Principles of Distributed Computing
Exercise 6: Sample Solution

1 Concurrent Ivy

a) The three nodes are served in the order v_2, v_3, v_1.

b) Figure 1 depicts the structure of the tree after the requests have been served. Since v_1 is served last, it is the holder of the token at the end.

Figure 1: Tree after the requests have been served.

2 Tight Ivy

In order to show that the bound of $\log n$ steps on average is tight, we construct a special tree which is defined recursively as follows. The tree T_0 consists of a single node. The tree T_i consists of a root together with i subtrees, which are T_0, \ldots, T_{i-1}, rooted at the i children of the root, see Figure 2.

First, we will show that the number of nodes in the tree T_i is 2^i. This obviously holds for T_0. The induction hypothesis is that it holds for all T_0, \ldots, T_{i-1}. It follows that the number of nodes of T_i is $n = 1 + \sum_{j=0}^{i-1} 2^j = 2^i$.

We will show now that the radius of the root of T_i is $R(T_i) = i$. Again, this is trivially true for T_0. It is easy to see that $R(T_i) = 1 + R(T_{i-1})$, because T_{i-1} is the child with the largest radius. Inductively, it follows that $R(T_i) = i$.

By definition, when cutting of the subtree T_{i-1} from T_i, the resulting tree is again T_{i-1}. Let $C : T_i \mapsto T_{i-1}$ denote this cutting operation. For all $i > 0$, we thus have that $C(T_i) = T_{i-1}$. We will now start a request at the single node v with a distance of i from the root in T_i. On its path to
the root, the request passes nodes that are roots of the trees T_1, \ldots, T_i. All of those nodes become children of the new root v according to the Ivy protocol. The new children lose their largest “child” subtree in the process, thus the children of node v have the structures $C(T_1), \ldots, C(T_i) = T_0, \ldots, T_{i-1}$. Hence, the structure of the tree does not change due to the request and all subsequent requests can also cost i steps. Since $n = 2^i$, each request costs exactly $\log n$.

Figure 2: The trees T_0, \ldots, T_3.