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The Game

A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, S.
Shenker, PODC ’03

I Creation and maintenance of a network is modeled as a game

I n players – vertices in an undirected graph

I can buy edges to other players for a fix price α > 0 per edge

I The goal of the players: minimize a cost function:

costu = creation cost + usage cost
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The Game

costu = creation cost + usage cost

I creation cost: α·(number of edges player u buys)
I usage cost for player u:

I SumGame (Fabrikant et al. PODC 2003)
Sum over all distances

∑
v∈V d(u, v)

average-case approach to the usage cost
I MaxGame (Demaine et al. PODC 2007)

Maximum over all distances maxv∈V d(u, v)
worst-case approach to the usage cost
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Example

21

3

64

5

s1 = {3, 4}
s2 = {1, 3}
s3 = {5}
s4 = {3}
s5 = {}
s6 = {3}
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SumGame:

21

3

64

5

s1 = {3, 4}
s2 = {1, 3}
s3 = {5}
s4 = {3}
s5 = {}
s6 = {3}

cost1 = 2α + 1 + 1 + 1 + 2 + 2 = 2α + 7
etc.
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MaxGame:

21

3

64

5

s1 = {3, 4}
s2 = {1, 3}
s3 = {5}
s4 = {3}
s5 = {}
s6 = {3}

cost1 = 2α + 2
etc.
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Nash Equilibrium

We consider Nash equilibria, i.e. graphs where no player can
improve by deleting some of her/his edges and/or buying new
edges Simple example:

r

NE for α > 4

r

Not a NE

The arrows indicate who bought the edges (point from buyer away)
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edges Simple example:

r

NE for α > 4 Not a NE

The arrows indicate who bought the edges (point from buyer away)
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More examples

Nash Equilibria (for appropriate choice of α and of strategy profiles)
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Price of Anarchy

We are interested in large networks: Typical questions:

I What network topologies are formed? What families of
equilibrium graphs can one construct for a given α?

I How efficient are they? Price of Anarchy

PoA =
Cost(worst-case equilibrium)

Cost(social optimum)
.

I constant PoA  equilibrium networks efficient
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Previous Results

I (Fabrikant et al. PODC 2003) Definition of the game,
PoA = O(

√
α) in SumGame, The PoA is bounded by the

diameter for most α

I (Albers et al. SODA 2006) The PoA in SumGame is constant
for α = O(

√
n) and α ≥ 12n log n, Improved general bound

I (Demaine et al. PODC 2007) The PoA is constant for
α < n1−ε, first o(nε) general bound, Introduction of
MaxGame, Several bounds for the PoA in MaxGame
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Previous Results

MaxGame:

α = 0 2
√

log n n ∞

previous O(n2/α) O(min{4
√
log n, (n/α)1/3}) ≤ 2

SumGame:

α = 0 1 2 3
√
n/2

√
n/2 O(n1−ε) 12n lg n ∞

previous 1 ≤ 4
3 ≤ 4 ≤ 6 Θ(1) 2O(

√
log n) ≤ 1.5
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Our Results

MaxGame:

α = 0 1
n−2 O(n−

1
2 ) 129 2

√
log n n ∞

new 1 Θ(1) 2O(
√

log n) ≤ 4 ≤ 2

previous O(n2/α) O(min{4
√
log n, (n/α)1/3}) ≤ 2
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Our Results

SumGame:

α = 0 1 2 3
√
n/2

√
n/2 O(n1−ε) 273n 12n lg n ∞

new 1 ≤ 4
3 ≤ 4 ≤ 6 Θ(1) 2O(

√
log n) < 5 ≤ 1.5

previous 1 ≤ 4
3 ≤ 4 ≤ 6 Θ(1) 2O(

√
log n) 2O(

√
log n) ≤ 1.5
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Main result for SumGame

Theorem
For α > 273n every equilibrium graph is a tree.

As Fabrikant et al. proved that trees have PoA < 5 this implies:

Corollary

For α > 273n the price of anarchy is smaller than 5.

Up to a constant factor this is the best result one can obtain:

Proposition (Albers et al. 2006)

For α < n/2 there are non-tree equilibrium graphs.
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All equilibria are trees for α > Cn

Some intuition why this could be true:

I Equilibrium graphs become sparser with increasing α.
More precisely it is easy to show the following:

Lemma
The average degree of an equilibrium graph is O(1 + n

1+α).

