ZHe
m A

#58"%
Eidgendssische Technische Hochschule Ziirich Distributed ‘/{/:i“»‘“
Swiss Federal Institute of Technology Zurich . fetigun B
wiss Federal Institute of Technology Zuric Computing %‘\ 3885 o5

Principles of

Distributed Computing

Roger Wattenhofer

wattenhofer@ethz.ch

Spring 2016

ii

Contents

1 Vertex Coloring

1.1 Problem & Model
1.2 Coloring Trees
2 Tree Algorithms
2.1 Broadcast
2.2 Convergecasto i
2.3 BFS Tree Construction
2.4 MST Construction
3 Leader Election
3.1 Anonymous Leader Election
3.2 Asynchronous Ring L oL
3.3 LowerBounds.
3.4 Synchronous Ring o oL
4 Distributed Sorting
4.1 Array & Mesh.o
4.2 Sorting Networks Lo oL
4.3 Counting Networks Lo oL
5 Shared Memory
51 Model
5.2 Mutual Exclusion oo
53 Store & Collect
5.3.1 Problem Definition 0L
5.3.2 Splitters
5.3.3 Binary Splitter Tree
5.3.4 Splitter Matrix 0oL
6 Shared Objects
6.1 Centralized Solutions
6.2 Arrow and Friends
6.3 Ivyand Friends L o
7 Maximal Independent Set
71 MIS ..
7.2 Original Fast MIS o
73 Fast MISv2o

iii

iv CONTENTS
74 Applications 80

8 Locality Lower Bounds 85
81 Model 85
82 Locality 86
8.3 The Neighborhood Graph 88

9 Social Networks 93
9.1 Small World Networks 94
9.2 Propagation Studies Lo oL 100

10 Synchronization 105
10.1 Basics e 105
10.2 Synchronizer ooo L 106
10.3 Synchronizer B L 107
10.4 Synchromizer v 108
10.5 Network Partition 110
10.6 Clock Synchronization 112

11 Communication Complexity 119
11.1 Diameter & APSP 119
11.2 Lower Bound Graphs 121
11.3 Communication Complexity 124
11.4 Distributed Complexity Theory 129

12 Wireless Protocols 133
12.1 Basics o e e e e e 133
12.2 Initialization 135
12.2.1 Non-Uniform Initialization 135

12.2.2 Uniform Initialization with CD 135

12.2.3 Uniform Initialization without CD 137

12.3 Leader Election 137
12.3.1 With High Probability 137

12.3.2 Uniform Leader Election 138

12.3.3 Fast Leader Election with CD 139

12.3.4 Even Faster Leader Election with CD 139

12.3.5 Lower Bound 142

12.3.6 Uniform Asynchronous Wakeup without CD 142

12.4 Useful Formulas. 143
13 Stabilization 147
13.1 Self-Stabilization 147
13.2 Advanced Stabilization, 152
14 Labeling Schemes 157
14.1 Adjacency 157
14.2 Rooted Trees 159

14.3 Road Networks e 160

CONTENTS

15 Fault-Tolerance & Paxos
15.1 Client/Server
15.2 Paxos e e e e e e e

16 Consensus
16.1 Two Friends
16.2 ComsSensus v v v v e e e e e e e e e
16.3 Impossibility of Consensus
16.4 Randomized Consensus
16.5 Shared Coin

17 Byzantine Agreement
17.1 Validity oo
17.2 How Many Byzantine Nodes?
17.3 The King Algorithm,
17.4 Lower Bound on Number of Rounds
17.5 Asynchronous Byzantine Agreement

18 Authenticated Agreement
18.1 Agreement with Authentication
18.2 Zyzzyvao

19 Quorum Systems
19.1 Load and Worko
19.2 Grid Quorum Systemso o
19.3 Fault Tolerance
19.4 Byzantine Quorum Systems

20 Eventual Consistency & Bitcoin
20.1 Consistency, Availability and Partitions
20.2 Bitcoino
20.3 Smart Contracts
20.4 Weak Consistency

21 Distributed Storage
21.1 Consistent Hashing
21.2 Hypercubic Networks
21.3 DHT & Churno

22 Game Theory
22.1 Introduction
22.2 Prisoner’s Dilemma
22.3 Selfish Caching L
22.4 Braess’ Paradoxo
22.5 Rock-Paper-Scissors
22.6 Mechanism Designo oL

165
165
169

177
177
177
178
183
186

189
190
191
193
194
195

199
199
201

211
212
213
215
218

223
223
225
231
233

237
237
238
244

vi CONTENTS

23 Dynamic Networks 261
23.1 Synchronous Edge-Dynamic Networks 261
23.2 Problem Definitions 262
23.3 Basic Information Dissemination 263
23.4 Small Messages o 266

23.4.1 k-Verification oL 266
23.4.2 k-Committee Election 267
23.5 More Stable Graphs, 269

24 All-to-All Communication 273

25 Multi-Core Computing 281
25.1 Introduction 281

25.1.1 The Current State of Concurrent Programming 281
25.2 Transactional Memory 283
25.3 Contention Management, 284

26 Dominating Set 293
26.1 Sequential Greedy Algorithm 294
26.2 Distributed Greedy Algorithm 295

27 Routing 303
27.1 Array 303
272 Mesh e 304
27.3 Routing in the Mesh with Small Queues 305
27.4 Hot-Potato Routing 306
27.5 More Models L 308

28 Routing Strikes Back 311
28.1 Butterfly 311
28.2 Oblivious Routing L. 312

28.3 Offline Routing 313

Introduction

What is Distributed Computing?

In the last few decades, we have experienced an unprecedented growth in the
area of distributed systems and networks. Distributed computing now encom-
passes many of the activities occurring in today’s computer and communications
world. Indeed, distributed computing appears in quite diverse application areas:
The Internet, wireless communication, cloud or parallel computing, multi-core
systems, mobile networks, but also an ant colony, a brain, or even the human
society can be modeled as distributed systems.

These applications have in common that many processors or entities (often
called nodes) are active in the system at any moment. The nodes have certain
degrees of freedom: they have their own hard- and software. Nevertheless, the
nodes may share common resources and information, and, in order to solve
a problem that concerns several—or maybe even all—modes, coordination is
necessary.

Despite these commonalities, a human brain is of course very different from a
quadcore processor. Due to such differences, many different models and parame-
ters are studied in the area of distributed computing. In some systems the nodes
operate synchronously, in other systems they operate asynchronously. There are
simple homogeneous systems, and heterogeneous systems where different types
of nodes, potentially with different capabilities, objectives etc., need to inter-
act. There are different communication techniques: nodes may communicate by
exchanging messages, or by means of shared memory. Occasionally the commu-
nication infrastructure is tailor-made for an application, sometimes one has to
work with any given infrastructure. The nodes in a system often work together
to solve a global task, occasionally the nodes are autonomous agents that have
their own agenda and compete for common resources. Sometimes the nodes can
be assumed to work correctly, at times they may exhibit failures. In contrast
to a single-node system, distributed systems may still function correctly despite
failures as other nodes can take over the work of the failed nodes. There are
different kinds of failures that can be considered: nodes may just crash, or they
might exhibit an arbitrary, erroneous behavior, maybe even to a degree where
it cannot be distinguished from malicious (also known as Byzantine) behavior.
It is also possible that the nodes follow the rules indeed, however they tweak
the parameters to get the most out of the system; in other words, the nodes act
selfishly.

Apparently, there are many models (and even more combinations of models)
that can be studied. We will not discuss them in detail now, but simply define

2 CONTENTS

them when we use them. Towards the end of the course a general picture should
emerge, hopefully!

Course Overview

This course introduces the basic principles of distributed computing, highlight-
ing common themes and techniques. In particular, we study some of the funda-
mental issues underlying the design of distributed systems:

e Communication: Communication does not come for free; often communi-
cation cost dominates the cost of local processing or storage. Sometimes
we even assume that everything but communication is free.

e Coordination: How can you coordinate a distributed system so that it
performs some task efficiently? How much overhead is inevitable?

e Fault-tolerance: A major advantage of a distributed system is that even
in the presence of failures the system as a whole may survive.

e Locality: Networks keep growing. Luckily, global information is not always
needed to solve a task, often it is sufficient if nodes talk to their neighbors.
In this course, we will address whether a local solution is possible.

e Parallelism: How fast can you solve a task if you increase your computa-
tional power, e.g., by increasing the number of nodes that can share the
workload? How much parallelism is possible for a given problem?

e Symmetry breaking: Sometimes some nodes need to be selected to or-
chestrate computation or communication. This is achieved by a technique
called symmetry breaking.

e Synchronization: How can you implement a synchronous algorithm in an
asynchronous environment?

e Uncertainty: If we need to agree on a single term that fittingly describes
this course, it is probably “uncertainty”. As the whole system is distrib-
uted, the nodes cannot know what other nodes are doing at this exact
moment, and the nodes are required to solve the tasks at hand despite the
lack of global knowledge.

Finally, there are also a few areas that we will not cover in this course,
mostly because these topics have become so important that they deserve their
own courses. Examples for such topics are distributed programming or secu-
rity /cryptography.

In summary, in this class we explore essential algorithmic ideas and lower
bound techniques, basically the “pearls” of distributed computing and network
algorithms. We will cover a fresh topic every week.

Have fun!

BIBLIOGRAPHY 3

Chapter Notes

Many excellent text books have been written on the subject. The book closest
to this course is by David Peleg [Pel00], as it shares about half of the material. A
main focus of Peleg’s book are network partitions, covers, decompositions, and
spanners — an interesting area that we will only touch in this course. There exist
a multitude of other text books that overlap with one or two chapters of this
course, e.g., [Lei92, Bar96, Lyn96, Tel01, AW04, HKPT05, CLRS09, Suol2].
Another related course is by James Aspnes [Asp] and one by Jukka Suomela
[Suo14].

Some chapters of this course have been developed in collaboration with (for-
mer) Ph.D. students, see chapter notes for details. Many students have helped
to improve exercises and script. Thanks go to Philipp Brandes, Raphael Ei-
denbenz, Roland Flury, Klaus-Tycho Forster, Stephan Holzer, Barbara Keller,
Fabian Kuhn, Christoph Lenzen, Thomas Locher, Remo Meier, Thomas Mosci-
broda, Regina O’Dell, Yvonne-Anne Pignolet, Jochen Seidel, Stefan Schmid,
Johannes Schneider, Jara Uitto, Pascal von Rickenbach (in alphabetical order).

Bibliography
[Asp] James Aspnes. Notes on Theory of Distributed Systems.

[AWO04] Hagit Attiya and Jennifer Welch. Distributed Computing: Funda-
mentals, Simulations and Advanced Topics (2nd edition). John Wi-
ley Interscience, March 2004.

[Bar96] Valmir C. Barbosa. An introduction to distributed algorithms. MIT
Press, Cambridge, MA, USA, 1996.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

[HKPT05] Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

[Lei92] F. Thomson Leighton. Introduction to parallel algorithms and ar-
chitectures: array, trees, hypercubes. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1992.

[Lyn96] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

[Pel00] David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

[Suol2] Jukka Suomela. Deterministic Distributed Algorithms, 2012.

[Suol4] Jukka Suomela. Distributed algorithms. Online textbook, 2014.

CONTENTS

[Tel01] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Uni-
versity Press, New York, NY, USA, 2nd edition, 2001.

Chapter 1

Vertex Coloring

Vertex coloring is an infamous graph theory problem. It is also a useful toy
example to see the style of this course already in the first lecture. Vertex coloring
does have quite a few practical applications, for example in the area of wireless
networks where coloring is the foundation of so-called TDMA MAC protocols.
Generally speaking, vertex coloring is used as a means to break symmetries,
one of the main themes in distributed computing. In this chapter we will not
really talk about vertex coloring applications, but treat the problem abstractly.
At the end of the class you probably learned the fastest algorithm ever! Let us
start with some simple definitions and observations.

1.1 Problem & Model

Problem 1.1 (Vertex Coloring). Given an undirected graph G = (V, E), assign
a color ¢, to each vertex v € V such that the following holds: e = (v,w) €
E = ¢, # cyp.

Remarks:

e Throughout this course, we use the terms vertex and node interchange-
ably.

e The application often asks us to use few colors! In a TDMA MAC pro-
tocol, for example, less colors immediately imply higher throughput.
However, in distributed computing we are often happy with a solution
which is suboptimal. There is a tradeoff between the optimality of a
solution (efficacy), and the work/time needed to compute the solution
(efficiency).

Assumption 1.3 (Node Identifiers). Each node has a unique identifier, e.g.,
its IP address. We usually assume that each identifier consists of only logn bits
if the system has n nodes.

6 CHAPTER 1. VERTEX COLORING

Figure 1.2: 3-colorable graph with a valid coloring.

Remarks:

e Sometimes we might even assume that the nodes exactly have identi-
fiers 1,...,n.

e It is easy to see that node identifiers (as defined in Assumption 1.3)
solve the coloring problem 1.1, but using n colors is not exciting. How
many colors are needed is a well-studied problem:

Definition 1.4 (Chromatic Number). Given an undirected Graph G = (V, E),
the chromatic number x(G) is the minimum number of colors to solve Problem
1.1.

To get a better understanding of the vertex coloring problem, let us first look
at a simple non-distributed (“centralized”) vertex coloring algorithm:

Algorithm 1.5 Greedy Sequential

1: while there is an uncolored vertex v do

2: color v with the minimal color (number) that does not conflict with the
already colored neighbors

3: end while

Definition 1.6 (Degree). The number of neighbors of a vertex v, denoted by
d(v), is called the degree of v. The mazimum degree vertex in a graph G defines
the graph degree A(G) = A.

Theorem 1.7. Algorithm 1.5 is correct and terminates in n “steps”. The
algorithm uses at most A + 1 colors.

Proof: Since each node has at most A neighbors, there is always at least one
color free in the range {1,...,A 4+ 1}.

Remarks:
e In Definition 1.11 we will see what is meant by “step”.
e Sometimes x(G) < A+ 1.

Definition 1.8 (Synchronous Distributed Algorithm). In a synchronous dis-
tributed algorithm, nodes operate in synchronous rounds. In each round, each
node executes the following steps:

1. Send messages to neighbors in graph (of reasonable size).

1.1. PROBLEM & MODEL 7

2. Receive messages (that were sent by neighbors in step 1 of the same round).
3. Do some local computation (of reasonable complexity).

Remarks:

e Any other step ordering is fine.

e What does “reasonable” mean in this context? We are somewhat
flexible here, and different model variants exist. Generally, we will
deal with algorithms that only do very simple computations (a com-
parison, an addition, etc.). Exponential-time computation is usually
considered cheating in this context. Similarly, sending a message with
a node ID, or a value is considered okay, whereas sending really long
messages is fishy. We will have more exact definitions later, when we
need them.

e We can build a distributed version of Algorithm 1.5:

Algorithm 1.9 Reduce

Assume that initially all nodes have IDs

Each node v executes the following code:

node v sends its ID to all neighbors

node v receives IDs of neighbors

while node v has an uncolored neighbor with higher ID do
node v sends “undecided” to all neighbors
node v receives new decisions from neighbors

end while

node v chooses the smallest admissible free color

node v informs all its neighbors about its choice

=
=

Figure 1.10: Vertex 100 receives the lowest possible color.

Definition 1.11 (Time Complexity). For synchronous algorithms (as defined in
1.8) the time complexity is the number of rounds until the algorithm terminates.
The algorithm terminates when the last node terminates.

Theorem 1.12. Algorithm 1.9 is correct and has time complezxity n. The al-
gorithm uses at most A + 1 colors.

Proof. Nodes choose colors that are different from their neighbors, and no two
neighbors choose concurrently. In each round at least one node chooses a color,
so we are done after at most n rounds. O

8 CHAPTER 1. VERTEX COLORING

Remarks:
e In the worst case, this algorithm is still not better than sequential.
e Moreover, it seems difficult to come up with a fast algorithm.

e Maybe it’s better to first study a simple special case, a tree, and then
go from there.

1.2 Coloring Trees

Lemma 1.13. x(Tree) <2

Proof. Call some node the root of the tree. If the distance of a node to the root
is odd (even), color it 1 (0). An odd node has only even neighbors and vice
versa. [

Remarks:

e If we assume that each node knows its parent (root has no parent)
and children in a tree, this constructive proof gives a very simple
algorithm:

Algorithm 1.14 Slow Tree Coloring

: Color the root 0, root sends 0 to its children

: Each node v concurrently executes the following code:

if node v receives a message ¢, (from parent) then
node v chooses color ¢, =1 — ¢,

node v sends ¢, to its children (all neighbors except parent)
end if

AN R

Theorem 1.15. Algorithm 1.14 is correct. If each node knows its parent and its
children, the time complezity is the tree height which is bounded by the diameter
of the tree.

Remarks:

e How can we determine a root in a tree if it is not already given? We
will figure that out later.

e The time complexity of the algorithm is the height of the tree.

e Nice trees, e.g., balanced binary trees, have logarithmic height, that
is we have a logarithmic time complexity.

e However, if the tree has a degenerated topology, the time complexity
may again be up to n, the number of nodes.

e This algorithm is not very exciting. Can we do better than logarith-
mic?

1.2. COLORING TREES 9

Here is the idea of the algorithm: We start with color labels that have logn bits.
In each round we compute a new label with exponentially smaller size than the
previous label, still guaranteeing to have a valid vertex coloring! The algorithm
terminates in log* n time. Log-Star?! That’s the number of logarithms (to the
base 2) you need to take to get down to 2. Formally:

Definition 1.16 (Log-Star).
Ve<2: logz:=1 Vz>2: log"z:=1+log*(logx)

Remarks:

e Log-star is an amazingly slowly growing function. Log-star of all the
atoms in the observable universe (estimated to be 10%°) is 5. So log-
star increases indeed very slowly! There are functions which grow
even more slowly, such as the inverse Ackermann function, however,
the inverse Ackermann function of all the atoms is already 4.

Algorithm 1.17 “6-Color”
Assume that initially the nodes have IDs of size log n bits
The root assigns itself the label 0
Each other node v executes the following code
send own color ¢, to all children
repeat
receive color ¢, from parent
interpret ¢, and ¢, as bit-strings
let 7 be the index of the smallest bit where ¢, and ¢, differ
the new label is i (as bitstring) followed by the i*® bit of ¢,
send ¢, to all children
: until ¢, € {0,...,5} for all nodes w

=
= O

Example:
Algorithm 1.17 executed on the following part of a tree:

Grand-parent 0010110000 — 10010 — ...
Parent 1010010000 — 01010 — 111
Child 0110010000 — 10001 — 001

Theorem 1.18. Algorithm 1.17 terminates in log™n + k time, where k is a
constant independent of n.

Proof. We need to show that parent p and child ¢ always have different colors.
Initially, this is true, since all nodes start out with their unique ID. In a round,
let ¢ be the smallest index where child ¢ has a different bit from parent p. If
parent p differs in a different index bit j # i from its own parent, parent and
child will compute different colors in that round. On the other hand, if j = 1,
the symmetry is broken by p having a different bit at index 1.

