1 Concurrent Ivy

Consider the tree for the Ivy shared variable protocol in Figure 1. There are three concurrent requests placed by the nodes \(v_1, v_2 \) and \(v_3 \). The token is initially held by the circled node labeled \(r \). We assume synchronous execution.

a) Give the order of serviced requests.

b) Draw the tree after the last request has been served.

c*) Show that in an asynchronous setting, Ivy incurs at most an \(O(\log n) \) overhead in amortized message complexity.

2 Tight Ivy

In Theorem 6.5 it was shown that, on average, acquiring a lock requires at most \(\log n \) steps, where \(n \) is the number of processors.

Show that this bound on the number of steps is tight by constructing a tree consisting of \(n \) nodes in which each request requires \(\log n \) steps if all requests are performed sequentially by suitable nodes in the tree.\(^1\)

\(^1\)Hints: Assume that \(n \) is a power of 2. Construct a tree whose topology remains the same with respect to the token holder after each request.