I We show a (much) stronger version of the lemma:

Lemma
Let H be a biconnected component of an equilibrium graph G for
α > n then for the average degree of H, d(H) ≤ 2 + 8n

α−n .
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All equilibria are trees for α > Cn

I Albers et al. showed that k stars of size n/k whose centers
are connected to a clique is an equilibrium graph for
α < n/(k − 1):

α < n/4 α < n/3 α < n/2 α > Cn

−→?

Idea: Look at biconnected components and prove that they
contain ”few” vertices of the whole graph.

Jan Christoph Schlegel Network Creation Games



The Game
Results

Main result for SumGame
Basic Network Creation

All equilibria are trees for α > Cn

Lemma (1)

Let H be a biconnected component of an equilibrium graph G for
α > n then d(H) ≤ 2 + 8n

α−n .

Lemma (2)

Let H be a biconnected component of an equilibrium graph G for
α > 19n then d(H) ≥ 2 + 1

34 .

I Both proofs: look at the local structure of equilibrium graphs

I Main difficulty: it matters who buys a certain edge in the
graph!
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Proof Idea

Lemma (2)

Let H be a biconnected component of an equilibrium graph G for
α > 19n then d(H) ≥ 2 + 1

34 .

I Show: every vertex in H
has a vertex with degree 3
in H nearby

I

Several cases – a simple case:

neger
neger
neger

x1 x2 x3 x4

S(x2)S(x1) S(x3) S(x4)

edges in H = black, edges in V \ H = red

Assign every vertex to closest vertex in H  S(xi )
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Proof Idea

Lemma (2)

Let H be a biconnected component of an equilibrium graph G for
α > 19n then d(H) ≥ 2 + 1

34 .

I Show: every vertex in H
has a vertex with degree 3
in H nearby

I

Several cases – a simple case:
neger
neger
neger
neger

x1 x2 x3 x4

S(x2)S(x1) S(x3) S(x4)

|S(x2)| > |S(x3)|
either x1 or x4 can improve
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Proof Idea

Lemma (2)

Let H be a biconnected component of an equilibrium graph G for
α > 19n then d(H) ≥ 2 + 1

34 .

I Show: every vertex in H
has a vertex with degree 3
in H nearby

I

Several cases – a simple case:
neger
neger
neger
neger

x1 x2 x3 x4

S(x2)S(x1) S(x3) S(x4)

x4 can improve by deleting x4x3 and buying x4x2...
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Proof Idea

Lemma (2)

Let H be a biconnected component of an equilibrium graph G for
α > 19n then d(H) ≥ 2 + 1

34 .

I Show: every vertex in H
has a vertex with degree 3
in H nearby

I

Several cases – a simple case:
neger
neger
neger
neger

x1 x2 x3 x4

S(x2)S(x1) S(x3) S(x4)

...unless x3 has degree at least 3 in H
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Put everything together:

For a biconnected component H in an equilibrium graph G :
Lemma 1:

d(H) ≤ 2 +
8n

α− n

Lemma 2:

d(H) ≥ 2 +
1

34

The inequalities become contradicting for α > 273n hence:

Theorem
For α > 273n every equilibrium graph is a tree.
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Summary

I We obtain constant bound on the PoA for most edge prices

I Still no tight bound for α = Θ(n) in SumGame, α = Θ(1) in
MaxGame

I Interesting range occurs around the threshold for trees
I Problem with Nash equilibrium:

I computationally intractable
I calculating best-response NP-hard for both variants

Jan Christoph Schlegel Network Creation Games



The Game
Results

Main result for SumGame
Basic Network Creation

Basic network creation games

N. Alon, E. D. Demaine, M. Hajiaghayi, T. Leighton, SPAA ’10

Goals

I Computationally feasible solution concept
I Find ”simplest and the heart of all such games”

I reduce number of parameters, by avoiding α
I results should generalize to previous models

Model

I graph G is given

I players/nodes are only allowed to ”swap”: Delete an adjacent
edge and build a new one instead

I G is in swap equilibrium if no player u can swap one edge and
improve its usage cost

∑
v∈V dG (u, v)
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Example

v1

v4

v2

v3

v1 does not improve from swapping:
new usage cost = 4 = old usage cost

by symmetry also v2, v3, v4 cannot
improve from swapping

⇒ the 4-cycle is a swap equilibrium
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Example

v1 swaps v1v2 with v1v3

v1 does not improve from swapping:
new usage cost = 4 = old usage cost

by symmetry also v2, v3, v4 cannot
improve from swapping

⇒ the 4-cycle is a swap equilibrium
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v1

v4

v2

v3

I v1 does not improve from swapping:
new usage cost = 4 = old usage cost

I by symmetry also v2, v3, v4 cannot
improve from swapping

⇒ the 4-cycle is a swap equilibrium
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Basic network creation games