Regarding runtime, note that the size of the largest color shrinks dramat-
ically in each round, apart from the symmetry-breaking bit, exactly as a log-
arithmic function. With some (tedious and boring) machinery, one can show

10 CHAPTER 1. VERTEX COLORING

that indeed every node will have a color in the range {0,...,5} in log"n + k
rounds. O
Remarks:

e Let us have a closer look at the end game of the algorithm. Colors
11* (in binary notation, i.e., 6 or 7 in decimal notation) will not be
chosen, because the node will then do another round. This gives a
total of 6 colors (i.e., colors 0,..., 5).

e What about that last line of the loop? How do the nodes know that
all nodes now have a color in the range {0,...,5}? The answer to this
question is surprisingly complex. One may hardwire the number of
rounds into the until statement, such that all nodes execute the loop
for exactly the same number of rounds. However, in order to do so,
all nodes need to know n, the number of nodes, which is ugly. There
are (non-trivial) solutions where nodes do not need to know n, see
exercises.

e Can one reduce the number of colors? Note that Algorithm 1.9 does
not work (since the degree of a node can be much higher than 6)! For
fewer colors we need to have siblings monochromatic!

Algorithm 1.19 Shift Down
1: Each other node v concurrently executes the following code:
2: Recolor v with the color of parent
3: Root chooses a new (different) color from {0, 1,2}

Lemma 1.20. Algorithm 1.19 preserves coloring legality; also siblings are monochro-
matic.

Now Algorithm 1.9 can be used to reduce the number of used colors from 6 to
3.

Algorithm 1.21 Six-2-Three
1: Each node v concurrently executes the following code:
2: for x =5,4,3 do
3: Perform subroutine Shift down (Algorithm 1.19)

4 if ¢, = = then

5: choose the smallest admissible new color ¢, € {0,1,2}
6: end if

7: end for

Theorem 1.23. Algorithms 1.17 and 1.21 color a tree with three colors in time
O(log™ n).

1.2. COLORING TREES 11

Figure 1.22: Possible execution of Algorithm 1.21.

Remarks:

e The term O() used in Theorem 1.18 is called “big O” and is often
used in distributed computing. Roughly speaking, O(f) means “in
the order of f, ignoring constant factors and smaller additive terms.”
More formally, for two functions f and g, it holds that f € O(g) if
there are constants xg and ¢ so that |f(z)| < c|g(x)]| for all z > xo.
For an elaborate discussion on the big O notation we refer to other
introductory math or computer science classes, or Wikipedia.

e A fast tree-coloring with only 2 colors is more than exponentially more
expensive than coloring with 3 colors. In a tree degenerated to a list,
nodes far away need to figure out whether they are an even or odd
number of hops away from each other in order to get a 2-coloring. To
do that one has to send a message to these nodes. This costs time
linear in the number of nodes.

e The idea of this algorithm can be generalized, e.g., to a ring topology.
Also a general graph with constant degree A can be colored with
A + 1 colors in O(log™ n) time. The idea is as follows: In each step,
a node compares its label to each of its neighbors, constructing a

12 CHAPTER 1. VERTEX COLORING

logarithmic difference-tag as in Algorithm 1.17. Then the new label
is the concatenation of all the difference-tags. For constant degree A,
this gives a 3A-label in O(log* n) steps. Algorithm 1.9 then reduces
the number of colors to A+1 in 234 (this is still a constant for constant
Al) steps.

e Unfortunately, coloring a general graph is not yet possible with this
technique. We will see another technique for that in Chapter 7. With
this technique it is possible to color a general graph with A + 1 colors
in O(logn) time.

e A lower bound shows that many of these log-star algorithms are
asymptotically (up to constant factors) optimal. We will see that
later.

Chapter Notes

The basic technique of the log-star algorithm is by Cole and Vishkin [CV86]. A
tight bound of %log* n was proven recently [RS15]. The technique can be gen-
eralized and extended, e.g., to a ring topology or to graphs with constant degree
[GP87, GPS88, KMWO05]. Using it as a subroutine, one can solve many problems
in log-star time. For instance, one can color so-called growth bounded graphs (a
model which includes many natural graph classes, for instance unit disk graphs)
asymptotically optimally in O(log* n) time [SWO08]. Actually, Schneider et al.
show that many classic combinatorial problems beyond coloring can be solved
in log-star time in growth bounded and other restricted graphs.

In a later chapter we learn a Q(log" n) lower bound for coloring and related
problems [Lin92]. Linial’s paper also contains a number of other results on
coloring, e.g., that any algorithm for coloring d-regular trees of radius r that
run in time at most 2r/3 require at least Q(v/d) colors.

For general graphs, later we will learn fast coloring algorithms that use a
maximal independent sets as a base. Since coloring exhibits a trade-off between
efficacy and efficiency, many different results for general graphs exist, e.g., [PS96,
KSOS06, BE09, Kuh09, SW10, BE11b, KP11, BE11la, BEPS12, PS13, CPS14,
BEK14].

Some parts of this chapter are also discussed in Chapter 7 of [Pel00], e.g.,
the proof of Theorem 1.18.

Bibliography

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta+1)-coloring
in linear (in delta) time. In 41st ACM Symposium On Theory of
Computing (STOC), 2009.

[BE1la] Leonid Barenboim and Michael Elkin. Combinatorial Algorithms for
Distributed Graph Coloring. In 25th International Symposium on
DIiStributed Computing, 2011.

[BE11b] Leonid Barenboim and Michael Elkin. Deterministic Distributed Ver-
tex Coloring in Polylogarithmic Time. J. ACM, 58(5):23, 2011.

BIBLIOGRAPHY 13

[BEK14]

[BEPS12]

[CPS14]

[CV86]

[GP87]

[GPSSS]

[KMWO05]

[KP11]

[KSOS06]

[Kuh09]

[Lin92]

[Pel00]

[PS96]

Leonid Barenboim, Michael Elkin, and Fabian Kuhn. Distributed
(delta+1)-coloring in linear (in delta) time. SIAM J. Comput.,
43(1):72-95, 2014.

Leonid Barenboim, Michael Elkin, Seth Pettie, and Johannes Schnei-
der. The locality of distributed symmetry breaking. In Foundations
of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium
on, pages 321-330, 2012.

Kai-Min Chung, Seth Pettie, and Hsin-Hao Su. Distributed algo-
rithms for the lovasz local lemma and graph coloring. In ACM Sym-
posium on Principles of Distributed Computing, pages 134—143, 2014.

R. Cole and U. Vishkin. Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algo-
rithms. In 18th annual ACM Symposium on Theory of Computing
(STOC), 1986.

Andrew V. Goldberg and Serge A. Plotkin. Parallel (A+1)-coloring
of constant-degree graphs. Inf. Process. Lett., 25(4):241-245, June
1987.

Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon.
Parallel Symmetry-Breaking in Sparse Graphs. SIAM J. Discrete
Math., 1(4):434-446, 1988.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. On
the Locality of Bounded Growth. In 2/th ACM Symposium on the
Principles of Distributed Computing (PODC), Las Vegas, Nevada,
USA, July 2005.

Kishore Kothapalli and Sriram V. Pemmaraju. Distributed graph
coloring in a few rounds. In 30th ACM SIGACT-SIGOPS Symposium
on Principles of Distributed Computing (PODC), 2011.

Kishore Kothapalli, Christian Scheideler, Melih Onus, and Christian
Schindelhauer. Distributed coloring in O(y/logn) Bit Rounds. In

20th international conference on Parallel and Distributed Processing
(IPDPS), 2006.

Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), 2009.

N. Linial. Locality in Distributed Graph Algorithms. SIAM Journal
on Computing, 21(1)(1):193-201, February 1992.

David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

Alessandro Panconesi and Aravind Srinivasan. On the Complexity of
Distributed Network Decomposition. J. Algorithms, 20(2):356-374,
1996.

14

[PS13]

[RS15]

[SWOS]

[SW10]

CHAPTER 1. VERTEX COLORING

Seth Pettie and Hsin-Hao Su. Fast distributed coloring algorithms
for triangle-free graphs. In Automata, Languages, and Programming
- 40th International Colloguium, ICALP, pages 681-693, 2013.

Joel Rybicki and Jukka Suomela. Exact bounds for distributed graph
colouring. In Structural Information and Communication Complez-
ity - 22nd International Colloquium, SIROCCO 2015, Montserrat,
Spain, July 14-16, 2015, Post-Proceedings, pages 4660, 2015.

Johannes Schneider and Roger Wattenhofer. A Log-Star Distributed
Maximal Independent Set Algorithm for Growth-Bounded Graphs.
In 27th ACM Symposium on Principles of Distributed Computing
(PODC), Toronto, Canada, August 2008.

Johannes Schneider and Roger Wattenhofer. A New Technique For
Distributed Symmetry Breaking. In 29th Symposium on Principles
of Distributed Computing (PODC), Zurich, Switzerland, July 2010.

Chapter 2

Tree Algorithms

In this chapter we learn a few basic algorithms on trees, and how to construct
trees in the first place so that we can run these (and other) algorithms. The
good news is that these algorithms have many applications, the bad news is
that this chapter is a bit on the simple side. But maybe that’s not really bad
news?!

2.1 Broadcast

Definition 2.1 (Broadcast). A broadcast operation is initiated by a single node,
the source. The source wants to send a message to all other nodes in the system.

Definition 2.2 (Distance, Radius, Diameter). The distance between two nodes
u and v in an undirected graph G is the number of hops of a minimum path
between u and v. The radius of a node u is the maximum distance between u
and any other node in the graph. The radius of a graph is the minimum radius
of any mode in the graph. The diameter of a graph is the mazimum distance
between two arbitrary nodes.

Remarks:

e Clearly there is a close relation between the radius R and the diameter
D of a graph, such as R < D < 2R.

Definition 2.3 (Message Complexity). The message complexity of an algo-
rithm is determined by the total number of messages exchanged.

Theorem 2.4 (Broadcast Lower Bound). The message complexity of broadcast
is at least n — 1. The source’s radius is a lower bound for the time complexity.
Proof: Every node must receive the message.
Remarks:
e You can use a pre-computed spanning tree to do broadcast with tight
message complexity. If the spanning tree is a breadth-first search

spanning tree (for a given source), then the time complexity is tight
as well.

15

16 CHAPTER 2. TREE ALGORITHMS

Definition 2.5 (Clean). A graph (network) is clean if the nodes do not know
the topology of the graph.

Theorem 2.6 (Clean Broadcast Lower Bound). For a clean network, the num-
ber of edges m is a lower bound for the broadcast message complexity.

Proof: If you do not try every edge, you might miss a whole part of the graph
behind it.

Definition 2.7 (Asynchronous Distributed Algorithm). In the asynchronous
model, algorithms are event driven (“upon receiving message ..., do ...”).
Nodes cannot access a global clock. A message sent from one node to another
will arrive in finite but unbounded time.

Remarks:

e The asynchronous model and the synchronous model (Definition 1.8)
are the cornerstone models in distributed computing. As they do
not necessarily reflect reality there are several models in between syn-
chronous and asynchronous. However, from a theoretical point of view
the synchronous and the asynchronous model are the most interesting
ones (because every other model is in between these extremes).

e Note that in the asynchronous model, messages that take a longer
path may arrive earlier.

Definition 2.8 (Asynchronous Time Complexity). For asynchronous algorithms
(as defined in 2.7) the time complexity is the number of time units from the
start of the execution to its completion in the worst case (every legal input, ev-
ery execution scenario), assuming that each message has a delay of at most one
time unit.

Remarks:

e You cannot use the maximum delay in the algorithm design. In other
words, the algorithm has to be correct even if there is no such delay
upper bound.

e The clean broadcast lower bound (Theorem 2.6) directly brings us to
the well known flooding algorithm.

Algorithm 2.9 Flooding
1: The source (root) sends the message to all neighbors.
2: Each other node v upon receiving the message the first time forwards the
message to all (other) neighbors.
3: Upon later receiving the message again (over other edges), a node can dis-
card the message.

2.2. CONVERGECAST 17

Remarks:

If node v receives the message first from node u, then node v calls
node u parent. This parent relation defines a spanning tree T'. If the
flooding algorithm is executed in a synchronous system, then 7" is a
breadth-first search spanning tree (with respect to the root).

More interestingly, also in asynchronous systems the flooding algo-
rithm terminates after R time units, R being the radius of the source.
However, the constructed spanning tree may not be a breadth-first
search spanning tree.

2.2 Convergecast

Convergecast is the same as broadcast, just reversed: Instead of a root sending
a message to all other nodes, all other nodes send information to a root (starting
from the leaves, i.e., the tree T is known). The simplest convergecast algorithm
is the echo algorithm:

Algorithm 2.10 Echo

1: A leave sends a message to its parent.
2: If an inner node has received a message from each child, it sends a message
to the parent.

Remarks:

Usually the echo algorithm is paired with the flooding algorithm,
which is used to let the leaves know that they should start the echo
process; this is known as flooding/echo.

One can use convergecast for termination detection, for example. If a
root wants to know whether all nodes in the system have finished some
task, it initiates a flooding/echo; the message in the echo algorithm
then means “This subtree has finished the task.”

Message complexity of the echo algorithm is n — 1, but together with
flooding it is O(m), where m = |E| is the number of edges in the
graph.

The time complexity of the echo algorithm is determined by the depth
of the spanning tree (i.e., the radius of the root within the tree) gen-
erated by the flooding algorithm.

The flooding/echo algorithm can do much more than collecting ac-
knowledgements from subtrees. One can for instance use it to com-
pute the number of nodes in the system, or the maximum ID, or the
sum of all values stored in the system, or a route-disjoint matching.

Moreover, by combining results one can compute even fancier aggrega-
tions, e.g., with the number of nodes and the sum one can compute the
average. With the average one can compute the standard deviation.
Andsoon ...

18 CHAPTER 2. TREE ALGORITHMS

2.3 BFS Tree Construction

In synchronous systems the flooding algorithm is a simple yet efficient method to
construct a breadth-first search (BFS) spanning tree. However, in asynchronous
systems the spanning tree constructed by the flooding algorithm may be far from
BFS. In this section, we implement two classic BFS constructions—Dijkstra and
Bellman-Ford—as asynchronous algorithms.

We start with the Dijkstra algorithm. The basic idea is to always add the
“closest” node to the existing part of the BFS tree. We need to parallelize
this idea by developing the BFS tree layer by layer. The algorithm proceeds in
phases. In phase p the nodes with distance p to the root are detected. Let T},
be the tree in phase p.

Algorithm 2.11 Dijkstra BFS
1: We start with 7} which is the root plus all direct neighbors of the root. We
start with phase p = 1:

2: repeat

3: The root starts phase p by broadcasting “start p” within T),.

4: When receiving “start p” a leaf node u of T, (that is, a node that was
newly discovered in the last phase) sends a “join p + 1”7 message to all
quiet neighbors. (A neighbor v is quiet if u has not yet “talked” to v.)

5: A node v receiving the first “join p+1” message replies with “ACK” and
becomes a leaf of the tree T}, ;.

6: A node v receiving any further “join” message replies with “NACK”.

7: The leaves of T}, collect all the answers of their neighbors; then the leaves
start an echo algorithm back to the root.

8: When the echo process terminates at the root, the root increments the
phase

9: until there was no new node detected

Theorem 2.12. The time complexity of Algorithm 2.11 is O(D?), the message
complezity is O(m + nD), where D is the diameter of the graph, n the number
of nodes, and m the number of edges.

Proof: A broadcast/echo algorithm in T}, needs at most time 2D. Finding new
neighbors at the leaves costs 2 time units. Since the BF'S tree height is bounded
by the diameter, we have D phases, giving a total time complexity of O(D?).
Each node participating in broadcast/echo only receives (broadcasts) at most 1
message and sends (echoes) at most once. Since there are D phases, the cost is
bounded by O(nD). On each edge there are at most 2 “join” messages. Replies
to a “join” request are answered by 1 “ACK” or “NACK” , which means that we
have at most 4 additional messages per edge. Therefore the message complexity
is O(m + nD).

Remarks:

e The time complexity is not very exciting, so let’s try Bellman-Ford!

The basic idea of Bellman-Ford is even simpler, and heavily used in the
Internet, as it is a basic version of the omnipresent border gateway protocol
(BGP). The idea is to simply keep the distance to the root accurate. If a

2.4. MST CONSTRUCTION 19

neighbor has found a better route to the root, a node might also need to update
its distance.

Algorithm 2.13 Bellman-Ford BFS

1: Each node u stores an integer d,, which corresponds to the distance from u

to the root. Initially dyoot = 0, and d,, = oo for every other node u.

2: The root starts the algorithm by sending “1” to all neighbors.
3: if a node u receives a message “y” with y < d, from a neighbor v then
4: node u sets d, ==y
5
6

node u sends “y 4 1”7 to all neighbors (except v)
: end if

Theorem 2.14. The time complexity of Algorithm 2.13 is O(D), the message
complezity is O(nm), where D,n,m are defined as in Theorem 2.12.

Proof: We can prove the time complexity by induction. We claim that a node
at distance d from the root has received a message “d” by time d. The root
knows by time 0 that it is the root. A node v at distance d has a neighbor u at
distance d — 1. Node u by induction sends a message “d” to v at time d — 1 or
before, which is then received by v at time d or before. Message complexity is
easier: A node can reduce its distance at most n — 1 times; each of these times
it sends a message to all its neighbors. If all nodes do this, then we have O(nm)
messages.

Remarks:

e Algorithm 2.11 has the better message complexity and Algorithm 2.13
has the better time complexity. The currently best algorithm (opti-
mizing both) needs O(m + nlog®n) messages and O(Dlog®n) time.
This “trade-off” algorithm is beyond the scope of this chapter, but we
will later learn the general technique.

2.4 MST Construction

There are several types of spanning trees, each serving a different purpose. A
particularly interesting spanning tree is the minimum spanning tree (MST). The
MST only makes sense on weighted graphs, hence in this section we assume that
each edge e is assigned a weight we.

Definition 2.15 (MST). Given a weighted graph G = (V, E,w), the MST of
G is a spanning tree T minimizing w(T), where w(G') = Y .o we for any
subgraph G' C G.

Remarks:

e In the following we assume that no two edges of the graph have the
same weight. This simplifies the problem as it makes the MST unique;
however, this simplification is not essential as one can always break
ties by adding the IDs of adjacent vertices to the weight.

e Obviously we are interested in computing the MST in a distributed
way. For this we use a well-known lemma:

20 CHAPTER 2. TREE ALGORITHMS

Definition 2.16 (Blue Edges). Let T be a spanning tree of the weighted graph
G and T" C T a subgraph of T (also called a fragment). Edge e = (u,v) is an
outgoing edge of T' if u € T' and v ¢ T' (or vice versa). The minimum weight
outgoing edge b(T') is the so-called blue edge of T".

Lemma 2.17. For a given weighted graph G (such that no two weights are the
same), let T denote the MST, and T’ be a fragment of T. Then the blue edge
of T" is also part of T, i.e., T"Ub(T') CT.

Proof: For the sake of contradiction, suppose that in the MST T there is edge
e # b(T') connecting T” with the remainder of 7. Adding the blue edge b(T")
to the MST T we get a cycle including both e and b(T"). If we remove e from
this cycle, then we still have a spanning tree, and since by the definition of the
blue edge we > wy(7v), the weight of that new spanning tree is less than than
the weight of T. We have a contradiction.

