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Exercise 5: Sample Solution

1 Coloring Rings

a) Let n ≥ 4 be even, and let Rn be the set of all labeled rings on n vertices (there are (n−1)!/2
of those); note that we need to consider all these graphs since a correct algorithm has to
produce a valid coloring for each of them. Consider the r-neighborhood graph Nr(Rn) of
Rn. Note that for r = n/2−2 the r-neighborhood of a node contains all but three identifiers,
ordered according to their occurrence.

There exists a correct algorithm to legally color an n-vertex ring with two colors in r rounds
if and only if Nr(Rn) is bipartite, i.e., the r-neighborhood graph contains no odd cycle. How-
ever, the following r-neighborhoods constitute a cycle of length n − 1, where “. . .” signifies
labels in ascending order:

(1, . . . , n− 3), (2, . . . , n− 2), (3, . . . , n− 1), (4, . . . , n− 1, 1), (5, . . . , n− 1, 1, 2), . . . ,
(n− 1, 1, 2 . . . , n− 4), (1, . . . , n− 3)

This means that at least two of these adjacent r-neighborhoods would receive the same color
from a deterministic algorithm A, and any ring in Rn containing them adjacently would not
be colored properly.

Note that, although we defined an odd cycle, we are not done: roughly, we still need to show
that these r-neighborhoods are valid. We use the notation Ni to denote the r-neighborhood
above that starts with label i (i.e. N4 = (4, . . . , n − 1, 1)). Concretely, we define Ni =
(i, i + 1, . . . , n − 4 + i) for i ≤ 3, and, for i > 3, we define Ni = (i, . . . , n − 1, 1, . . . , i − 3).
We need to show that there is a family of n-vertex rings containing:

• for every i < n, a ring Ri,i+1 where two adjacent nodes have Ni and Ni+1 as their
r-neighborhoods.

• a ring Rn−1,1 where two adjacent nodes have Nn−1 and N1 as adjacent neighborhoods.

For i = 1 and i = 2, Ri,i+1 is simply the n-vertex ring having labels in ascending order:
(1, 2, . . . , n). For i ≥ 3, we intuitively have to move the label n outside the r-neighborhoods
Ni and Ni+1 (or N1, if i = n − 1). Hence, for 3 ≤ i < n − 1, Ri,i+1 is the n-vertex rings
having labels (i, . . . , n − 1, 1, . . . i − 3, (i + 1) − 3) = i − 2, n, i − 1). Finally, Rn−1,1 is the



n-vertex ring having labels (n− 1, 1, 2 . . . , n− 4, n− 3, n, n− 2). The rings are shown in the
figure above.

Since Nr(Rn) has such an odd cycle for all r ≤ n/2 − 2, there exists no algorithm that
correctly colors every even ring of length n with 2 colors in at most n/2− 2 rounds.

b) Each node informs its two neighbors whether it is in the MIS or not and additionally sends
its identifier. If node v is in the MIS, it sets its color to 1. If v is not in the MIS but both of
its neighbors are, then v sets its color to 2. If v has a neighbor w not in the MIS, v chooses
color 2 if its identifier is larger than w’s identifier, otherwise v chooses the color 3.

The algorithm only needs one communication round. Correctness follows from the fact that
either a node v is in the MIS or at least one of its neighbors is. Thus, a MIS can at best be
computed one round faster than a 3-coloring, which implies that computing a MIS costs at
least (log∗ n)/2− 2 rounds.

2 Ramsey theory

Let us fix the edge-color blue for knowing each other and the edge-color red for not knowing each
other.

a) Figure 1 shows a valid edge-coloring for K5.

Figure 1: Valid edge-coloring for K5.

Assume that there is a valid edge-coloring for K6, and choose some node v. Out of the
five edges incident to v, at least three are assigned the same color, and we may assume
without loss of generality that this is red. Then, let u1, u2, u3 be three nodes such that the
edges (v, u1), (v, u2), and (v, u3) are red. As the triangle induced by (v, u1, u2) cannot be
red, the edge (u1, u2) must be blue. Similarly, the edges (u2, u3) and (u1, u3) must be blue.
However, this means that the triangle induced by (u1, u2, u3) is blue, which contradicts that
the edge-coloring is valid.

b) This is a trick question: for any n, there is an edge-coloring on Kn satisfying the given
constraints. Namely, just color all the edges in red. This way, any triangle of Kn has at
least two red edges.

c) We first show that any edge-coloring satisfying our constraints contains at most ⌊n/2⌋ blue
edges. Hence, assume an edge-coloring on Kn satisfying the given constraints. Consider
the blue subgraph (obtained by removing all red edges). Note that this subgraph does not
contain any path of length larger than 1, i.e., it is a collection of isolated edges and vertices.
This can be proven by contradiction: if the blue subgraph contains a path of length two,
then our colored Kn contains a triangle with two blue edges. Then, the maximum number
of blue edges is at most the size of a maximum matching in Kn, which has size ⌊n/2⌋.
We still need to show that our upper bound is tight, i.e., that a coloring with ⌊n/2⌋ blue
edges exists. Hence, we choose a maximum matching M of Kn, we color the ⌊n/2⌋ edges in
M in blue, and we color the remaining edges in red. Any triangle of Kn has at most one
blue edge, as at most two of the three nodes in the triangle are adjacent in M . Therefore,
our edge-coloring satisfies the constraints.
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d) We may assume p ≥ 2, otherwise one node would already violate the condition.

In task c), we have seen that any edge-coloring on Kn satisfying our constraints contains at
most ⌊n/2⌋ blue edges. We have seen how an edge-coloring where each triangle has at most
one blue edge can be obtained from a maximum matching on Kn. However, for n = 2p, our
edge-coloring already leads to a red Kp, and therefore violates our new constraint. In the
following, we show that n = 2p − 2 is, in fact, the largest n for which we can find a valid
edge-coloring.

We first show that such an edge-coloring exists for n = 2p − 2 nodes. Similarly to task c),
we consider a perfect matching M of Kn. We color the p− 1 edges in M in blue, and all the
remaining edges in red, which ensures that there is no triangle with more than one blue edge.
Every subgraph Kp of Kn contains a pair of nodes matched in M, and therefore contains
one blue edge. Hence, our second new constraint holds as well.

We now show that no such edge-coloring exists for n = 2p − 1 nodes. To obtain a contra-
diction, we assume that there is such an edge-coloring for n = 2p− 1. As shown in task c),
at most p − 1 edges are blue and the blue subgraph consists of isolated edges and vertices,
hence there is a red subgraph Kp−1. However, each of the p nodes outside this red Kp−1

must be incident to one blue edge towards the red Kp−1. Otherwise, we can extend the red
Kp−1 to a red Kp. However, this requires p > p− 1 blue edges.

In summary, this means that there is a solution for 2p − 2 nodes but not for 2p − 1 nodes,
giving us a sharp bound.
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