N. Alon, E. D. Demaine, M. Hajiaghayi, T. Leighton, SPAA ’10

Goals:
I Computationally feasible solution concept

best response can be calculated in poly time:
O(n2) possible swaps
Calculating usage cost via BFS-search O(n2)

I Find ”simplest and the heart of all such games”
I reduce number of parameters, by avoiding α
I results should generalize to previous models

∃ Nash equil. which are not swap equil. and vice versa
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Goals:
I Computationally feasible solution concept X

I best response can be calculated in poly time:
O(n2) possible swaps
Calculating usage cost via BFS-search: O(n2)

I Find ”simplest and the heart of all such games”
I reduce number of parameters, by avoiding α X
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∃ Nash equil. which are not swap equil. and vice versa
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Basic network creation games

N. Alon, E. D. Demaine, M. Hajiaghayi, T. Leighton, SPAA ’10

Goals:
I Computationally feasible solution concept X

I best response can be calculated in poly time:
O(n2) possible swaps
Calculating usage cost via BFS-search: O(n2)

I Find ”simplest and the heart of all such games”
I reduce number of parameters, by avoiding α X
I results should generalize to previous models /

∃ Nash equil. which are not swap equil. and vice versa
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Basic network creation games

N. Alon, E. D. Demaine, M. Hajiaghayi, T. Leighton, SPAA ’10

Goals:
I Computationally feasible solution concept X

I best response can be calculated in poly time:
O(n2) possible swaps
Calculating usage cost via BFS-search: O(n2)

I Find ”simplest and the heart of all such games” ?
I reduce number of parameters, by avoiding α X
I results should generalize to previous models /

∃ Nash equil. which are not swap equil. and vice versa
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Nash vs. Swap

Difference:

I original game: only the player who bought an edge can swap!

I basic network creation game: both ends of an edge can swap!

r

NE for α > 4

r

Not a Swap Equil.

Proposal for a modification:

add an orientation to the graph indicating who owns an edge

players are only allowed to swap edges that they own

G is in directed swap equilibrium if no player can swap an
edge which he/she owns and improve
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Directed Basic Network Creation Game

Advantage:

I Best response can still be calculated in poly time

I This generalizes both Nash equilibrium and swap equilibrium

Swap ∪Nash ⊂ DirectedSwap

Problem:

I Proofs become more technical than in the (undirected) Basic
Network Creation Game

I Anyhow we can prove some interesting things:
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Directed Basic Network Creation Game

Advantage:

I Best response can still be calculated in poly time

I This generalizes both Nash equilibrium and swap equilibrium

Swap ∪Nash ⊂ DirectedSwap

Problem:

I Proofs become more technical than in the (undirected) Basic
Network Creation Game

I Anyhow we can prove some interesting things:
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Structure of equilibrium graphs

Theorem
Every equilibrium graph has at most one 2-edge-connected
component.

I This holds for the various equilibrium concepts:
Nash, swap, directed swap

I Equilibrium graphs are bridgeless graphs ”with
trees attached”

I The attached trees have diameter O(log n)

I Bounds for the diameter of 2-edge-connected
component?
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Lower bounds for bridgeless graphs

(a) Diameter-3 swap equilib-
rium (Alon et al.)

v1

v2

v3

v4

v5

v6

v7

(b) Diameter-4 directed swap equilibrium
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Upper bounds

Conjecture

The diameter of an equilibrium graph is O(log n).

I For Nash and Directed Swap we have matching lower bound

I under strong assumption on the degree distribution we can
prove logarithmic upper bound:

Theorem
If the unique 2-edge connected component H has minimum degree
d(H) ≥ nε for 0 < ε < 1 then there is a constant C (ε) > 0
depending on ε such that diam(H) ≤ C (ε).

I Best general upper bound: O(2
√
log n)
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Open problems

I What is the ”right” model? Original vs. Basic vs. Directed
Basic

I What other bridgeless equilibria can we construct? Can we
achieve non-constant diameter?

I Can you prove a logarithmic bound on the diameter in any of
those models?

I Make the model dynamic
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Thank you for your attention! Questions?
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