Remarks:

e In other words, the blue edges seem to be the key to a distributed
algorithm for the MST problem. Since every node itself is a fragment
of the MST, every node directly has a blue edge! All we need to do
is to grow these fragments! Essentially this is a distributed version of
Kruskal’s sequential algorithm.

e At any given time the nodes of the graph are partitioned into frag-
ments (rooted subtrees of the MST). Each fragment has a root, the
ID of the fragment is the ID of its root. Each node knows its parent
and its children in the fragment. The algorithm operates in phases.
At the beginning of a phase, nodes know the IDs of the fragments of
their neighbor nodes.

Remarks:

e Algorithm 2.18 was stated in pseudo-code, with a few details not re-
ally explained. For instance, it may be that some fragments are much
larger than others, and because of that some nodes may need to wait
for others, e.g., if node u needs to find out whether neighbor v also
wants to merge over the blue edge b = (u,v). The good news is that
all these details can be solved. We can for instance bound the asyn-
chronicity by guaranteeing that nodes only start the new phase after
the last phase is done, similarly to the phase-technique of Algorithm
2.11.

Theorem 2.19. The time complexity of Algorithm 2.18 is O(nlogn), the mes-
sage complexity is O(mlogn).

Proof: Each phase mainly consists of two flooding/echo processes. In general,
the cost of flooding/echo on a tree is O(D) time and O(n) messages. However,
the diameter D of the fragments may turn out to be not related to the diameter
of the graph because the MST may meander, hence it really is O(n) time. In
addition, in the first step of each phase, nodes need to learn the fragment ID of
their neighbors; this can be done in 2 steps but costs O(m) messages. There are
a few more steps, but they are cheap. Altogether a phase costs O(n) time and

2.4. MST CONSTRUCTION 21

Algorithm 2.18 GHS (Gallager—Humblet—Spira)

1: Initially each node is the root of its own fragment. We proceed in phases:

2: repeat

3: All nodes learn the fragment IDs of their neighbors.

4: The root of each fragment uses flooding/echo in its fragment to determine
the blue edge b = (u,v) of the fragment.

5. The root sends a message to node u; while forwarding the message on the
path from the root to node u all parent-child relations are inverted {such
that w is the new temporary root of the fragment}

6: node u sends a merge request over the blue edge b = (u,v).

7. if node v also sent a merge request over the same blue edge b = (v, u)

then
8: either u or v (whichever has the smaller ID) is the new fragment root
9: the blue edge b is directed accordingly
10: else
11: node v is the new parent of node u
12: end if

13: the newly elected root node informs all nodes in its fragment (again using
flooding/echo) about its identity
14: until all nodes are in the same fragment (i.e., there is no outgoing edge)

O(m) messages. So we only have to figure out the number of phases: Initially all
fragments are single nodes and hence have size 1. In a later phase, each fragment
merges with at least one other fragment, that is, the size of the smallest fragment
at least doubles. In other words, we have at most logn phases. The theorem
follows directly.

Chapter Notes

Trees are one of the oldest graph structures, already appearing in the first book
about graph theory [Koe36]. Broadcasting in distributed computing is younger,
but not that much [DM78]. Overviews about broadcasting can be found for
example in Chapter 3 of [Pel00] and Chapter 7 of [HKP105]. For a introduction
to centralized tree-construction, see e.g. [Eve79] or [CLRS09]. Overviews for the
distributed case can be found in Chapter 5 of [Pel00] or Chapter 4 of [Lyn96].
The classic papers on routing are [For56, Bel58, Dij59]. In a later chapter, we
will later learn a general technique to derive algorithms with an almost optimal
time and message complexity.

Algorithm 2.18 is called “GHS” after Gallager, Humblet, and Spira, three
pioneers in distributed computing [GHS83]. Their algorithm won the presti-
gious Edsger W. Dijkstra Prize in Distributed Computing in 2004, among other
reasons because it was one of the first non-trivial asynchronous distributed al-
gorithms. As such it can be seen as one of the seeds of this research area. We
presented a simplified version of GHS. The original paper featured an improved
message complexity of O(m + nlogn). Later, Awerbuch managed to further
improve the GHS algorithm to get O(n) time and O(m + nlogn) message com-
plexity, both asymptotically optimal [Awe87].

22

CHAPTER 2. TREE ALGORITHMS

Bibliography

[Awe87]

[Bel58]

[CLRS09]

[Dij59]

[DM7S]

[Eve79)

[For56]

[GHSS3]

[HKP+05]

[Koe36]

[Lyn96]

[Pel00]

B. Awerbuch. Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems. In
Proceedings of the nineteenth annual ACM symposium on Theory of
computing, STOC ’87, pages 230-240, New York, NY, USA, 1987.
ACM.

Richard Bellman. On a Routing Problem. Quarterly of Applied
Mathematics, 16:87-90, 1958.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to Algorithms (3. ed.). MIT Press, 2009.

E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs.
Numerische Mathematik, 1(1):269-271, 1959.

Y.K. Dalal and R.M. Metcalfe. Reverse path forwarding of broadcast
packets. Communications of the ACM, 12:1040-148, 1978.

S. Even. Graph Algorithms. Computer Science Press, Rockville, MD,
1979.

Lester R. Ford. Network Flow Theory. The RAND Corporation
Paper P-923, 1956.

R. G. Gallager, P. A. Humblet, and P. M. Spira. Distributed Algo-
rithm for Minimum-Weight Spanning Trees. ACM Transactions on
Programming Languages and Systems, 5(1):66—77, January 1983.

Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, and
Walter Unger. Dissemination of Information in Communication
Networks - Broadcasting, Gossiping, Leader Election, and Fault-
Tolerance. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer, 2005.

Denes Koenig. Theorie der endlichen und unendlichen Graphen.
Teubner, Leipzig, 1936.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

David Peleg. Distributed Computing: a Locality-Sensitive Approach.
Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2000.

Chapter 3

Leader Election

Some algorithms (e.g. the slow tree coloring Algorithm 1.14) ask for a special
node, a so-called “leader”. Computing a leader is a very simple form of symme-
try breaking. Algorithms based on leaders do generally not exhibit a high degree
of parallelism, and therefore often suffer from poor time complexity. However,
sometimes it is still useful to have a leader to make critical decisions in an easy
(though non-distributed!) way.

3.1 Anonymous Leader Election

The process of choosing a leader is known as leader election. Although leader
election is a simple form of symmetry breaking, there are some remarkable issues
that allow us to introduce notable computational models.

In this chapter we concentrate on the ring topology. Many interesting chal-
lenges in distributed computing already reveal the root of the problem in the
special case of the ring. Paying attention to the ring also makes sense from a
practical point of view as some real world systems are based on a ring topology,
e.g., the antiquated token ring standard.

Problem 3.1 (Leader Election). Each node eventually decides whether it is a
leader or not, subject to the constraint that there is exactly one leader.

Remarks:

e More formally, nodes are in one of three states: undecided, leader,
not leader. Initially every node is in the undecided state. When
leaving the undecided state, a node goes into a final state (leader or
not leader).

Definition 3.2 (Anonymous). A system is anonymous if nodes do not have
unique identifiers.

Definition 3.3 (Uniform). An algorithm is called uniform if the number of
nodes n 1is not known to the algorithm (to the nodes, if you wish). If n is
known, the algorithm is called non-uniform.

Whether a leader can be elected in an anonymous system depends on whether
the network is symmetric (ring, complete graph, complete bipartite graph, etc.)

23

24 CHAPTER 3. LEADER ELECTION

or asymmetric (star, single node with highest degree, etc.). We will now show
that non-uniform anonymous leader election for synchronous rings is impossible.
The idea is that in a ring, symmetry can always be maintained.

Lemma 3.4. After round k of any deterministic algorithm on an anonymous
ring, each node is in the same state sy.

Proof by induction: All nodes start in the same state. A round in a synchronous
algorithm consists of the three steps sending, receiving, local computation (see
Definition 1.8). All nodes send the same message(s), receive the same mes-
sage(s), do the same local computation, and therefore end up in the same state.

Theorem 3.5 (Anonymous Leader Election). Deterministic leader election in
an anonymous ring is impossible.

Proof (with Lemma 3.4): If one node ever decides to become a leader (or a
non-leader), then every other node does so as well, contradicting the problem
specification 3.1 for n > 1. This holds for non-uniform algorithms, and therefore
also for uniform algorithms. Furthermore, it holds for synchronous algorithms,
and therefore also for asynchronous algorithms.

Remarks:

e Sense of direction is the ability of nodes to distinguish neighbor nodes
in an anonymous setting. In a ring, for example, a node can distinguish
the clockwise and the counterclockwise neighbor. Sense of direction
does not help in anonymous leader election.

e Theorem 3.5 also holds for other symmetric network topologies (e.g.,
complete graphs, complete bipartite graphs, ...).

e Note that Theorem 3.5 does generally not hold for randomized algo-
rithms; if nodes are allowed to toss a coin, some symmetries can be
broken.

e However, more surprisingly, randomization does not always help. A
randomized uniform anonymous algorithm can for instance not elect
a leader in a ring. Randomization does not help to decide whether the
ring has n = 3 or n = 6 nodes: Every third node may generate the
same random bits, and as a result the nodes cannot distinguish the
two cases. However, an approximation of n which is strictly better
than a factor 2 will help.

3.2 Asynchronous Ring

We first concentrate on the asynchronous model from Definition 2.7. Through-
out this section we assume non-anonymity; each node has a unique identifier.
Having IDs seems to lead to a trivial leader election algorithm, as we can simply
elect the node with, e.g., the highest ID.

Theorem 3.7. Algorithm 8.6 is correct. The time complexity is O(n). The
message complexity is O(n?).

3.2. ASYNCHRONOUS RING 25

Algorithm 3.6 Clockwise Leader Election
1: Each node v executes the following code:

v sends a message with its identifier (for simplicity also v) to its clockwise
neighbor.
v sets m := v {the largest identifier seen so far}
if v receives a message w with w > m then

v forwards message w to its clockwise neighbor and sets m := w

v decides not to be the leader, if it has not done so already.
else if v receives its own identifier v then

v decides to be the leader
end if

»

Proof: Let node z be the node with the maximum identifier. Node z sends
its identifier in clockwise direction, and since no other node can swallow it,
eventually a message will arrive at z containing it. Then z declares itself to
be the leader. Every other node will declare non-leader at the latest when
forwarding message z. Since there are n identifiers in the system, each node
will at most forward n messages, giving a message complexity of at most n2.
We start measuring the time when the first node that “wakes up” sends its
identifier. For asynchronous time complexity (Definition 2.8) we assume that
each message takes at most one time unit to arrive at its destination. After at
most n — 1 time units the message therefore arrives at node z, waking z up.
Routing the message z around the ring takes at most n time units. Therefore
node z decides no later than at time 2n — 1. Every other node decides before
node z.

Remarks:

e Note that in Algorithm 3.6 nodes distinguish between clockwise and
counterclockwise neighbors. This is not necessary: It is okay to simply
send your own identifier to any neighbor, and forward a message to
the neighbor you did not receive the message from. So nodes only
need to be able to distinguish their two neighbors.

e Careful analysis shows, that while having worst-case message com-
plexity of O(n?), Algorithm 3.6 has an average message complexity of
O(nlogn). Can we improve this algorithm?

Theorem 3.9. Algorithm 3.8 is correct. The time complezity is O(n). The
message complexity is O(nlogn).

Proof: Correctness is as in Theorem 3.7. The time complexity is O(n) since
the node with maximum identifier z sends messages with round-trip times
2,4,8,16,...,2 - 2F with k& < log(n + 1). (Even if we include the additional
wake-up overhead, the time complexity stays linear.) Proving the message com-
plexity is slightly harder: if a node v manages to survive round r, no other node
in distance 2" (or less) survives round r. That is, node v is the only node in its
2"-neighborhood that remains active in round r + 1. Since this is the same for
every node, less than n/2" nodes are active in round r+ 1. Being active in round
r costs 2 -2 - 2" messages. Therefore, round r costs at most 2-2-2" - 7%y = 8n

26

CHAPTER 3. LEADER ELECTION

Algorithm 3.8 Radius Growth

1:
2:

Each node v does the following:
Initially all nodes are active. {all nodes may still become leaders}

3: Whenever a node v sees a message w with w > v, then v decides to not be

a leader and becomes passive.

: Active nodes search in an exponentially growing neighborhood (clockwise

and counterclockwise) for nodes with higher identifiers, by sending out probe
messages. A probe message includes the ID of the original sender, a bit
whether the sender can still become a leader, and a time-to-live number
(TTL). The first probe message sent by node v includes a TTL of 1.

: Nodes (active or passive) receiving a probe message decrement the TTL and

forward the message to the next neighbor; if their ID is larger than the one
in the message, they set the leader bit to zero, as the probing node does
not have the maximum ID. If the TTL is zero, probe messages are returned
to the sender using a reply message. The reply message contains the ID of
the receiver (the original sender of the probe message) and the leader-bit.
Reply messages are forwarded by all nodes until they reach the receiver.

: Upon receiving the reply message: If there was no node with higher ID

in the search area (indicated by the bit in the reply message), the TTL is
doubled and two new probe messages are sent (again to the two neighbors).
If there was a better candidate in the search area, then the node becomes
passive.

: If a node v receives its own probe message (not a reply) v decides to be the

leader.

messages. Since there are only logarithmic many possible rounds, the message
complexity follows immediately.

Remarks:

e This algorithm is asynchronous and uniform as well.

e The question may arise whether one can design an algorithm with an
even lower message complexity. We answer this question in the next
section.

3.3 Lower Bounds

Lower bounds in distributed computing are often easier than in the standard
centralized (random access machine, RAM) model because one can argue about
messages that need to be exchanged. In this section we present a first difficult
lower bound. We show that Algorithm 3.8 is asymptotically optimal.

Definition 3.10 (Execution). An execution of a distributed algorithm is a list
of events, sorted by time. An event is a record (time, node, type, message),
where type is “send” or “receive”.

3.3. LOWER BOUNDS 27

Remarks:

e We assume throughout this course that no two events happen at ex-
actly the same time (or one can break ties arbitrarily).

e An execution of an asynchronous algorithm is generally not only de-
termined by the algorithm but also by a “god-like” scheduler. If more
than one message is in transit, the scheduler can choose which one
arrives first.

o If two messages are transmitted over the same directed edge, then it
is sometimes required that the message first transmitted will also be
received first (“FIFO”).

For our lower bound, we assume the following model:

e We are given an asynchronous ring, where nodes may wake up at arbitrary
times (but at the latest when receiving the first message).

e We only accept uniform algorithms where the node with the maximum
identifier can be the leader. Additionally, every node that is not the
leader must know the identity of the leader. These two requirements can
be dropped when using a more complicated proof; however, this is beyond
the scope of this course.

e During the proof we will “play god” and specify which message in trans-
mission arrives next in the execution. We respect the FIFO conditions for
links.

Definition 3.11 (Open Schedule). A schedule is an execution chosen by the
scheduler. An open (undirected) edge is an edge where no message traversing
the edge has been received so far. A schedule for a ring is open if there is an
open edge in the ring.

The proof of the lower bound is by induction. First we show the base case:

Lemma 3.12. Given a ring R with two nodes, we can construct an open sched-
ule in which at least one message is received. The nodes cannot distinguish this
schedule from one on a larger ring with all other nodes being where the open
edge 1is.

Proof: Let the two nodes be u and v with v < v. Node uw must learn the
identity of node v, thus receive at least one message. We stop the execution of
the algorithm as soon as the first message is received. (If the first message is
received by v, bad luck for the algorithm!) Then the other edge in the ring (on
which the received message was not transmitted) is open. Since the algorithm
needs to be uniform, maybe the open edge is not really an edge at all, nobody
can tell. We could use this to glue two rings together, by breaking up this
imaginary open edge and connect two rings by two edges. An example can be
seen in Figure 3.13.

Lemma 3.14. By gluing together two rings of size n/2 for which we have open
schedules, we can construct an open schedule on a ring of size n. If M(n/2)
denotes the number of messages already received in each of these schedules, at
least 2M (n/2) + n/4 messages have to be exchanged in order to solve leader
election.

28 CHAPTER 3. LEADER ELECTION

Figure 3.13: The rings R, R are glued together at their open edge.

We divide the ring into two sub-rings R; and Rs of size n/2. These subrings
cannot be distinguished from rings with n/2 nodes if no messages are received
from “outsiders”. We can ensure this by not scheduling such messages until
we want to. Note that executing both given open schedules on R; and Ry “in
parallel” is possible because we control not only the scheduling of the messages,
but also when nodes wake up. By doing so, we make sure that 2M (n/2) messages
are sent before the nodes in Ry and Ry learn anything of each other!

Without loss of generality, R; contains the maximum identifier. Hence, each
node in Ry must learn the identity of the maximum identifier, thus at least
n/2 additional messages must be received. The only problem is that we cannot
connect the two sub-rings with both edges since the new ring needs to remain
open. Thus, only messages over one of the edges can be received. We look into
the future: we check what happens when we close only one of these connecting
edges.

Since we know that n/2 nodes have to be informed in Ra, there must be
at least n/2 messages that must be received. Closing both edges must inform
n/2 nodes, thus for one of the two edges there must be a node in distance n/4
which will be informed upon creating that edge. This results in n/4 additional
messages. Thus, we pick this edge and leave the other one open which yields
the claim.

Lemma 3.15. Any uniform leader election algorithm for asynchronous rings
has at least message complexity M(n) > % (logn + 1).

Proof by induction: For the sake of simplicity we assume n being a power of
2. The base case n = 2 works because of Lemma 3.12 which implies that
M(2) > 1 = 2(log2 + 1). For the induction step, using Lemma 3.14 and the
induction hypothesis we have

Remarks:

e To hide the ugly constants we use the “big Omega” notation, the lower
bound equivalent of O(). A function f is in Q(g) if there are constants
xo and ¢ > 0 such that | f(z)| > c|g(x)]| for all z > xo.

3.4. SYNCHRONOUS RING 29

e In addition to the already presented parts of the “big O” notation,
there are 3 additional ones. Remember that a function f is in O(g) if
f grows at most as fast as g. A function f is in o(g) if f grows slower
than g.

e An analogous small letter notation exists for . A function f is in
w(g) if f grows faster than g.

e Last but not least, we say that a function f is in ©(g) if f grows as
fast as g, i.e., f € O(g) and f € Q(g).

e Again, we refer to standard text books for formal definitions.

Theorem 3.16 (Asynchronous Leader Election Lower Bound). Any uniform
leader election algorithm for asynchronous rings has Q(nlogn) message com-
plexity.

3.4 Synchronous Ring

The lower bound relied on delaying messages for a very long time. Since this is
impossible in the synchronous model, we might get a better message complexity
in this case. The basic idea is very simple: In the synchronous model, not
receiving a message is information as welll First we make some additional
assumptions:

e We assume that the algorithm is non-uniform (i.e., the ring size n is
known).

e We assume that every node starts at the same time.

e The node with the minimum identifier becomes the leader; identifiers are
integers.

