$
( $\mathrm{p}_{\mathrm{G}}$ := total price of G )



## Path Markets

- Now observe that for the two cheapest paths by cost, $P 1$ and $P 2, c\left(P_{1}\right)+c\left(P_{2}\right)$ gives an upper bound for $p_{G}$.
- Thus, $\mathrm{p}_{\mathrm{G}} \leq \mathrm{c}\left(\mathrm{P}_{1}\right)+\mathrm{c}\left(\mathrm{P}_{2}\right) \leq 2 \cdot \max \left\{\mathrm{c}\left(\mathrm{P}_{1}\right), \mathrm{c}\left(\mathrm{P}_{2}\right)\right\}=2 \cdot \mathrm{p}_{\mathrm{G}^{*}}$
$\rightarrow$ The cheap labor cost for path markets is at most 2.



## Path Markets

- This bound is tight:



## Conclusion

- Short paper stuffed with proofs
- Exhaustive study of "cheap labor cost" for non-cooperative markets
- General upper bound $|S|$
- Values for common market types


## Thanks for your attention!

Questions?

