Principles of Distributed Computing
Exercise 11: Sample Solution

1 Communication Complexity of Set Disjointness

a) We obtain

\[
M^{\text{DISJ}} = \begin{pmatrix}
 000 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
 001 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
 010 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
 011 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
 100 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\
 101 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
 110 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
 111 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

b) When \(k = 3 \), a fooling set of size 4 for \(\text{DISJ} \) is, e.g.,

\[
S_1 := \{(111,000),(110,001),(101,010),(100,011)\}.
\]

Entries in \(M^{\text{DISJ}} \) corresponding to elements of \(S_1 \) are marked dark gray. However, a fooling set does not always need to be on a diagonal of the matrix. An example for such a set is

\[
S_2 := \{(001,110),(010,001),(011,100),(100,010)\},
\]

and marked light gray in \(M^{\text{DISJ}} \).

c) In general, \(S := \{(x,\overline{x}) \mid x \in \{0,1\}^k\} \) is a fooling set for \(\text{DISJ} \). To prove this, we note: If \(y > x \) then there is always an index \(i \) such that \(x_i = y_i = 1 \) and we conclude \(\text{DISJ}(x,y) = 0 \). Second, we note for any two elements \((x_1,y_1),(x_2,y_2) \) of any fooling set that \(x_1 \neq x_2 \). Otherwise it was \((x_1,y_j) = (x_2,y_j) \) for \(j \in \{1,2\} \) and thus \(f(x_2,y_1) = f(x_1,y_2) = f(x_1,y_1) = f(x_2,y_2) =: z \) which contradicts the definition of a fooling set. Similarly it is \(y_1 \neq y_2 \).

- For any \((x,y) \in S\) it is \(\text{DISJ}(x,y) = 1 \).
- Now consider any \((x_1,y_1) \neq (x_2,y_2) \in S\). Since \(x_1 \neq x_2 \) and \(y_1 \neq y_2 \), we conclude that either \(y_2 > x_1 \), in which case \(\text{DISJ}(x_1,y_2) = 0 \), or \(y_1 > x_2 \) causing \(\text{DISJ}(x_2,y_1) = 0 \).
2 Distinguishing Diameter 2 from 4

a) • Choosing \(v \in L \) takes \(O(D) \): Use any leader election protocol from the lecture. E.g.,
the node with smallest ID in \(L \) can be elected as a leader. Then this node will be \(v \).
• Computing a BFS tree from a vertex usually takes \(O(D) \). Since in our setting all graphs
are guaranteed to have constant diameter, the time required for this is \(O(1) \). As node \(v \) is in \(L \), at most \(|N_1(v)| \leq s \) executions of BFS are performed. These can be started
one after each other and yield a complexity of \(O(s) \).
• The comment states: Computing an \(H \)-dominating set \(DOM \) takes time \(O(D) = O(1) \).
• Since \(|DOM| \leq \frac{n \log n}{s} \), the time complexity of computing all BFS trees from each
vertex in \(DOM \) (one after each other) is \(O(\frac{n \log n}{s}) \).
• Checking whether all trees have depth of at most 2 can be done in \(O(D) = O(1) \) as well:
Each node knows its depth in any of the computed trees. If its depth is 3 or
4, it floods “diameter is 4” to the graph. If a node gets such a message from several
neighbors, it only forwards it to those from which it did not receive it yet. If any node
did not receive message “diameter is 4” after 4 rounds, it decides that the diameter is
2. Otherwise it decides that the diameter is 4. This decision will be consistent among
all nodes.
• By adding all these runtimes, we conclude that the total time complexity of Algorithm
2-vs-4 is \(O\left(s + \frac{n \log n}{s}\right) \).

b) By deriving \(O\left(s + \frac{n \log n}{s}\right) \) as a function of \(s \) we can argue that \(O\left(s + \frac{n \log n}{s}\right) \) is minimal
for \(s = \sqrt{n \log n} \). Thus the runtime of the Algorithm is \(O(\sqrt{n \log n}) \).

c) Since in this case no BFS tree can have depth larger than 2 the algorithm returns “diameter
is 2”.

d) Using the triangle inequality we obtain that \(d(w, v) \geq d(u, v) - d(u, w) = 3 \) thus the BFS
tree of \(w \) has at least depth 3. Therefore Algorithm 2-vs-4 decides “diameter is 4”.

e) Let \(w \) be the leader elected in step 2 of Algorithm 2-vs-4. If the BFS started in \(w \) has depth
at least 3, we are done. In the other case it is \(d(u, w) \leq 2 \). Using d) we conclude that
\(d(u, w) = 2 \). Let \(w' \) be a node that connects \(u \) to \(w \). Since \(w' \in N_1(w) \), Algorithm 2-vs-4
executes a BFS from \(w' \). Then we apply d) using that \(w' \in N_1(u) \).

f) Since \(DOM \) is a dominating set for \(H = V \setminus L = V \), it follows immediately that the algorithm
executes a BFS from a node \(w \in DOM \cap N_1(u) \neq \emptyset \). Now apply d).

g) A careful look into the construction of family \(\mathcal{G} \) reveals that we essentially showed an
\(\Omega(n/\log n) \) lower bound to distinguish diameter 2 from 3. Since the graphs considered
here cannot have diameter 3, the studied algorithm does not contradict this lower bound.

h) Consider a clique (with \(n \) nodes, \(n \) large enough) and remove an arbitrary edge \((u, v)\). Since
\(d(u, v) = 2 \), the graph has diameter 2. We have \(L = \emptyset \) and \(\{w\} \) is an \(H \)-dominating set for
all \(u \neq w \neq v \). If \(DOM = \{w\} \), then Algorithm 2-vs-4 executes exactly one BFS (from \(w \))
which has depth 1 which disproves the claim. Note that this proof works for all \(s \leq n - 2 \).