Algorithm 3.17 Synchronous Leader Election
1: Each node v concurrently executes the following code:
2: The algorithm operates in synchronous phases. Each phase consists of n
time steps. Node v counts phases, starting with 0.
if phase = v and v did not yet receive a message then
v decides to be the leader
v sends the message “v is leader” around the ring
end if

Remarks:
e Message complexity is indeed n.

e But the time complexity is huge! If m is the minimum identifier it is
m-n.

e The synchronous start and the non-uniformity assumptions can be
dropped by using a wake-up technique (upon receiving a wake-up mes-
sage, wake up your clockwise neighbors) and by letting messages travel
slowly.

30 CHAPTER 3. LEADER ELECTION

e There are several lower bounds for the synchronous model: comparison-
based algorithms or algorithms where the time complexity cannot be a
function of the identifiers have message complexity Q(nlogn) as well.

e In general graphs, efficient leader election may be tricky. While time-
optimal leader election can be done by parallel flooding-echo (see
Chapter 2), bounding the message complexity is more difficult.

Chapter Notes

[Ang80] was the first to mention the now well-known impossibility result for
anonymous rings and other networks, even when using randomization. The
first algorithm for asynchronous rings was presented in [Lan77], which was im-
proved to the presented clockwise algorithm in [CR79]. Later, [HS80] found the
radius growth algorithm, which decreased the worst case message complexity.
Algorithms for the unidirectional case with runtime O(nlogn) can be found in
[DKR82, Pet82]. The Q(nlogn) message complexity lower bound for compari-
son based algorithms was first published in [FL87]. In [Sch89] an algorithm with
constant error probability for anonymous networks is presented. General results
about limitations of computer power in synchronous rings are in [ASW88, AS88].

Bibliography

[Ang80] Dana Angluin. Local and global properties in networks of proces-
sors (Extended Abstract). In 12th ACM Symposium on Theory of
Computing (STOC), 1980.

[AS88] Hagit Attiya and Marc Snir. Better Computing on the Anonymous
Ring. In Aegean Workshop on Computing (AWOC), 1988.

[ASWS8S8] Hagit Attiya, Marc Snir, and Manfred K. Warmuth. Computing on
an anonymous ring. volume 35, pages 845-875, 1988.

[CR79] Ernest Chang and Rosemary Roberts. An improved algorithm for
decentralized extrema-finding in circular configurations of processes.
Commun. ACM, 22(5):281-283, May 1979.

[DKR82] Danny Dolev, Maria M. Klawe, and Michael Rodeh. An O(nlogn)
Unidirectional Distributed Algorithm for Extrema Finding in a Circle.
J. Algorithms, 3(3):245-260, 1982.

[FL87] Greg N. Frederickson and Nancy A. Lynch. Electing a leader in a
synchronous ring. J. ACM, 34(1):98-115, 1987.

[HS80] D. S. Hirschberg and J. B. Sinclair. Decentralized extrema-finding in
circular configurations of processors. Commun. ACM, 23(11):627-628,
November 1980.

[Lan77] Gérard Le Lann. Distributed Systems - Towards a Formal Ap-
proach. In International Federation for Information Processing (IFIP)
Congress, 1977.

BIBLIOGRAPHY 31

[Pet82] Gary L. Peterson. An O(nlogn) Unidirectional Algorithm for the
Circular Extrema Problem. 4(4):758-762, 1982.

[Sch89] B. Schieber. Calling names on nameless networks. In Proceedings
of the eighth annual ACM Symposium on Principles of distributed

computing, PODC ’89, pages 319-328, New York, NY, USA, 1989.
ACM.

32

CHAPTER 3. LEADER ELECTION

Chapter 4

Distributed Sorting

“Indeed, T believe that virtually every important aspect of
programming arises somewhere in the context of sorting [and searching]!”

— Donald E. Knuth, The Art of Computer Programming

In this chapter we study a classic problem in computer science—sorting—
from a distributed computing perspective. In contrast to an orthodox single-
processor sorting algorithm, no node has access to all data, instead the to-be-
sorted values are distributed. Distributed sorting then boils down to:

Definition 4.1 (Sorting). We choose a graph with n nodes vy, ..., v,. Initially
each node stores a value. After applying a sorting algorithm, node vy stores the
k™ smallest value.

Remarks:

e What if we route all values to the same central node v, let v sort the
values locally, and then route them to the correct destinations?! Ac-
cording to the message passing model studied in the first few chapters
this is perfectly legal. With a star topology sorting finishes in O(1)
time!

Definition 4.2 (Node Contention). In each step of a synchronous algorithm,
each node can only send and receive O(1) messages containing O(1) values, no
matter how many neighbors the node has.

Remarks:

e Using Definition 4.2 sorting on a star graph takes linear time.

4.1 Array & Mesh

To get a better intuitive understanding of distributed sorting, we start with two
simple topologies, the array and the mesh. Let us begin with the array:

33

34 CHAPTER 4. DISTRIBUTED SORTING

Algorithm 4.3 Odd/Even Sort

1: Given an array of n nodes (vy,...,v,), each storing a value (not sorted).
2: repeat

3: Compare and exchange the values at nodes i and 7 + 1, ¢ odd

4: Compare and exchange the values at nodes ¢ and i + 1, i even

5: until done

Remarks:

e The compare and exchange primitive in Algorithm 4.3 is defined as
follows: Let the value stored at node i be v;. After the compare and
exchange node 7 stores value min(v;, v;11) and node i + 1 stores value
max (v, Vit1)-

e How fast is the algorithm, and how can we prove correctness/efficiency?

e The most interesting proof uses the so-called 0-1 Sorting Lemma. It
allows us to restrict our attention to an input of 0’s and 1’s only, and
works for any “oblivious comparison-exchange” algorithm. (Oblivious
means: Whether you exchange two values must only depend on the
relative order of the two values, and not on anything else.)

Lemma 4.4 (0-1 Sorting Lemma). If an oblivious comparison-exchange algo-
rithm sorts all inputs of 0’s and 1’s, then it sorts arbitrary inputs.

Proof. We prove the opposite direction (does not sort arbitrary inputs = does
not sort 0’s and 1’s). Assume that there is an input = x1, ..., x, that is not
sorted correctly. Then there is a smallest value k£ such that the value at node
vy, after running the sorting algorithm is strictly larger than the k** smallest
value (k). Define an input zf = 0 & z; < x(k), 27 = 1 else. Whenever the
algorithm compares a pair of 1’s or 0’s, it is not important whether it exchanges
the values or not, so we may simply assume that it does the same as on the
input z. On the other hand, whenever the algorithm exchanges some values
x; =0 and z} = 1, this means that z; < z(k) < z;. Therefore, in this case the
respective compare-exchange operation will do the same on both inputs. We
conclude that the algorithm will order x* the same way as z, i.e., the output
with only 0’s and 1’s will also not be correct. O

Theorem 4.5. Algorithm 4.3 sorts correctly in n steps.

Proof. Thanks to Lemma 4.4 we only need to consider an array with 0’s and
1’s. Let j; be the node with the rightmost (highest index) 1. If j; is odd (even)
it will move in the first (second) step. In any case it will move right in every
following step until it reaches the rightmost node v,. Let j; be the node with
the k™ rightmost 1. We show by induction that j; is not “blocked” anymore
(constantly moves until it reaches destination!) after step k. We have already
anchored the induction at £k = 1. Since jr_; moves after step k — 1, ji gets
a right O-neighbor for each step after step k. (For matters of presentation we
omitted a couple of simple details.) O

4.1. ARRAY & MESH 35

Remarks:

e Linear time is not very exciting, maybe we can do better by using a
different topology? Let’s try a mesh (a.k.a. grid) topology first.

Algorithm 4.6 Shearsort
2

1: We are given a mesh with m rows and m columns, m even, n = m~.

2: The sorting algorithm operates in phases, and uses the odd/even sort algo-
rithm on rows or columns.

3: repeat

In the odd phases 1,3, ... we sort all the rows, in the even phases 2,4, ...

we sort all the columns, such that:

o

5: Columns are sorted such that the small values move up.

6: Odd rows (1,3,...,m — 1) are sorted such that small values move left.
7. Even rows (2,4,...,m) are sorted such that small values move right.
8: until done

Theorem 4.7. Algorithm 4.6 sorts n values in /n(logn+1) time in snake-like
order.

Proof. Since the algorithm is oblivious, we can use Lemma 4.4. We show that
after a row and a column phase, half of the previously unsorted rows will be
sorted. More formally, let us call a row with only 0’s (or only 1’s) clean, a row
with 0’s and 1’s is dirty. At any stage, the rows of the mesh can be divided
into three regions. In the north we have a region of all-0 rows, in the south all-1
rows, in the middle a region of dirty rows. Initially all rows can be dirty. Since
neither row nor column sort will touch already clean rows, we can concentrate
on the dirty rows.

First we run an odd phase. Then, in the even phase, we run a peculiar
column sorter: We group two consecutive dirty rows into pairs. Since odd and
even rows are sorted in opposite directions, two consecutive dirty rows look as
follows:

00000 ...11111

11111 ...00000

Such a pair can be in one of three states. Either we have more 0’s than 1’s, or
more 1’s than 0’s, or an equal number of 0’s and 1’s. Column-sorting each pair
will give us at least one clean row (and two clean rows if “|0] = [1|”). Then
move the cleaned rows north/south and we will be left with half the dirty rows.

At first glance it appears that we need such a peculiar column sorter. How-
ever, any column sorter sorts the columns in exactly the same way (we are very
grateful to have Lemma 4.4!).

All in all we need 2logm = logn phases to remain only with 1 dirty row in
the middle which will be sorted (not cleaned) with the last row-sort. O

36 CHAPTER 4. DISTRIBUTED SORTING

Remarks:

e There are algorithms that sort in 3m + o(m) time on an m by m
mesh (by diving the mesh into smaller blocks). This is asymptotically
optimal, since a value might need to move 2m times.

e Such a y/n-sorter is cute, but we are more ambitious. There are non-
distributed sorting algorithms such as quicksort, heapsort, or merge-
sort that sort n values in (expected) O(nlogn) time. Using our n-fold
parallelism effectively we might therefore hope for a distributed sort-
ing algorithm that sorts in time O(logn)!

4.2 Sorting Networks

In this section we construct a graph topology which is carefully manufactured
for sorting. This is a deviation from previous chapters where we always had to
work with the topology that was given to us. In many application areas (e.g.
peer-to-peer networks, communication switches, systolic hardware) it is indeed
possible (in fact, crucial!) that an engineer can build the topology best suited
for her application.

Definition 4.8 (Sorting Networks). A comparator is a device with two inputs
x,y and two outputs x',y’ such that ' = min(x,y) and y' = max(z,y). We
construct so-called comparison networks that consist of wires that connect com-
parators (the output port of a comparator is sent to an input port of another
comparator). Some wires are not connected to comparator outputs, and some
are not connected to comparator inputs. The first are called input wires of the
comparison network, the second output wires. Given n values on the input wires,
a sorting network ensures that the values are sorted on the output wires. We will
also use the term width to indicate the number of wires in the sorting network.

Remarks:

e The odd/even sorter explained in Algorithm 4.3 can be described as
a sorting network.

e Often we will draw all the wires on n horizontal lines (n being the
“width” of the network). Comparators are then vertically connecting
two of these lines.

e Note that a sorting network is an oblivious comparison-exchange net-
work. Consequently we can apply Lemma 4.4 throughout this section.
An example sorting network is depicted in Figure 4.9.

Definition 4.10 (Depth). The depth of an input wire is 0. The depth of a
comparator is the mazimum depth of its input wires plus one. The depth of
an output wire of a comparator is the depth of the comparator. The depth of a
comparison network is the mazimum depth (of an output wire).

Definition 4.11 (Bitonic Sequence). A bitonic sequence is a sequence of num-
bers that first monotonically increases, and then monotonically decreases, or
vice Versa.

4.2. SORTING NETWORKS 37

Figure 4.9: A sorting network.

Remarks:
e <1,4,6,8,3,2> or <5,3,2,1,4,8 > are bitonic sequences.
e <96,2,3,5,4>o0r <7,4,2,5,9,8 > are not bitonic.

e Since we restrict ourselves to 0’s and 1’s (Lemma 4.4), bitonic se-
quences have the form 0°170% or 1°071* for 4, j, k > 0.

Algorithm 4.12 Half Cleaner
1: A half cleaner is a comparison network of depth 1, where we compare wire
i with wire ¢ +n/2 for i = 1,...,n/2 (we assume n to be even).

Lemma 4.13. Feeding a bitonic sequence into a half cleaner (Algorithm 4.12),
the half cleaner cleans (makes all-0 or all-1) either the upper or the lower half
of the n wires. The other half is bitonic.

Proof. Assume that the input is of the form 0°170 for 4, j, k > 0. If the midpoint
falls into the 0’s, the input is already clean/bitonic and will stay so. If the
midpoint falls into the 1’s the half cleaner acts as Shearsort with two adjacent
rows, exactly as in the proof of Theorem 4.7. The case 1°071* is symmetric. [

Algorithm 4.14 Bitonic Sequence Sorter

1: A bitonic sequence sorter of width n (n being a power of 2) consists of a
half cleaner of width n, and then two bitonic sequence sorters of width n /2
each.

2: A bitonic sequence sorter of width 1 is empty.

Lemma 4.15. A bitonic sequence sorter (Algorithm 4.14) of width n sorts
bitonic sequences. It has depth logn.

38 CHAPTER 4. DISTRIBUTED SORTING

Proof. The proof follows directly from the Algorithm 4.14 and Lemma 4.13. O

Remarks:

e Clearly we want to sort arbitrary and not only bitonic sequences! To
do this we need one more concept, merging networks.

Algorithm 4.16 Merging Network
1: A merging network of width n is a merger of width n followed by two bitonic
sequence sorters of width n/2. A merger is a depth-one network where we
compare wire ¢ with wire n —i+ 1, for i = 1,...,n/2.

Remarks:

e Note that a merging network is a bitonic sequence sorter where we
replace the (first) half-cleaner by a merger.

Lemma 4.17. A merging network of width n (Algorithm 4.16) merges two
sorted input sequences of length n/2 each into one sorted sequence of length n.

Proof. We have two sorted input sequences. Essentially, a merger does to two
sorted sequences what a half cleaner does to a bitonic sequence, since the lower
part of the input is reversed. In other words, we can use the same argument as
in Theorem 4.7 and Lemma 4.13: Again, after the merger step either the upper
or the lower half is clean, the other is bitonic. The bitonic sequence sorters
complete sorting. O

Remarks:

e How do you sort n values when you are able to merge two sorted
sequences of size n/27 Piece of cake, just apply the merger recursively.

Algorithm 4.18 Batcher’s “Bitonic” Sorting Network
1: A batcher sorting network of width n consists of two batcher sorting net-
works of width n/2 followed by a merging network of width n. (See Figure
4.19.)
2: A batcher sorting network of width 1 is empty.

Theorem 4.20. A sorting network (Algorithm 4.18) sorts an arbitrary sequence
of n values. It has depth O(log®n).

Proof. Correctness is immediate: at recursive stage k (kK =1,2,3,...,logn) we
merge 2¥) sorted sequences into 2¥~! sorted sequences. The depth d(n) of the
sorting network of level n is the depth of a sorting network of level n/2 plus
the depth m(n) of a merging network with width n. The depth of a sorter of
level 1 is 0 since the sorter is empty. Since a merging network of width n has
the same depth as a bitonic sequence sorter of width n, we know by Lemma
4.15 that m(n) = logn. This gives a recursive formula for d(n) which solves to

d(n) =1 log?n + 1logn. O

4.3. COUNTING NETWORKS 39

B[w]

Q
2
m

B

=
Q
=
M

Figure 4.19: A batcher sorting network

Remarks:

e Simulating Batcher’s sorting network on an ordinary sequential com-
puter takes time O(nlog? n). As said, there are sequential sorting
algorithms that sort in asymptotically optimal time O(nlogn). So
a natural question is whether there is a sorting network with depth
O(logn). Such a network would have some remarkable advantages
over sequential asymptotically optimal sorting algorithms such as heap-
sort. Apart from being highly parallel, it would be completely obliv-
ious, and as such perfectly suited for a fast hardware solution. In
1983, Ajtai, Komlos, and Szemeredi presented a celebrated O(logn)
depth sorting network. (Unlike Batcher’s sorting network the constant
hidden in the big-O of the “AKS” sorting network is too large to be
practical, however.)

e It can be shown that Batcher’s sorting network and similarly others
can be simulated by a Butterfly network and other hypercubic net-
works, see next chapter.

e What if a sorting network is asynchronous?!? Clearly, using a synchro-
nizer we can still sort, but it is also possible to use it for something
else. Check out the next section!

4.3 Counting Networks

In this section we address distributed counting, a distributed service which can
for instance be used for load balancing.

Definition 4.21 (Distributed Counting). A distributed counter is a variable
that is common to all processors in a system and that supports an atomic test-
and-increment operation. The operation delivers the system’s counter value to
the requesting processor and increments it.

40 Counting Networks

Remarks:

e A naive distributed counter stores the system’s counter value with a
distinguished central node. When other nodes initiate the test-and-
increment operation, they send a request message to the central node
and in turn receive a reply message with the current counter value.
However, with a large number of nodes operating on the distributed
counter, the central processor will become a bottleneck. There will
be a congestion of request messages at the central processor, in other
words, the system will not scale.

e Is a scalable implementation (without any kind of bottleneck) of such
a distributed counter possible, or is distributed counting a problem
which is inherently centralized?!?

e Distributed counting could for instance be used to implement a load
balancing infrastructure, i.e. by sending the job with counter value 4
(modulo n) to server ¢ (out of n possible servers).

Definition 4.22 (Balancer). A balancer is an asynchronous flip-flop which
forwards messages that arrive on the left side to the wires on the right, the first
to the upper, the second to the lower, the third to the upper, and so on.

Algorithm 4.23 Bitonic Counting Network.

1: Take Batcher’s bitonic sorting network of width w and replace all the com-
parators with balancers.

2: When a node wants to count, it sends a message to an arbitrary input wire.

3: The message is then routed through the network, following the rules of the
asynchronous balancers.

4: FEach output wire is completed with a “mini-counter.”

5: The mini-counter of wire k replies the value “k + i - w” to the initiator of
the 7™ message it receives.

Definition 4.24 (Step Property). A sequence yo,y1,-..,Yw—1 i$ said to have
the step property, if 0 <y; —y; <1, for any i < j.

Remarks:

e If the output wires have the step property, then with r requests, ex-
actly the values 1,...,r will be assigned by the mini-counters. All we
need to show is that the counting network has the step property. For
that we need some additional facts...

Facts 4.25. For a balancer, we denote the number of consumed messages on the
hinput wire with x;, i = 0,1. Similarly, we denote the number of sent messages
on the i™ output wire with y;, i = 0,1. A balancer has these properties:

(1) A balancer does not generate output-messages; that is, xo + x1 > yo + 11
m any state.

(2) Every incoming message is eventually forwarded. In other words, if we
are in a quiescent state (no message in transit), then xo+ 1 = yo + y1.

41

(3) The number of messages sent to the upper output wire is at most one
higher than the number of messages sent to the lower output wire: in any

state yo = [(yo +y1)/2] (thus y1 = | (yo +11)/2]).
Facts 4.26. If a sequence yo,y1,---,Yw—1 has the step property,
(1) then all its subsequences have the step property.

