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1 Deterministic Maximal Independent Set

In the lecture, we discussed a slow but simple deterministic maximal independent set (MIS)
algorithm (Algorithm 34) in which the decisions of the nodes are based on their identifiers. The
time complexity of this algorithm is O(n).

We might hope that if the nodes with the largest degrees, i.e., the largest number of neighbors,
decide to enter the MIS, the set of undecided nodes reduces the most. In the following algorithm
we try to exploit the knowledge of the node degrees:

Assume that each node knows its degree and also the degrees of all its neighbors. If a node has a
larger degree than all its undecided neighbors, it joins the MIS and informs its neighbors. Once a
node v learns that (at least) one of its neighbors joined the MIS, v decides not to join the MIS.

Naturally, the algorithm does not make any progress if two or more neighboring nodes share
the largest degree. As this is a difficult problem, we will assume in the following that this situation
does not occur, i.e., if a node v has the largest degree, then no neighboring node has the same
degree as v.1

a) Draw a graph that illustrates that this algorithm has a large time complexity for trees! Give
a (non-trivial) lower bound on the (worst-case) time complexity for trees consisting of n
nodes!

b) Construct a graph that shows that the time complexity of this algorithm is even worse for
arbitrary graphs than for trees! What is the time complexity?

c*) We will now modify the algorithm: The degree of a node v in any given round is only the
number of undecided neighbors. Prove (tight) lower and upper bounds for this modified
algorithm on arbitrary graphs!

2 (Local) Reductions

Many problems can be seen as—more or less obvious—variants of others and therefore can be
solved by clever use of the same algorithms. In this exercise you may use the algorithms derived
in the lecture as subroutines.

a) The edge coloring problem is defined as follows: Given a graph G = (V,E), assign each edge
e ∈ E a color c(e) such that no two adjacent edges (i.e., edges sharing a node) have the same
color! As usual, the problem should be solved not only fast, but also using a small number
of different colors. Give a 2∆− 1 edge coloring algorithm running in O(log n) time!

1The motivation for this constraint is that if we prove that the time complexity is large even if there is no conflict
in each step, then being able to break ties clearly does not help.



b) Given a graph G = (V,E), a dominating set is a subset D ⊆ V such that each node either is
in D or has a neighbor in D. The minimum dominating set problem is to find a dominating
set of minimum cardinality. Give a 3/2-approximation algorithm for this problem on rings
which takes O(log∗ n) time!

c) A family of graphs of bounded independence is a set of graphs where nodes have at most
a constant number C of independent (i.e., mutually non-adjacent) neighbors. Give a C-
approximation algorithm to the minimum dominating set problem on graphs of bounded
independence running in O(log n) time!
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