(2) then its even and odd subsequences satisfy

w/2-1 w/2—1 1w—1
1=0 =0
Facts 4.27. If two sequences xg, T1,- .., Tw_1 and Yo, Y1, - - -, Yw—1 have the step

property,
(1) and Zl 0 T —Z;“:_Olyi, then x; = y; fori=0,...,w— 1.

(2) and S0 @i = S yit1, then there exists a unique j (5= 0,1,...,w—
1) such that x; =y; +1, and x; = y; fori=0,...,w—1, i #j.

Remarks:

e An alternative representation of Batcher’s network has been intro-
duced in [AHS94]. Tt is isomorphic to Batcher’s network, and relies on
a Merger Network M [w] which is defined inductively: M [w] consists
of two M[w/2] networks (an upper and a lower one) whose output
is fed to w/2 balancers. The upper balancer merges the even sub-
sequence g, Ta,...,Ty_2, while the lower balancer merges the odd
subsequence 1,3, ..., ZTy—1. Call the outputs of these two M[w/2],
z and 2’ respectively. The final stage of the network combines z and 2’
by sending each pair of wires z; and 2z into a balancer whose outputs
yield y2; and %2;11.

e It is enough to prove that a merger network M [w] preserves the step
property.

Lemma 4.28. Let M[w] be a merger network of width w. In a quiescent state
(no message in transit), if the inputs xg, 1, . . . s Ty /2—1 TESP. Toy/2, Loy /2415 -+ s Tw—1
have the step property, then the output yo,y1,-..,Yw—1 has the step property.

Proof. By induction on the width w.

For w = 2: M|[2] is a balancer and a balancer’s output has the step property
(Fact 4.25.3).

For w > 2: Let z resp. 2’ be the output of the upper respectively lower
M[w/2] subnetwork. Since xq, 1, ..., %y 2—1 and Xy 2, Ty 241, - - Tw—1 Doth
have the step property by assumption, their even and odd subsequences also
have the step property (Fact 4.26.1). By induction hypothesis, the output of

both Mw/2] subnetworks have the step property. Let Z := Zf}/ g !z and

7' = Zf’/gfl zl. From Fact 4.26.2 we conclude that Z = [3 Zw/Q Y2 +

3 i o i) and 7 = [000 i) 4 [05, jp i) Since [a] + b and
la] + [b] differ by at most 1 we know that Z and Z’ differ by at most 1.

42 Counting Networks

If Z = 7', Fact 4.27.1 implies that z; = z} for i = 0,...,w/2 — 1. Therefore,
the output of M[w] is y; = 2|;/2) for i = 0,...,w — 1. Since zp, ..., Zy/2—1 has
the step property, so does the output of M[w] and the lemma follows.

If Z and Z’ differ by 1, Fact 4.27.2 implies that z; = 2 for i =0,...,w/2—1,
except a unique j such that z; and z§ differ by only 1, for j =0,...,w/2 — 1.
Let [:= min(z;,2}). Then, the output y; (with i < 2j) is [+ 1. The output
y; (with ¢ > 2j 4+ 1) is I. The output ys; and ya;41 are balanced by the final
balancer resulting in yo; = ! + 1 and y9j41 = I. Therefore M[w] preserves the
step property.]

A bitonic counting network is constructed to fulfill Lemma 4.28, i.e., the
final output comes from a Merger whose upper and lower inputs are recursively
merged. Therefore, the following theorem follows immediately.

Theorem 4.29 (Correctness). In a quiescent state, the w output wires of a
bitonic counting network of width w have the step property.

Remarks:

e Is every sorting network also a counting network? No. But surpris-
ingly, the other direction is true!

Theorem 4.30 (Counting vs. Sorting). If a network is a counting network
then it is also a sorting network, but not vice versa.

Proof. There are sorting networks that are not counting networks (e.g. odd/even
sort, or insertion sort). For the other direction, let C' be a counting network
and I(C) be the isomorphic network, where every balancer is replaced by a
comparator. Let I(C) have an arbitrary input of 0’s and 1’s; that is, some of
the input wires have a 0, all others have a 1. There is a message at C’s i*"
input wire if and only if I(C')’s ¢ input wire is 0. Since C'is a counting network,
all messages are routed to the upper output wires. I(C) is isomorphic to C,
therefore a comparator in I(C) will receive a 0 on its upper (lower) wire if
and only if the corresponding balancer receives a message on its upper (lower)
wire. Using an inductive argument, the 0’s and 1’s will be routed through I(C')
such that all 0’s exit the network on the upper wires whereas all 1’s exit the
network on the lower wires. Applying Lemma 4.4 shows that I(C) is a sorting
network. O

Remarks:

e We claimed that the counting network is correct. However, it is only
correct in a quiescent state.

Definition 4.31 (Linearizable). A system is linearizable if the order of the
values assigned reflects the real-time order in which they were requested. More
formally, if there is a pair of operations o1, 02, where operation o1 terminates be-
fore operation oo starts, and the logical order is “og before o1”, then a distributed
system is not linearizable.

Lemma 4.32 (Linearizability). The bitonic counting network is not lineariz-
able.

43

Proof. Consider the bitonic counting network with width 4 in Figure 4.33: As-
sume that two inc operations were initiated and the corresponding messages
entered the network on wire 0 and 2 (both in light gray color). After hav-
ing passed the second resp. the first balancer, these traversing messages “fall
asleep”; In other words, both messages take unusually long time before they are
received by the next balancer. Since we are in an asynchronous setting, this
may be the case.

777

777

Figure 4.33: Linearizability Counter Example.

In the meantime, another inc operation (medium gray) is initiated and enters
the network on the bottom wire. The message leaves the network on wire 2,
and the inc operation is completed.

Strictly afterwards, another inc operation (dark gray) is initiated and enters
the network on wire 1. After having passed all balancers, the message will leave
the network wire 0. Finally (and not depicted in Figure 4.33), the two light gray
messages reach the next balancer and will eventually leave the network on wires
1 resp. 3. Because the dark gray and the medium gray operation do conflict
with Definition 4.31, the bitonic counting network is not linearizable. O

Remarks:

e Note that the example in Figure 4.33 behaves correctly in the quiescent
state: Finally, exactly the values 0,1,2,3 are allotted.

e It was shown that linearizability comes at a high price (the depth
grows linearly with the width).

Chapter Notes

The technique used for the famous lower bound of comparison-based sequential
sorting first appeared in [FJ59]. Comprehensive introductions to the vast field of
sorting can certainly be found in [Knu73]. Knuth also presents the 0/1 principle
in the context of sorting networks, supposedly as a special case of a theorem
for decision trees of W. G. Bouricius, and includes a historic overview of sorting
network research.

Using a rather complicated proof not based on the 0/1 principle, [Hab72]
first presented and analyzed Odd/Even sort on arrays. Shearsort for grids first
appeared in [SSS86] as a sorting algorithm both easy to implement and to prove
correct. Later it was generalized to meshes with higher dimension in [SS89]. A

44 Counting Networks

bubble sort based algorithm is presented in [SI86]; it takes time O(y/nlogn),
but is fast in practice. Nevertheless, already [TK77] presented an asymptotically
optimal algorithms for grid network which runs in 3n +O(n?/? logn) rounds for
an n xn grid. A simpler algorithm was later found by [SS86] using 3n+O(n3/4)
rounds.

Batcher presents his famous O(log? n) depth sorting network in [Bat68]. It
took until [AKSS83] to find a sorting network with asymptotically optimal depth
O(logn). Unfortunately, the constants hidden in the big-O-notation render it
rather impractical.

The notion of counting networks was introduced in [AHS91], and shortly
afterward the notion of linearizability was studied by [HSW91]. Follow-up work
in [AHS94] presents bitonic counting networks and studies contention in the
counting network. An overview of research on counting networks can be found
in [BH98].

Bibliography

[AHS91] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks
and multi-processor coordination. In Proceedings of the twenty-third
annual ACM symposium on Theory of computing, STOC ’91, pages
348-358, New York, NY, USA, 1991. ACM.

[AHS94] James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks.
J. ACM, 41(5):1020-1048, September 1994.

[AKS83] Miklos Ajtai, Janos Komlds, and Endre Szemerédi. An O(n log n)
sorting network. In Proceedings of the fifteenth annual ACM sympo-
sium on Theory of computing, STOC 83, pages 1-9, New York, NY,
USA, 1983. ACM.

[Bat68] Kenneth E. Batcher. Sorting networks and their applications. In
Proceedings of the April 30-May 2, 1968, spring joint computer con-
ference, AFIPS 68 (Spring), pages 307-314, New York, NY, USA,
1968. ACM.

[BH98] Costas Busch and Maurice Herlihy. A Survey on Counting Networks.
In WDAS, pages 13-20, 1998.

[FJ59] Lester R. Ford and Selmer M. Johnson. A Tournament Problem. The
American Mathematical Monthly, 66(5):pp. 387-389, 1959.

[Hab72] Nico Habermann. Parallel neighbor-sort (or the glory of the induc-
tion principle). Paper 2087, Carnegie Mellon University - Computer
Science Departement, 1972.

[HSW91] M. Herlihy, N. Shavit, and O. Waarts. Low contention linearizable
counting. In Foundations of Computer Science, 1991. Proceedings.,
32nd Annual Symposium on, pages 526-535, oct 1991.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume III:
Sorting and Searching. Addison-Wesley, 1973.

BIBLIOGRAPHY 45

[SI86

[SS86]

[SS89]

[SSS86]

[TK77)

Kazuhiro Sado and Yoshihide Igarashi. Some parallel sorts on a mesh-
connected processor array and their time efficiency. Journal of Parallel
and Distributed Computing, 3(3):398-410, 1986.

Claus Peter Schnorr and Adi Shamir. An optimal sorting algorithm
for mesh connected computers. In Proceedings of the eighteenth annual
ACM symposium on Theory of computing, STOC 86, pages 255-263,
New York, NY, USA, 1986. ACM.

Isaac D. Scherson and Sandeep Sen. Parallel sorting in two-
dimensional VLSI models of computation. Computers, IEEE Trans-
actions on, 38(2):238-249, feb 1989.

Isaac Scherson, Sandeep Sen, and Adi Shamir. Shear sort — A true
two-dimensional sorting technique for VLSI networks. 1986 Interna-
tional Conference on Parallel Processing, 1986.

Clark David Thompson and Hsiang Tsung Kung. Sorting on a mesh-
connected parallel computer. Commun. ACM, 20(4):263-271, April
1977.

46

Counting Networks

Chapter 5

Shared Memory

In distributed computing, various different models exist. So far, the focus of the
course was on loosely-coupled distributed systems such as the Internet, where
nodes asynchronously communicate by exchanging messages. The “opposite”
model is a tightly-coupled parallel computer where nodes access a common
memory totally synchronously—in distributed computing such a system is called
a Parallel Random Access Machine (PRAM).

5.1 Model

A third major model is somehow between these two extremes, the shared mem-
ory model. In a shared memory system, asynchronous processes (or processors)
communicate via a common memory area of shared variables or registers:

Definition 5.1 (Shared Memory). A shared memory system is a system that
consists of asynchronous processes that access a common (shared) memory. A
process can atomically access a register in the shared memory through a set of
predefined operations. An atomic modification appears to the rest of the system
instantaneously. Apart from this shared memory, processes can also have some
local (private) memory.

Remarks:

e Various shared memory systems exist. A main difference is how they
allow processes to access the shared memory. All systems can atom-
ically read or write a shared register R. Most systems do allow for
advanced atomic read-modify-write (RMW) operations, for example:

— test-and-set(R): ¢t := R; R:=1; return ¢
— fetch-and-add(R, z): ¢t := R; R:= R+ x; return ¢

— compare-and-swap(R, z,y): if R = x then R := y; return true;
else return false; endif;

— load-link(R)/store-conditional(R, z): Load-link returns the cur-
rent value of the specified register R. A subsequent store-conditional
to the same register will store a new value x (and return true)

47

48 CHAPTER 5. SHARED MEMORY

only if no updates have occurred to that register since the load-
link. If any updates have occurred, the store-conditional is guar-
anteed to fail (and return false), even if the value read by the
load-link has since been restored.

e The power of RMW operations can be measured with the so-called
consensus-number: The consensus-number k£ of a RMW operation
defines whether one can solve consensus for k processes. Test-and-set
for instance has consensus-number 2 (one can solve consensus with
2 processes, but not 3), whereas the consensus-number of compare-
and-swap is infinite. This insight had practical impact, as hardware
designers stopped developing shared memory systems supporting weak
RMW operations.

e Many of the results derived in the message passing model have an
equivalent in the shared memory model. Consensus for instance is
traditionally studied in the shared memory model.

e Whereas programming a message passing system is rather tricky (in
particular if fault-tolerance has to be integrated), programming a
shared memory system is generally considered easier, as programmers
are given access to global variables directly and do not need to worry
about exchanging messages correctly. Because of this, even distrib-
uted systems which physically communicate by exchanging messages
can often be programmed through a shared memory middleware, mak-
ing the programmer’s life easier.

o We will most likely find the general spirit of shared memory systems
in upcoming multi-core architectures. As for programming style, the
multi-core community seems to favor an accelerated version of shared
memory, transactional memory.

e From a message passing perspective, the shared memory model is like
a bipartite graph: On one side you have the processes (the nodes)
which pretty much behave like nodes in the message passing model
(asynchronous, maybe failures). On the other side you have the shared
registers, which just work perfectly (no failures, no delay).

5.2 Mutual Exclusion

A classic problem in shared memory systems is mutual exclusion. We are given
a number of processes which occasionally need to access the same resource. The
resource may be a shared variable, or a more general object such as a data
structure or a shared printer. The catch is that only one process at the time is
allowed to access the resource. More formally:

Definition 5.2 (Mutual Exclusion). We are given a number of processes, each
executing the following code sections:

<Entry> — <Critical Section> — <FEzit> — <Remaining Code>

A mutual exclusion algorithm consists of code for entry and exit sections, such
that the following holds

5.2. MUTUAL EXCLUSION 49

o Mutual Exclusion: At all times at most one process is in the critical sec-
tion.

e No deadlock: If some process manages to get to the entry section, later
some (possibly different) process will get to the critical section.

Sometimes we in addition ask for

e No lockout: If some process manages to get to the entry section, later the
same process will get to the critical section.

o Unobstructed exit: No process can get stuck in the exit section.

Using RMW primitives one can build mutual exclusion algorithms quite easily.
Algorithm 5.3 shows an example with the test-and-set primitive.

Algorithm 5.3 Mutual Exclusion: Test-and-Set

Input: Shared register R :=0
<Entry>
1: repeat
2: 1 := test-and-set(R)
3: untilr =0
<Critical Section>
4: ...
<Exit>
5 R:=0
<Remainder Code>
6: ...

Theorem 5.4. Algorithm 5.3 solves the mutual exclusion problem as in Defi-
nition 5.2.

Proof. Mutual exclusion follows directly from the test-and-set definition: Ini-
tially R is 0. Let p; be the i*" process to successfully execute the test-and-set,
where successfully means that the result of the test-and-set is 0. This happens
at time t;. At time t, process p; resets the shared register R to 0. Between ;
and ¢} no other process can successfully test-and-set, hence no other process can
enter the critical section concurrently.

Proving no deadlock works similar: One of the processes loitering in the
entry section will successfully test-and-set as soon as the process in the critical
section exited.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit. O

Remarks:

e No lockout, on the other hand, is not given by this algorithm. Even
with only two processes there are asynchronous executions where al-
ways the same process wins the test-and-set.

e Algorithm 5.3 can be adapted to guarantee fairness (no lockout), es-
sentially by ordering the processes in the entry section in a queue.

50 CHAPTER 5. SHARED MEMORY

e A natural question is whether one can achieve mutual exclusion with
only reads and writes, that is without advanced RMW operations.
The answer is yes!

Our read/write mutual exclusion algorithm is for two processes pg and p; only.
In the remarks we discuss how it can be extended. The general idea is that
process p; has to mark its desire to enter the critical section in a “want” register
W, by setting W; := 1. Only if the other process is not interested (W;_; = 0)
access is granted. This however is too simple since we may run into a deadlock.
This deadlock (and at the same time also lockout) is resolved by adding a priority
variable II. See Algorithm 5.5.

Algorithm 5.5 Mutual Exclusion: Peterson’s Algorithm

Initialization: Shared registers Wy, Wy, I1, all initially 0.
Code for process p; ,i={0,1}

<Entry>
1: W, =1
2 II:=1—1

3: repeat until [I=7or W;_; =0
<Critical Section>

4: ...
<Exit>

5 W; =0
<Remainder Code>

6: ...

Remarks:

e Note that line 3 in Algorithm 5.5 represents a “spinlock” or “busy-
wait”, similarly to the lines 1-3 in Algorithm 5.3.

Theorem 5.6. Algorithm 5.5 solves the mutual exclusion problem as in Defi-
nition 5.2.

Proof. The shared variable II elegantly grants priority to the process that passes
line 2 first. If both processes are competing, only process pr; can access the
critical section because of II. The other process p;_p cannot access the critical
section because W = 1 (and II # 1 — II). The only other reason to access the
critical section is because the other process is in the remainder code (that is,
not interested). This proves mutual exclusion!

No deadlock comes directly with II: Process pr gets direct access to the
critical section, no matter what the other process does.

Since the exit section only consists of a single instruction (no potential infi-
nite loops) we have unobstructed exit.

Thanks to the shared variable II also no lockout (fairness) is achieved: If a
process p; loses against its competitor p;_; in line 2, it will have to wait until
the competitor resets W7_; := 0 in the exit section. If process p; is unlucky it
will not check W7_; = 0 early enough before process p;_; sets Wi_; := 1 again
in line 1. However, as soon as pj_; hits line 2, process p; gets the priority due
to II, and can enter the critical section. O

5.3. STORE & COLLECT 51

Remarks:

e Extending Peterson’s Algorithm to more than 2 processes can be done
by a tournament tree, like in tennis. With n processes every process
needs to win logn matches before it can enter the critical section.
More precisely, each process starts at the bottom level of a binary
tree, and proceeds to the parent level if winning. Once winning the
root of the tree it can enter the critical section. Thanks to the priority
variables IT at each node of the binary tree, we inherit all the properties
of Definition 5.2.

5.3 Store & Collect
5.3.1 Problem Definition

In this section, we will look at a second shared memory problem that has an
elegant solution. Informally, the problem can be stated as follows. There are
n processes pi,...,pn. Every process p; has a read/write register R; in the
shared memory where it can store some information that is destined for the
other processes. Further, there is an operation by which a process can collect
(i.e., read) the values of all the processes that stored some value in their register.

We say that an operation op! precedes an operation op2 iff op! terminates
before op2 starts. An operation op2 follows an operation op1 iff op1 precedes
op2.

Definition 5.7 (Collect). There are two operations: A STORE(wval) by process
p;i sets val to be the latest value of its register R;. A COLLECT operation returns
a view, a partial function V from the set of processes to a set of values, where
V(p:) is the latest value stored by p;, for each process p;. For a COLLECT
operation cop, the following validity properties must hold for every process p;:

e IfV(p;) = L, then no STORE operation by p; precedes cop.

e IfV(p;)) =v# L, then v is the value of a STORE operation sop of p; that
does not follow cop, and there is no STORE operation by p; that follows
sop and precedes cop.

Hence, a COLLECT operation cop should not read from the future or miss a
preceding STORE operation sop.

We assume that the read/write register R; of every process p; is initialized
to L. We define the step complexity of an operation op to be the number of
accesses to registers in the shared memory. There is a trivial solution to the
collect problem as shown by Algorithm 5.8.

Remarks:

e Algorithm 5.8 clearly works. The step complexity of every STORE
operation is 1, the step complexity of a COLLECT operation is n.

o At first sight, the step complexities of Algorithm 5.8 seem optimal. Be-
cause there are n processes, there clearly are cases in which a COLLECT
operation needs to read all n registers. However, there are also scenar-
ios in which the step complexity of the COLLECT operation seems very

52 CHAPTER 5. SHARED MEMORY

Algorithm 5.8 Collect: Simple (Non-Adaptive) Solution
Operation STORE(val) (by process p;) :
1: R; := val
Operation COLLECT:
2: for i :=1tondo
3 V(pi):=R; // read register R;
4: end for

costly. Assume that there are only two processes p; and p; that have
stored a value in their registers R; and R;. In this case, a COLLECT
in principle only needs to read the registers R; and R; and can ignore
all the other registers.

e Assume that up to a certain time ¢, k¥ < n processes have finished
or started at least one operation. We call an operation op at time ¢
adaptive to contention if the step complexity of op only depends on k
and is independent of n.

e In the following, we will see how to implement adaptive versions of
STORE and COLLECT.

5.3.2 Splitters

Algorithm 5.9 Splitter Code

Shared Registers: X : {L}U{l,...,n}; Y : boolean
Initialization: X := 1;Y := false

Splitter access by process p;:

1. X =1

2: if Y then

3: return right
4: else

5. Y :=true

6: if X =1 then
7: return stop
8 else

9: return left
10: end if
11: end if

To obtain adaptive collect algorithms, we need a synchronization primitive,
called a splitter.

Definition 5.11 (Splitter). A splitter is a synchronization primitive with the
following characteristic. A process entering a splitter exits with either stop,
left, or right. If k processes enter a splitter, at most one process exits with
stop and at most k — 1 processes exit with left and right, respectively.

5.3. STORE & COLLECT 53

k processors
at most 1
stop
at most k—1 at most k—1
left right

Figure 5.10: A Splitter

Hence, it is guaranteed that if a single process enters the splitter, then it
obtains stop, and if two or more processes enter the splitter, then there is
at most one process obtaining stop and there are two processes that obtain
different values (i.e., either there is exactly one stop or there is at least one
left and at least one right). For an illustration, see Figure 5.10. The code
implementing a splitter is given by Algorithm 5.9.

Lemma 5.12. Algorithm 5.9 correctly implements a splitter.

Proof. Assume that k processes enter the splitter. Because the first process that
checks whether Y = true in line 2 will find that Y = false, not all processes
return right. Next, assume that ¢ is the last process that sets X := 4. If i does
not return right, it will find X = ¢ in line 6 and therefore return stop. Hence,
there is always a process that does not return left. It remains to show that at
most 1 process returns stop. For the sake of contradiction, assume p; and p;
are two processes that return stop and assume that p; sets X := ¢ before p; sets
X := j. Both processes need to check whether Y is true before one of them
sets Y := true. Hence, they both complete the assignment in line 1 before the
first one of them checks the value of X in line 6. Hence, by the time p; arrives
at line 6, X # 4 (p; and maybe some other processes have overwritten X by
then). Therefore, p; does not return stop and we get a contradiction to the
assumption that both p; and p; return stop. O

5.3.3 Binary Splitter Tree

Assume that we are given 2™ — 1 splitters and that for every splitter S, there
is an additional shared variable Zg : {L} U {1,...,n} that is initialized to L
and an additional shared variable Mg : boolean that is initialized to false. We
call a splitter S marked if Mg = true. The 2" — 1 splitters are arranged in a
complete binary tree of height n — 1. Let S(v) be the splitter associated with
a node v of the binary tree. The STORE and COLLECT operations are given by
Algorithm 5.13.

Theorem 5.14. Algorithm 5.18 correctly implements STORE and COLLECT.
Let k be the number of participating processes. The step complexity of the first
STORE of a process p; is O(k), the step complexity of every additional STORE of
p;i 18 O(1), and the step complexity of COLLECT is O(k).

Proof. Because at most one process can stop at a splitter, it is sufficient to show
that every process stops at some splitter at depth at most k — 1 < n — 1 when

54 CHAPTER 5. SHARED MEMORY

Algorithm 5.13 Adaptive Collect: Binary Tree Algorithm

Operation STORE(val) (by process p;) :
1: R; :=wval
2: if first STORE operation by p; then

3: v := root node of binary tree

4: = result of entering splitter S(v);
5. Mg, = true

6: while a # stop do

7 if a = left then

8: v := left child of v

9: else

10: v := right child of v

11: end if

12: a := result of entering splitter S(v);
13: MS(u) = true

14: end while
15: ZS('U) =1
16: end if

Operation COLLECT:

Traverse marked part of binary tree:
17: for all marked splitters S do

18: if Zg # 1 then

19: i:=Zg; V(pi) = Ry // read value of process p;
20: end if
21: end for /] V(p:) = L for all other processes

invoking the first STORE operation to prove correctness. We prove that at most
k — i processes enter a subtree at depth ¢ (i.e., a subtree where the root has
distance 7 to the root of the whole tree). By definition of k, the number of
processes entering the splitter at depth 0 (i.e., at the root of the binary tree)
is k. For ¢ > 1, the claim follows by induction because of the at most k — i
processes entering the splitter at the root of a depth i subtree, at most kK —i —1
obtain left and right, respectively. Hence, at the latest when reaching depth
k — 1, a process is the only process entering a splitter and thus obtains stop.
It thus also follows that the step complexity of the first invocation of STORE is
O(k).

To show that the step complexity of COLLECT is O(k), we first observe
that the marked nodes of the binary tree are connected, and therefore can
be traversed by only reading the variables Mg associated to them and their
neighbors. Hence, showing that at most 2k — 1 nodes of the binary tree are
marked is sufficient. Let zj be the maximum number of marked nodes in a tree,
where k processes access the root. We claim that x, < 2k — 1, which is true
for k£ = 1 because a single process entering a splitter will always compute stop.
Now assume the inequality holds for 1,...,k — 1. Not all k processes may exit
the splitter with left (or right), i.e., k; < k — 1 processes will turn left and
kr < min{k — k;, k — 1} turn right. The left and right children of the root are

5.3. STORE & COLLECT 55

right

Y
Y
Y

left

B
B
B

B
B
B
B

B
B
B
B

Figure 5.15: 5 x 5 Splitter Matrix

the roots of their subtrees, hence the induction hypothesis yields
rp=xp +k. +1< 2k —1)+ 2k —1)+1 <2k —1,

concluding induction and proof. O

Remarks:

e The step complexities of Algorithm 5.13 are very good. Clearly, the
step complexity of the COLLECT operation is asymptotically optimal.
In order for the algorithm to work, we however need to allocate the
memory for the complete binary tree of depth n — 1. The space com-
plexity of Algorithm 5.13 therefore is exponential in n. We will next
see how to obtain a polynomial space complexity at the cost of a worse
COLLECT step complexity.

5.3.4 Splitter Matrix

Instead of arranging splitters in a binary tree, we arrange n? splitters in an nxn
matrix as shown in Figure 5.15. The algorithm is analogous to Algorithm 5.13.
The matrix is entered at the top left. If a process receives left, it next visits
the splitter in the next row of the same column. If a process receives right, it
next visits the splitter in the next column of the same row. Clearly, the space
complexity of this algorithm is O(n?). The following theorem gives bounds on
the step complexities of STORE and COLLECT.

Theorem 5.16. Let k be the number of participating processes. The step com-
plexity of the first STORE of a process p; is O(k), the step complexity of every
additional STORE of p; is O(1), and the step complexity of COLLECT is O(k?).

56 CHAPTER 5. SHARED MEMORY

Proof. Let the top row be row 0 and the left-most column be column 0. Let z;
be the number of processes entering a splitter in row ¢. By induction on i, we
show that z; < k — i. Clearly, zo < k. Let us therefore consider the case i > 0.
Let j be the largest column such that at least one process visits the splitter in
row ¢ — 1 and column j. By the properties of splitters, not all processes entering
the splitter in row ¢ — 1 and column j obtain left. Therefore, not all processes
entering a splitter in row 4 — 1 move on to row ¢. Because at least one process
stays in every row, we get that x; < k — 4. Similarly, the number of processes
entering column j is at most k — j. Hence, every process stops at the latest in
row k — 1 and column k — 1 and the number of marked splitters is at most k2.
Thus, the step complexity of COLLECT is at most O(k?). Because the longest
path in the splitter matrix is 2k, the step complexity of STORE is O(k). O

Remarks:

e With a slightly more complicated argument, it is possible to show that
the number of processes entering the splitter in row ¢ and column j
is at most k — i — j. Hence, it suffices to only allocate the upper left
half (including the diagonal) of the n x n matrix of splitters.

e The binary tree algorithm can be made space efficient by using a
randomized version of a splitter. Whenever returning left or right, a
randomized splitter returns left or right with probability 1/2. With
high probability, it then suffices to allocate a binary tree of depth
O(logn).

e Recently, it has been shown that with a considerably more complicated
deterministic algorithm, it is possible to achieve O(k) step complexity
and O(n?) space complexity.

Chapter Notes

Already in 1965 Edsger Dijkstra gave a deadlock-free solution for mutual ex-
clusion [Dij65]. Later, Maurice Herlihy suggested consensus-numbers [Her91],
where he proved the “universality of consensus”, i.e., the power of a shared
memory system is determined by the consensus number. For this work, Mau-
rice Herlihy was awarded the Dijkstra Prize in Distributed Computing in 2003.
In 2016, Ellen et al. [EGSZ16] showed that some of the practical intuition about
Herlihy’s consensus number is misleading, as sets of instructions with a low con-
sensus number can together achieve a high consensus number. In other words,
in the world of instructions “the whole is greater than the sum of its parts”.
Petersons Algorithm is due to [PF77, Pet81], and adaptive collect was studied
in the sequence of papers [MA95, AFG02, AL05, AKPT06].

Bibliography

[AFGO02] Hagit Attiya, Arie Fouren, and Eli Gafni. An adaptive collect algo-
rithm with applications. Distributed Computing, 15(2):87-96, 2002.

BIBLIOGRAPHY o7

[AKP+06]

[ALO5)

[Dij65)

[EGSZ16]

[Her91]

[MA95]

[Pet81]

[PF77]

Hagit Attiya, Fabian Kuhn, C. Greg Plaxton, Mirjam Wattenhofer,
and Roger Wattenhofer. Efficient adaptive collect using randomiza-
tion. Distributed Computing, 18(3):179-188, 2006.

Yehuda Afek and Yaron De Levie. Space and Step Complexity Effi-
cient Adaptive Collect. In DISC, pages 384-398, 2005.

Edsger W. Dijkstra. Solution of a problem in concurrent program-
ming control. Commun. ACM, 8(9):569, 1965.

Faith Ellen, Rati Gelashvili, Nir Shavit, and Leqi Zhu. A complexity-
based hierarchy for multiprocessor synchronization:[extended ab-
stract]. In Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, pages 289—298. ACM, 2016.

Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program.
Lang. Syst., 13(1):124-149, 1991.

Mark Moir and James H. Anderson. Wait-Free Algorithms for Fast,
Long-Lived Renaming. Sci. Comput. Program., 25(1):1-39, 1995.

J.L. Peterson. Myths About the Mutual Exclusion Problem. Infor-
mation Processing Letters, 12(3):115-116, 1981.

G.L. Peterson and M.J. Fischer. Economical solutions for the crit-
ical section problem in a distributed system. In Proceedings of the
ninth annual ACM symposium on Theory of computing, pages 91-97.
ACM, 1977.

58

CHAPTER 5. SHARED MEMORY

Chapter 6

Shared Objects

Assume that there is a common resource (e.g. a common variable or data struc-
ture), which different nodes in a network need to access from time to time. If
the nodes are allowed to change the common object when accessing it, we need
to guarantee that no two nodes have access to the object at the same time. In
order to achieve this mutual exclusion, we need protocols that allow the nodes
of a network to store and manage access to such a shared object.

6.1 Centralized Solutions

A simple and obvious solution is to store the shared object at a central location
(see Algorithm 6.1).

Algorithm 6.1 Shared Object: Centralized Solution

Initialization: Shared object stored at root node r of a spanning tree of the
network graph (i.e., each node knows its parent in the spanning tree).
Accessing Object: (by node v)
1: v sends request up the tree
2: request processed by root r (atomically)
3: result sent down the tree to node v

Remarks:
e Instead of a spanning tree, one can use routing.

e Algorithm 6.1 works, but it is not very efficient. Assume that the
object is accessed by a single node v repeatedly. Then we get a high
message/time complexity. Instead v could store the object, or at least
cache it. But then, in case another node w accesses the object, we
might run into consistency problems.

e Alternative idea: The accessing node should become the new master
of the object. The shared object then becomes mobile. There exist
several variants of this idea. The simplest version is a home-based
solution like in Mobile IP (see Algorithm 6.2).

99

60 CHAPTER 6. SHARED OBJECTS

Algorithm 6.2 Shared Object: Home-Based Solution

Initialization: An object has a home base (a node) that is known to every
node. All requests (accesses to the shared object) are routed through the
home base.

Accessing Object: (by node v)

1: v acquires a lock at the home base, receives object.

Remarks:

e Home-based solutions suffer from the triangular routing problem. If
two close-by nodes take turns to access the object, all the traffic is
routed through the potentially far away home-base.

6.2 Arrow and Friends

We will now look at a protocol (called the Arrow algorithm) that always
moves the shared object to the node currently accessing it without creating
the triangular routing problem of home-based solutions. The protocol runs on
a precomputed spanning tree. Assume that the spanning tree is rooted at the
current position of the shared object. When a node u wants to access the shared
object, it sends out a find request towards the current position of the object.
While searching for the object, the edges of the spanning tree are redirected
such that in the end, the spanning tree is rooted at u (i.e., the new holder of the
object). The details of the algorithm are given by Algorithm 6.3. For simplicity,
we assume that a node u only starts a find request if u is not currently the holder
of the shared object and if u has finished all previous find requests (i.e., it is
not currently waiting to receive the object).

Remarks:

e The parent pointers in Algorithm 6.3 are only needed for the find
operation. Sending the variable to w in line 13 or to w.successor in
line 23 is done using routing (on the spanning tree or on the underlying
network).

e When we draw the parent pointers as arrows, in a quiescent moment
(where no “find” is in motion), the arrows all point towards the node
currently holding the variable (i.e., the tree is rooted at the node
holding the variable)

e What is really great about the Arrow algorithm is that it works in
a completely asynchronous and concurrent setting (i.e., there can be
many find requests at the same time).

Theorem 6.4. (Arrow, Analysis) In an asynchronous and concurrent setting,
a “find” operation terminates with message and time complexity D, where D is
the diameter of the spanning tree.

6.2. ARROW AND FRIENDS 61

Algorithm 6.3 Shared Object: Arrow Algorithm

Initialization: As for Algorithm 6.1, we are given a rooted spanning tree. Each
node has a pointer to its parent, the root r is its own parent. The variable
is initially stored at r. For all nodes v, v.successor := null, v.wait := false.

Start Find Request at Node u:
1: do atomically
2: u sends “find by u” message to parent node
3: w.parent :=u
4: w.wait := true
5: end do

Upon w Receiving “Find by u” Message from Node v:
6: do atomically
7. if w.parent # w then

8: w sends “find by v’ message to parent

9: w.parent := v

10: else

11: w.parent := v

12: if not w.wait then

13: send variable to u // w holds var. but does not need it any more
14: else

15: W.SUCCEesSor 1= U // w will send variable to u a.s.a.p.
16: end if

17: end if

18: end do

Upon w Receiving Shared Object:
19: perform operation on shared object
20: do atomically

21: w.wait := false

22: if w.successor # null then

23: send variable to w.successor
24: w.successor := null
25: end if

26: end do

62 CHAPTER 6. SHARED OBJECTS

Before proving Theorem 6.4, we prove the following lemma.

Lemma 6.5. An edge {u,v} of the spanning tree is in one of four states:

1.) Pointer from u to v (no message on the edge, no pointer from v to u)
2.) Message on the move from u to v (no pointer along the edge)
3.) Pointer from v to u (no message on the edge, no pointer from u to v)
4.) Message on the move from v to u (no pointer along the edge)

Proof. W.l.o.g., assume that initially the edge {u,v} is in state 1. With a
message arrival at u (or if u starts a “find by u” request, the edge goes to state
2. When the message is received at v, v directs its pointer to u and we are
therefore in state 3. A new message at v (or a new request initiated by v) then
brings the edge back to state 1. O

Proof of Theorem 6.4. Since the “find” message will only travel on a static tree,
it suffices to show that it will not traverse an edge twice. Suppose for the sake
of contradiction that there is a first “find” message f that traverses an edge
e = {u,v} for the second time and assume that e is the first edge that is
traversed twice by f. The first time, f traverses e. Assume that e is first
traversed from u to v. Since we are on a tree, the second time, e must be
traversed from v to u. Because e is the first edge to be traversed twice, f must
re-visit e before visiting any other edges. Right before f reaches v, the edge e
is in state 2 (f is on the move) and in state 3 (it will immediately return with
the pointer from v to w). This is a contradiction to Lemma 6.5. O

Remarks:

e Finding a good tree is an interesting problem. We would like to have
a tree with low stretch, low diameter, low degree, etc.

e It seems that the Arrow algorithm works especially well when lots of
“find” operations are initiated concurrently. Most of them will find a
“close-by” node, thus having low message/time complexity. For the
sake of simplicity we analyze a synchronous system.

Theorem 6.6. (Arrow, Concurrent Analysis) Let the system be synchronous.
Initially, the system is in a quiescent state. At time 0, a set S of nodes initiates
a “find” operation. The message complexity of all “find” operations is O(log |S|-
m*) where m* is the message complexity of an optimal (with global knowledge)
algorithm on the tree.

Proof Sketch. Let d be the minimum distance of any node in S to the root.
There will be a node u; at distance d from the root that reaches the root in
d time steps, turning all the arrows on the path to the root towards u;. A
node ug that finds (is queued behind) u; cannot distinguish the system from
a system where there was no request w;, and instead the root was initially
located at w;. The message cost of uy is consequentially the distance between
u1 and us on the spanning tree. By induction the total message complexity is
exactly as if a collector starts at the root and then “greedily” collects tokens
located at the nodes in S (greedily in the sense that the collector always goes
towards the closest token). Greedy collecting the tokens is not a good strategy
in general because it will traverse the same edge more than twice in the worst

6.2. ARROW AND FRIENDS 63

case. An asymptotically optimal algorithm can also be translated into a depth-
first-search collecting paradigm, traversing each edge at most twice. In another
area of computer science, we would call the Arrow algorithm a nearest-neighbor
TSP heuristic (without returning to the start/root though), and the optimal
algorithm TSP-optimal. It was shown that nearest-neighbor has a logarithmic
overhead, which concludes the proof. O

Remarks:

e An average request set S on a not-too-bad tree gives usually a much
better bound. However, there is an almost tight log|S|/loglog |S]|
worst-case example.

e It was recently shown that Arrow can do as good in a dynamic setting
(where nodes are allowed to initiate requests at any time). In partic-
ular the message complexity of the dynamic analysis can be shown to
have a log D overhead only, where D is the diameter of the spanning
tree (note that for logarithmic trees, the overhead becomes loglogn).

e What if the spanning tree is a star? Then with Theorem 6.4, each find
will terminate in 2 steps! Since also an optimal algorithm has message
cost 1, the algorithm is 2-competitive...? Yes, but because of its high
degree the star center experiences contention. .. It can be shown that
the contention overhead is at most proportional to the largest degree
A of the spanning tree.

e Thought experiment: Assume a balanced binary spanning tree—by
Theorem 6.4, the message complexity per operation is logn. Because
a binary tree has maximum degree 3, the time per operation therefore
is at most 3logn.

e There are better and worse choices for the spanning tree. The stretch
of an edge {u,v} is defined as distance between u and v in a span-
ning tree. The maximum stretch of a spanning tree is the maximum
stretch over all edges. A few years ago, it was shown how to construct
spanning trees that are O(logn)-stretch-competitive.

What if most nodes just want to read the shared object? Then it does
not make sense to acquire a lock every time. Instead we can use caching (see
Algorithm 6.7).

Theorem 6.8. Algorithm 6.7 is correct. More surprisingly, the message com-
plexity is 3-competitive (at most a factor 3 worse than the optimum).

Proof. Since the accesses do not overlap by definition, it suffices to show that
between two writes, we are 3-competitive. The sequence of accessing nodes is
wo, T1, T2, ..., Tk, wy. After wg, the object is stored at wy and not cached
anywhere else. All reads cost twice the smallest subtree T spanning the write
wg and all the reads since each read only goes to the first copy. The write w
costs 1" plus the path P from w; to T. Since any data management scheme
must use an edge in T" and P at least once, and our algorithm uses edges in T
at most 3 times (and in P at most once), the theorem follows. O

64 CHAPTER 6. SHARED OBJECTS

Algorithm 6.7 Shared Object: Read/Write Caching

e Nodes can either read or write the shared object. For simplicity we first
assume that reads or writes do not overlap in time (access to the object is
sequential).

e Nodes store three items: a parent pointer pointing to one of the neighbors
(as with Arrow), and a cache bit for each edge, plus (potentially) a copy of
the object.

e Initially the object is stored at a single node wu; all the parent pointers point
towards u, all the cache bits are false.

e When initiating a read, a message follows the arrows (this time: without
inverting them!) until it reaches a cached version of the object. Then a copy
of the object is cached along the path back to the initiating node, and the
cache bits on the visited edges are set to true.

e A write at u writes the new value locally (at node u), then searches (follow the
parent pointers and reverse them towards) a first node with a copy. Delete
the copy and follow (in parallel, by flooding) all edge that have the cache flag
set. Point the parent pointer towards u, and remove the cache flags.

Remarks:

e Concurrent reads are not a problem, also multiple concurrent reads
and one write work just fine.

e What about concurrent writes? To achieve consistency writes need to
invalidate the caches before writing their value. It is claimed that the
strategy then becomes 4-competitive.

e Is the algorithm also time competitive? Well, not really: The optimal
algorithm that we compare to is usually offline. This means it knows
the whole access sequence in advance. It can then cache the object
before the request even appears!

e Algorithms on trees are often simpler, but have the disadvantage that
they introduce the extra stretch factor. In a ring, for example, any
tree has stretch n — 1; so there is always a bad request pattern.

6.3. IVY AND FRIENDS 65

Algorithm 6.9 Shared Object: Pointer Forwarding

Initialization: Object is stored at root 7 of a precomputed spanning tree T' (as
in the Arrow algorithm, each node has a parent pointer pointing towards
the object).

Accessing Object: (by node u)

1: follow parent pointers to current root r of T
2: send object from r to u
3: r.parent := u; u.parent := u; // w is the new root

Algorithm 6.10 Shared Object: Ivy

Initialization: Object is stored at root r of a precomputed spanning tree T
(as before, each node has a parent pointer pointing towards the object). For
simplicity, we assume that accesses to the object are sequential.

Start Find Request at Node u:

1: u sends “find by u” message to parent node
2: u.parent := u
Upon v receiving “Find by u” Message:

3: if v.parent = v then

4 send object to u

5: else

6: send “find by u” message to v.parent

7. end if

8: v.parent := u // u will become the new root

6.3 Ivy and Friends

In the following we study algorithms that do not restrict communication to a
tree. Of particular interest is the special case of a complete graph (clique). A
simple solution for this case is given by Algorithm 6.9.

Remarks:
e If the graph is not complete, routing can be used to find the root.

e Assume that the nodes line up in a linked list. If we always choose the
first node of the linked list to acquire the object, we have message/time
complexity n. The new topology is again a linear linked list. Pointer
forwarding is therefore bad in a worst-case.

e If edges are not FIFO, it can even happen that the number of steps
is unbounded for a node having bad luck. An algorithm with such a
property is named “not fair,” or “not wait-free.” (Example: Initially
we have the list 4 - 3 — 2 — 1; 4 starts a find; when the message
of 4 passes 3, 3 itself starts a find. The message of 3 may arrive at 2
and then 1 earlier, thus the new end of the list is 2 — 1 — 3; once the
message of 4 passes 2, the game re-starts.)

There seems to be a natural improvement of the pointer forwarding idea.
Instead of simply redirecting the parent pointer from the old root to the new
root, we can redirect all the parent pointers of the nodes on the path visited

66 CHAPTER 6. SHARED OBJECTS

Figure 6.11: Reversal of the path xg, x1, 2, T3, T4, T5.

during a find message to the new root. The details are given by Algorithm 6.10.
Figure 6.11 shows how the pointer redirecting affects a given tree (the right tree
results from a find request started at node zp on the left tree).

Remarks:

e Also with Algorithm 6.10, we might have a bad linked list situation.
However, if the start of the list acquires the object, the linked list
turns into a star. As the following theorem shows, the search paths
are not long on average. Since paths sometimes can be bad, we will
need amortized analysis.

Theorem 6.12. If the initial tree is a star, a find request of Algorithm 6.10
needs at most logn steps on average, where n is the number of processors.

Proof. All logarithms in the following proof are to base 2. We assume that
accesses to the shared object are sequential. We use a potential function argu-
ment. Let s(u) be the size of the subtree rooted at node u (the number of nodes
in the subtree including u itself). We define the potential ® of the whole tree
T as (V is the set of all nodes)

(T = Z log s(u)

2
ueV

Assume that the path traversed by the i** operation has length k;, i.e., the it"
operation redirects k; pointers to the new root. Clearly, the number of steps
of the i*" operation is proportional to k;. We are interested in the cost of m
consecutive operations, > . k;.

Let Ty be the initial tree and let T; be the tree after the i** operation.
Further, let a; = k; — ®(T;_1) +®(T;) be the amortized cost of the i*" operation.
We have

m m

STai =Y (ki = O(Tim) + (T3) = > ki — ®(Tp) + O(Trn).
=1

i=1 i=1

For any tree T, we have ®(T") > log(n)/2. Because we assume that Tj is a star,
we also have ®(Tp) = log(n)/2. We therefore get that

m m
Z a; Z Z k’z
i=1 i=1

6.3. IVY AND FRIENDS 67

Hence, it suffices to upper bound the amortized cost of every operation. We
thus analyze the amortized cost a; of the ith operation. Let zg,x1,%2,..., 2k,
be the path that is reversed by the operation. Further for 0 < j < k;, let s; be
the size of the subtree rooted at x; before the reversal. The size of the subtree
rooted at xg after the reversal is s;, and the size of the one rooted at x; after the
reversal, for 1 < j < k;, is s; — sj_1 (see Figure 6.11). For all other nodes, the
sizes of their subtrees are the same, therefore the corresponding terms cancel
out in the ammortized cost a;. We can thus write a; as

ki ki
~1 1 ~1
a; = k;— Z 5 logs; | + 3 log s, + Z 3 log(s; — sj-1)
j=0 j=1
=
= ki+ 3 Z (log(sj+1 — ;) — logss;)
=0

1 Sj41 — 8§
= ki+=- log [2L —27)
"3 Z Og< 8j

Jj=0

For 0 < j < kz — 1, let o = $j+1/8]'. Note that Sj+1 > Sj and thus that g > 1.
Further note, that (sj11 — s;)/s; = ;j — 1. We therefore have that

] kil
a; = ki+§~ Zlog(aj—l)
7=0
ki—1 1
= Z (1 + ilog(aj - 1)> .
7=0

For @ > 1, it can be shown that 1 + log(a — 1)/2 < loga (see Lemma 6.13).
From this inequality, we obtain

ki—1 ki—1 ki—1
5.
a; < E loga; = E log ;—H = E (log sj+1 — logs;)
=0 =0 J j=0

= logsy, —logsp <logn,
because s, = n and sp > 1. This concludes the proof. O
Lemma 6.13. Fora > 1,14 log(a—1)/2 <loga.

Proof. The claim can be verified by the following chain of reasoning:

0 < (a—2)?
0 < a®>—4da+14
4la—1) < o
log, (4(a—1)) < log, (o?)
2+logy(ar—1) < 2logy
1+ %logz(a —-1) < logyon.

68 CHAPTER 6. SHARED OBJECTS

Remarks:

e Systems guys (the algorithm is called Ivy because it was used in a
system with the same name) have some fancy heuristics to improve
performance even more: For example, the root every now and then
broadcasts its name such that paths will be shortened.

e What about concurrent requests? It works with the same argument
as in Arrow. Also for Ivy an argument including congestion is missing
(and more pressing, since the dynamic topology of a tree cannot be
chosen to have low degree and thus low congestion as in Arrow).

e Sometimes the type of accesses allows that several accesses can be
combined into one to reduce congestion higher up the tree. Let the
tree in Algorithm 6.1 be a balanced binary tree. If the access to a
shared variable for example is “add value z to the shared variable”,
two or more accesses that accidentally meet at a node can be combined
into one. Clearly accidental meeting is rare in an asynchronous model.
We might be able to use synchronizers (or maybe some other timing
tricks) to help meeting a little bit.

Chapter Notes

The Arrow protocol was designed by Raymond [Ray89]. There are real life im-
plementations of the Arrow protocol, such as the Aleph Toolkit [Her99]. The
performance of the protocol under high loads was tested in [HW99] and other im-
plementations and variations of the protocol were given in, e.g., [PR99, HTW00].

It has been shown that the find operations of the protocol do not backtrack,
i.e., the time and message complexities are O(D) [DH98|, and that the Arrow
protocol is fault tolerant [HTO01]. Given a set of concurrent request, Herlihy et
al. [HTWO1] showed that the time and message complexities are within factor
log R from the optimal, where R is the number of requests. Later, this analysis
was extended to long-lived and asynchronous systems. In particular, Herlihy et
al. [HKTWO06] showed that the competitive ratio in this asynchronous concur-
rent setting is O(log D). Thanks to the lower bound of the greedy TSP heuristic,
this is almost tight.

The Ivy system was introduced in [Li88, LH89]. On the theory side, it was
shown by Ginat et al. [GST89] that the amortized cost of a single request of
the Ivy protocol is ©(logn). Closely related work to the Ivy protocol on the
practical side is research on virtual memory and parallel computing on loosely
coupled multiprocessors. For example [BB81, LSHL82, FR86] contain studies on
variations of the network models, limitations on data sharing between processes
and different approaches.

Later, the research focus shifted towards systems where most data operations

were read operations, i.e., efficient caching became one of the main objects of
study, e.g., [MMVW97].

BIBLIOGRAPHY 69

Bibliography

[BBS1]

[DHYS]

[FR86]

[GSTSY]

[Her99)

[HKTWO6]

[HTO01]

[HTWO00]

[HTWO01]

[HW99)

[LH8Y]

[Li88]

Thomas J. Buckholtz and Helen T. Buckholtz. Apollo Domain
Architecture. Technical report, Apollo Computer, Inc., 1981.

Michael J. Demmer and Maurice Herlihy. The Arrow Distributed
Directory Protocol. In Proceedings of the 12th International Sym-
posium on Distributed Computing (DISC), 1998.

Robert Fitzgerald and Richard F. Rashid. The Integration of
Virtual Memory Management and Interprocess Communication in
Accent. ACM Transactions on Computer Systems, 4(2):147-177,
1986.

David Ginat, Daniel Sleator, and Robert Tarjan. A Tight Amor-
tized Bound for Path Reversal. Information Processing Letters,
31(1):3-5, 1989.

Maurice Herlihy. The Aleph Toolkit: Support for Scalable Dis-
tributed Shared Objects. In Proceedings of the Third Interna-
tional Workshop on Network-Based Parallel Computing: Commu-
nication, Architecture, and Applications (CANPC), pages 137-149,
1999.

Maurice Herlihy, Fabian Kuhn, Srikanta Tirthapura, and Roger
Wattenhofer. Dynamic Analysis of the Arrow Distributed Protocol.
In Theory of Computing Systems, Volume 39, Number 6, November
2006.

Maurice Herlihy and Srikanta Tirthapura. Self Stabilizing Distrib-
uted Queuing. In Proceedings of the 15th International Conference
on Distributed Computing (DISC), pages 209-223, 2001.

Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer. Or-
dered Multicast and Distributed Swap. In Operating Systems Re-
view, Volume 35/1, 2001. Also in PODC Middleware Symposium,
Portland, Oregon, July 2000.

Maurice Herlihy, Srikanta Tirthapura, and Roger Wattenhofer.
Competitive Concurrent Distributed Queuing. In Twentieth ACM
Symposium on Principles of Distributed Computing (PODC), Au-
gust 2001.

Maurice Herlihy and Michael Warres. A Tale of Two Directories:
Implementing Distributed Shared Objects in Java. In Proceedings
of the ACM 1999 conference on Java Grande (JAVA), pages 99—
108, 1999.

Kai Li and Paul Hudak. Memory Coherence in Shared Vir-
tual Memory Systems. ACM Transactions on Computer Systems,
7(4):312-359, November 1989.

Kai Li. IVY: Shared Virtual Memory System for Parallel Comput-
ing. In International Conference on Parallel Processing, 1988.

70

[LSHL82]

[MMVW97]

[PROY]

[Ray89]

CHAPTER 6. SHARED OBJECTS

Paul J. Leach, Bernard L. Stumpf, James A. Hamilton, and Paul H.
Levine. UlDs as Internal Names in a Distributed File System. In
Proceedings of the First ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC), pages 34-41, 1982.

B. Maggs, F. Meyer auf der Heide, B. Voecking, and M. Wester-
mann. FExploiting Locality for Data Management in Systems of
Limited Bandwidth. In IEEE Symposium on Foundations of Com-
puter Science (FOCS), 1997.

David Peleg and Eilon Reshef. A Variant of the Arrow Distributed
Directory Protocol with Low Average Complexity. In Proceedings
of the 26th International Colloguium on Automata, Languages and
Programming (ICALP), pages 615624, 1999.

Kerry Raymond. A Tree-based Algorithm for Distributed Mu-
tual Exclusion. ACM Transactions on Computer Systems, 7:61-77,
1989.

Chapter 7

Maximal Independent Set

In this chapter we present a highlight of this course, a fast maximal independent
set (MIS) algorithm. The algorithm is the first randomized algorithm that we
study in this class. In distributed computing, randomization is a powerful and
therefore omnipresent concept, as it allows for relatively simple yet efficient
algorithms. As such the studied algorithm is archetypal.

A MIS is a basic building block in distributed computing, some other prob-
lems pretty much follow directly from the MIS problem. At the end of this
chapter, we will give two examples: matching and vertex coloring (see Chapter

1).

7.1 MIS

Definition 7.1 (Independent Set). Given an undirected Graph G = (V, E) an
independent set is a subset of nodes U C V, such that no two nodes in U
are adjacent. An independent set is maximal if no node can be added without
violating independence. An independent set of maximum cardinality is called
maximum.

Figure 7.2: Example graph with 1) a maximal independent set (MIS) and 2) a
maximum independent set (MaxIS).

71

72 CHAPTER 7. MAXIMAL INDEPENDENT SET

Remarks:

e Computing a maximum independent set (MaxIS) is a notoriously diffi-
cult problem. It is equivalent to maximum clique on the complemen-
tary graph. Both problems are NP-hard, in fact not approximable
within n2 ¢ within polynomial time.

e In this course we concentrate on the maximal independent set (MIS)
problem. Please note that MIS and MaxIS can be quite different,
indeed e.g. on a star graph there exists an MIS that is O(n) smaller
than the MaxIS (cf. Figure 7.2).

e Computing a MIS sequentially is trivial: Scan the nodes in arbitrary
order. If a node u does not violate independence, add u to the MIS.
If u violates independence, discard u. So the only question is how to
compute a MIS in a distributed way.

Algorithm 7.3 Slow MIS
Require: Node IDs
Every node v executes the following code:
1: if all neighbors of v with larger identifiers have decided not to join the MIS
then
2: v decides to join the MIS
3: end if

Remarks:

e Not surprisingly the slow algorithm is not better than the sequential
algorithm in the worst case, because there might be one single point
of activity at any time. Formally:

Theorem 7.4 (Analysis of Algorithm 7.3). Algorithm 7.3 features a time com-
plexity of O(n) and a message complexity of O(m).

Remarks:
e This is not very exciting.

e There is a relation between independent sets and node coloring (Chap-
ter 1), since each color class is an independent set, however, not nec-
essarily a MIS. Still, starting with a coloring, one can easily derive a
MIS algorithm: In the first round all nodes of the first color join the
MIS and notify their neighbors. Then, all nodes of the second color
which do not have a neighbor that is already in the MIS join the MIS
and inform their neighbors. This process is repeated for all colors.
Thus the following corollary holds:

Corollary 7.5. Given a coloring algorithm that runs in time T and needs C
colors, we can construct a MIS in time T + C.

7.2. ORIGINAL FAST MIS 73

Remarks:

e Using Theorem 1.23 and Corollary 7.5 we get a distributed determin-
istic MIS algorithm for trees (and for bounded degree graphs) with
time complexity O(log* n).

e With a lower bound argument one can show that this deterministic
MIS algorithm is asymptotically optimal for rings.

e There have been attempts to extend Algorithm 1.17 to more general
graphs, however, so far without much success. Below we present a
radically different approach that uses randomization.

7.2 Original Fast MIS

Algorithm 7.6 Fast MIS
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v marks itself with probability ﬁ(v), where d(v) is the current
degree of v.
2) If no higher degree neighbor of v is also marked, node v joins the MIS. If
a higher degree neighbor of v is marked, node v unmarks itself again. (If the
neighbors have the same degree, ties are broken arbitrarily, e.g., by identifier).
3) Delete all nodes that joined the MIS and their neighbors, as they cannot
join the MIS anymore.

Remarks:

e Correctness in the sense that the algorithm produces an independent
set is relatively simple: Steps 1 and 2 make sure that if a node v joins
the MIS, then v’s neighbors do not join the MIS at the same time.
Step 3 makes sure that v’s neighbors will never join the MIS.

e Likewise the algorithm eventually produces a MIS, because the node
with the highest degree will mark itself at some point in Step 1.

e So the only remaining question is how fast the algorithm terminates.
To understand this, we need to dig a bit deeper.

Lemma 7.7 (Joining MIS). A node v joins the MIS in Step 2 with probability
Pz 4d1(v)'

Proof: Let M be the set of marked nodes in Step 1 and MIS be the set of nodes
that join the MIS in Step 2. Let H(v) be the set of neighbors of v with higher
degree, or same degree and higher identifier. Using independence of the random

74 CHAPTER 7. MAXIMAL INDEPENDENT SET

choices of v and nodes in H(v) in Step 1 we get

Plv¢ MIS|v € M] = P [thereis a node w € H(v),w € M|v € M]
= P/|there is a node w € H(v),w € M]

1

< = —

<) PweM=)] 2d(w)
weH (v) weH (v)
1 dlv) 1
S
weT (o) 2d(v) ~— 2d(v) 2

Then
PlveMIS] = PlveMISlve M]-P]| EM]>1 !
3 - ! ! =2 2d(v)

Lemma 7.8 (Good Nodes). A node v is called good if

1 1
Z 2d(w 267

weN (v)

~

where N(v) is the set of neighbors of v. Otherwise we call v a bad node. A
good node will be removed in Step 3 with probability p > 3—16.

Proof: Let node v be good. Intuitively, good nodes have lots of low-degree
neighbors, thus chances are high that one of them goes into the independent
set, in which case v will be removed in Step 3 of the algorithm.

If there is a neighbor w € N(v) with degree at most 2 we are done: With
Lemma 7.7 the probability that node w joins the MIS is at least %, and our
good node will be removed in Step 3.

So all we need to worry about is that all neighbors have at least degree 3:

1 1
For any neighbor w of v we have % < % Since Z m > 5 there is a
weN (v)
1 1 1
subset of neighbors S C N(v) such that 6 < Z 2d(w) < 3

wesS

We can now bound the probability that node v will be removed. Let therefore

R be the event of v being removed. Again, if a neighbor of v joins the MIS in
Step 2, node v will be removed in Step 3. We have

P[R] > P]thereis anode u € S,u € MIS]
> PlueMIS|— Y PluecMISand w e MIS].

uesS u,wES;uFw

v

For the last inequality we used the inclusion-exclusion principle truncated
after the second order terms. Let M again be the set of marked nodes after

7.2. ORIGINAL FAST MIS 75

Step 1. Using P [u € M] > P [u € MIS| we get

P[R] > Y PueMIS|- > PlucM and we M|
ues u,wES;uFw
> ZP[uEMIS]—ZZP[ueM]-P[weM]
ues ueS wes
E Z4d ZZM 2(w)
ueS weS

Y

SENES

Remarks:

e We would be almost finished if we could prove that many nodes are
good in each phase. Unfortunately this is not the case: In a star-
graph, for instance, only a single node is good! We need to find a
work-around.

Lemma 7.9 (Good Edges). An edge e = (u,v) is called bad if both u and v
are bad; else the edge is called good. The following holds: At any time at least
half of the edges are good.

Proof: For the proof we construct a directed auxiliary graph: Direct each edge
towards the higher degree node (if both nodes have the same degree direct it
towards the higher identifier). Now we need a little helper lemma before we can
continue with the proof.

Lemma 7.10. A bad node has outdegree (number of edges pointing away from
bad node) at least twice its indegree (number of edges pointing towards bad node).

Proof: For the sake of contradiction, assume that a bad node v does not have
outdegree at least twice its indegree. In other words, at least one third of the
neighbor nodes (let’s call them S) have degree at most d(v). But then

1 1 1 _dw) 11
> iy 2 ZS 2d(w) = 1; 2d(v) = 3 2d(v) 6

weN (v) we

which means v is good, a contradiction. O

Continuing the proof of Lemma 7.9: According to Lemma 7.10 the number of
edges directed into bad nodes is at most half the number of edges directed out
of bad nodes. Thus, the number of edges directed into bad nodes is at most
half the number of edges. Thus, at least half of the edges are directed into good
nodes. Since these edges are not bad, they must be good.

Theorem 7.11 (Analysis of Algorithm 7.6). Algorithm 7.6 terminates in ex-
pected time O(logn).

Proof: With Lemma 7.8 a good node (and therefore a good edge!) will be
deleted with constant probability. Since at least half of the edges are good
(Lemma 7.9) a constant fraction of edges will be deleted in each phase.

76 CHAPTER 7. MAXIMAL INDEPENDENT SET

More formally: With Lemmas 7.8 and 7.9 we know that at least half of the
edges will be removed with probability at least 1/36. Let R be the number
of edges to be removed in a certain phase. Using linearity of expectation (cf.
Theorem 7.13) we know that E [R] > m/72, m being the total number of edges at
the start of the phase. Now let p := P [R < E[R] /2]. Bounding the expectation
yields

IN

E[R] =) P[R=r]r P[R < E[R]/2]-E[R]/2+ P[R > E[R]/2] - m

= p-E[R]/2+(1-p) -m.
Solving for p we get

m — E[R] m—E[R]/2
PEUTEREZS T m

<1-—1/144.

In other words, with probability at least 1/144 at least m /144 edges are removed
in a phase. After expected O(logm) phases all edges are deleted. Since m < n?
and thus O(logm) = O(logn) the Theorem follows. O

Remarks:

e With a bit of more math one can even show that Algorithm 7.6 ter-
minates in time O(logn) “with high probability”.

7.3 Fast MIS v2

Algorithm 7.12 Fast MIS 2
The algorithm operates in synchronous rounds, grouped into phases.
A single phase is as follows:
1) Each node v chooses a random value r(v) € [0,1] and sends it to its
neighbors.
2) If r(v) < r(w) for all neighbors w € N(v), node v enters the MIS and
informs its neighbors.
3) If v or a neighbor of v entered the MIS, v terminates (v and all edges
adjacent to v are removed from the graph), otherwise v enters the next phase.

Remarks:

e Correctness in the sense that the algorithm produces an independent
set is simple: Steps 1 and 2 make sure that if a node v joins the MIS,
then v’s neighbors do not join the MIS at the same time. Step 3 makes
sure that v’s neighbors will never join the MIS.

e Likewise the algorithm eventually produces a MIS, because the node
with the globally smallest value will always join the MIS, hence there
is progress.

e So the only remaining question is how fast the algorithm terminates.
To understand this, we need to dig a bit deeper.

7.3. FAST MIS V2 7

e Our proof will rest on a simple, yet powerful observation about ex-
pected values of random variables that may not be independent:

Theorem 7.13 (Linearity of Expectation). Let X;, i =1,...,k denote random

variables, then
S| =Yem)

Proof. Tt is sufficient to prove E [X + Y] = E [X]+E [Y] for two random variables
X and Y, because then the statement follows by induction. Since

E

PI(X.Y)=(r,y)] = P[X=u] PV =yX =4]
= PV =y PIX=alY =y
we get that
EX+Y] = > PIXY)=(zy) (z+y)
(X,Y)=(z,y)
= Y Y PX=a] PY=ylX=a] -z
X=z Y=y
+ Y Y Py =y|-P[X=2z[Y =y y
Y=y X=x
= Y PX=al-a+)Y P[Y=yly
X=x Y=y
= E[X]+E[Y].
O
Remarks:

e How can we prove that the algorithm only needs O(logn) phases in
expectation? It would be great if this algorithm managed to remove a
constant fraction of nodes in each phase. Unfortunately, it does not.

e Instead we will prove that the number of edges decreases quickly.
Again, it would be great if any single edge was removed with constant
probability in Step 3. But again, unfortunately, this is not the case.

e Maybe we can argue about the expected number of edges to be re-
moved in one single phase? Let’s see: A node v enters the MIS with
probability 1/(d(v)+ 1), where d(v) is the degree of node v. By doing
so, not only are v’s edges removed, but indeed all the edges of v’s
neighbors as well — generally these are much more than d(v) edges. So
there is hope, but we need to be careful: If we do this the most naive
way, we will count the same edge many times.

e How can we fix this? The nice observation is that it is enough to
count just some of the removed edges. Given a new MIS node v and
a neighbor w € N(v), we count the edges only if r(v) < r(z) for all
x € N(w). This looks promising. In a star graph, for instance, only
the smallest random value can be accounted for removing all the edges
of the star.

78 CHAPTER 7. MAXIMAL INDEPENDENT SET

Lemma 7.14 (Edge Removal). In a single phase, we remove at least half of
the edges in expectation.

Proof. To simplify the notation, at the start of our phase, the graph is simply
G = (V,E). In addition, to ease presentation, we replace each undirected edge
{v,w} by the two directed edges (v, w) and (w,v).

Suppose that a node v joins the MIS in this phase, i.e., r(v) < r(w) for all
neighbors w € N(v). If in addition we have r(v) < r(z) for all neighbors z of a
neighbor w of v, we call this event (v — w). The probability of event (v — w)
is at least 1/(d(v) + d(w)), since d(v) + d(w) is the maximum number of nodes
adjacent to v or w (or both). As v joins the MIS, all (directed) edges (w,x)
with z € N(w) will be removed; there are d(w) of these edges.

We now count the removed edges. Whether we remove the edges adjacent
to w because of event (v — w) is a random variable X(,_,,. If event (v — w)
occurs, X, has the value d(w), if not it has the value 0. For each undirected
edge {v, w} we have two such variables, X(v—ow) and X (). Due to Theorem
7.13, the expected value of the sum X of all these random variables is at least

EX] = Y EXeowl+EXwoe)
{v,w}ekE
= Y PEvent (v—w)]-d(w) + P[Event (w — v)] - d(v)
{v,w}eE
d(w) d(v)
= {U§EE (o) +d(w) d(w) + d(v)
= Y 1=|E|
{v,w}ekE

In other words, in expectation |E| directed edges are removed in a single
phase! Note that we did not double count any edge removals, as a directed edge
(w, z) can only be removed by an event (v — w). The event (v — w) inhibits
a concurrent event (v/ — w) since r(v) < r(v') for all v € N(w). We may
have counted an undirected edge at most twice (once in each direction). So, in
expectation at least half of the undirected edges are removed. O

Remarks:

e This enables us to follow a bound on the expected running time of
Algorithm 7.12 quite easily.

Theorem 7.15 (Expected running time of Algorithm 7.12). Algorithm 7.12
terminates after at most 3log,;sm +1 € O(logn) phases in expectation.

Proof: The probability that in a single phase at least a quarter of all edges
are removed is at least 1/3. For the sake of contradiction, assume not. Then
with probability less than 1/3 we may be lucky and many (potentially all) edges
are removed. With probability more than 2/3 less than 1/4 of the edges are
removed. Hence the expected fraction of removed edges is strictly less than
1/3-1+42/3-1/4 =1/2. This contradicts Lemma 7.14.

Hence, in expectation at least every third phase is “good” and removes at
least a quarter of the edges. To get rid of all but two edges we need log, /3 m

7.3. FAST MIS V2 79

good phases in expectation. The last two edges will certainly be removed in the
next phase. Hence a total of 3log, /3 m + 1 phases are enough in expectation.

Remarks:

e Sometimes one expects a bit more of an algorithm: Not only should
the expected time to terminate be good, but the algorithm should
always terminate quickly. As this is impossible in randomized algo-
rithms (after all, the random choices may be “unlucky” all the time!),
researchers often settle for a compromise, and just demand that the
probability that the algorithm does not terminate in the specified
time can be made absurdly small. For our algorithm, this can be de-
duced from Lemma 7.14 and another standard tool, namely Chernoff’s
Bound.

Definition 7.16 (W.h.p.). We say that an algorithm terminates w.h.p. (with
high probability) within O(t) time if it does so with probability at least 1 — 1/n°
for any choice of ¢ > 1. Here ¢ may affect the constants in the Big-O notation
because it is considered a “tunable constant” and usually kept small.

Definition 7.17 (Chernoff’s Bound). Let X = Zle X, be the sum of k inde-
pendent 0 — 1 random variables. Then Chernoft’s bound states that w.h.p.

X~ E[X]| € O (logn + V/E[XTlogn) .

Corollary 7.18 (Running Time of Algorithm 7.12). Algorithm 7.12 terminates
w.h.p. in O(logn) time.

Proof: In Theorem 7.15 we used that independently of everything that happened
before, in each phase we have a constant probability p that a quarter of the edges
are removed. Call such a phase good. For some constants C; and Cs, let us check
after C1logn + Cy € O(logn) phases, in how many phases at least a quarter of
the edges have been removed. In expectation, these are at least p(C7 logn+ Cs)
many. Now we look at the random variable X = ZiC:lllog "€ y. where the X;
are independent 0 — 1 variables being one with exactly probability p. Certainly,
if X is at least = with some probability, then the probability that we have
2 good phases can only be larger (if no edges are left, certainly “all” of the
remaining edges are removed). To X we can apply Chernoff’s bound. If C;
and Cy are chosen large enough, they will overcome the constants in the Big-O
from Chernoff’s bound, i.e., w.h.p. it holds that | X —E[X]| < E[X]/2, implying
X > E[X]/2. Choosing Cy large enough, we will have w.h.p. sufficiently many
good phases, i.e., the algorithm terminates w.h.p. in O(logn) phases.

Remarks:

e The algorithm can be improved. Drawing random real numbers in
each phase for instance is not necessary. One can achieve the same by
sending only a total of O(logn) random (and as many non-random)
bits over each edge.

e One of the main open problems in distributed computing is whether
one can beat this logarithmic time, or at least achieve it with a deter-
ministic algorithm.

e Let’s turn our attention to applications of MIS next.

80 CHAPTER 7. MAXIMAL INDEPENDENT SET

7.4 Applications

Definition 7.19 (Matching). Given a graph G = (V, E) a matching is a subset
of edges M C E, such that no two edges in M are adjacent (i.e., where no node
is adjacent to two edges in the matching). A matching is maximal if no edge
can be added without violating the above constraint. A matching of maximum
cardinality is called maximum. A matching is called perfect if each node is
adjacent to an edge in the matching.

Remarks:

e In contrast to MaxIS, a maximum matching can be found in polyno-
mial time, and is also easy to approximate, since any maximal match-
ing is a 2-approximation.

e An independent set algorithm is also a matching algorithm: Let G =
(V, E) be the graph for which we want to construct the matching.
The so-called line graph G’ is defined as follows: for every edge in G
there is a node in G’; two nodes in G’ are connected by an edge if
their respective edges in G are adjacent. A (maximal) independent
set in the line graph G’ is a (maximal) matching in the original graph
G, and vice versa. Using Algorithm 7.12 directly produces a O(logn)
bound for maximal matching.

e More importantly, our MIS algorithm can also be used for vertex
coloring (Problem 1.1):

Algorithm 7.20 General Graph Coloring

1: Given a graph G = (V, E) we virtually build a graph G' = (V' E’) as
follows:

2: Every node v € V' clones itself d(v) +1 times (vo, . .., vqw) € V'), d(v) being
the degree of v in G.

3: The edge set E’ of G’ is as follows:

4: First all clones are in a clique: (v;,v;) € E’, for allv € V and all 0 < i <
j < d(v)

5: Second all i clones of neighbors in the original graph G are connected:
(us,v;) € E', for all (u,v) € E and all 0 <4 < min(d(u), d(v)).

6: Now we simply run (simulate) the fast MIS Algorithm 7.12 on G’.

7: If node v; is in the MIS in G’, then node v gets color i.

Theorem 7.21 (Analysis of Algorithm 7.20). Algorithm 7.20 (A + 1)-colors
an arbitrary graph in O(logn) time, with high probability, A being the largest
degree in the graph.

Proof: Thanks to the clique among the clones at most one clone is in the MIS.
And because of the d(v)+1 clones of node v every node will get a free color! The
running time remains logarithmic since G’ has O (n2) nodes and the exponent
becomes a constant factor when applying the logarithm.

7.4. APPLICATIONS 81

Remarks:
e This solves our open problem from Chapter 1.1!

e Together with Corollary 7.5 we get quite close ties between (A + 1)-
coloring and the MIS problem.

e Computing a MIS also solves another graph problem on graphs of
bounded independence.

Definition 7.22 (Bounded Independence). G = (V, E) is of bounded indepen-
dence, if for every node v € V' the largest independent set in the neighborhood
N (v) is bounded by a constant.

Definition 7.23 ((Minimum) Dominating Sets). A dominating set is a subset
of the nodes such that each node is in the set or adjacent to a node in the set.
A minimum dominating set is a dominating set containing the least possible
number of nodes.

Remarks:

e In general, finding a dominating set less than factor logn larger than
an minimum dominating set is NP-hard.

e Any MIS is a dominating set: if a node was not covered, it could join
the independent set.

e In general a MIS and a minimum dominating sets have not much in
common (think of a star). For graphs of bounded independence, this
is different.

Corollary 7.24. On graphs of bounded independence, a constant-factor approx-
imation to a minimum dominating set can be found in time O(logn) w.h.p.

Proof: Denote by M a minimum dominating set and by I a MIS. Since M is a
dominating set, each node from [is in M or adjacent to a node in M. Since
the graph is of bounded independence, no node in M is adjacent to more than
constantly many nodes from I. Thus, |I| € O(|M]). Therefore, we can compute
a MIS with Algorithm 7.12 and output it as the dominating set, which takes
O(logn) rounds w.h.p.

Chapter Notes

As we have seen, a MIS can be used in versatile ways. Indeed, it was once argued
that the cells of a fly compute a MIS to decide where to grow hair [AAB*11].
The fast MIS algorithm is a simplified version of an algorithm by Luby [Lub86].
Around the same time there have been a number of other papers dealing with the
same or related problems, for instance by Alon, Babai, and Itai [ABI&6], or by
Israeli and Itai [II86]. The analysis presented in Section 7.2 takes elements of all
these papers, and from other papers on distributed weighted matching [WWO04].
The analysis in the book [Pel00] by David Peleg is different, and only achieves
O(log®n) time. The new MIS variant (with the simpler analysis) of Section
7.3 is by Métivier, Robson, Saheb-Djahromi and Zemmari [MRSDZ11]. With

82 CHAPTER 7. MAXIMAL INDEPENDENT SET

some adaptations, the algorithms [Lub86, MRSDZ11] only need to exchange
a total of O(logn) bits per node, which is asymptotically optimum, even on
unoriented trees [KSOS06]. However, the distributed time complexity for MIS
is still somewhat open, as the strongest lower bounds are Q(y/logn) or Q(log A)
[KMWO04]. Recent research regarding the MIS problem focused on improving
the O(logn) time complexity for special graph classes, for instances growth-
bounded graphs [SWO08] or trees [LW11]. There are also results that depend
on the degree of the graph [BE09, Kuh09]. Deterministic MIS algorithms are
still far from the lower bounds, as the best deterministic MIS algorithm takes
20(VIogn) time [PS96]. The maximum matching algorithm mentioned in the
remarks is the blossom algorithm by Jack Edmonds.

Bibliography

[AAB*11] Yehuda Afek, Noga Alon, Omer Barad, Eran Hornstein, Naama
Barkai, and Ziv Bar-Joseph. A Biological Solution to a Fundamen-
tal Distributed Computing Problem. volume 331, pages 183-185.
American Association for the Advancement of Science, January
2011.

[ABI86] Noga Alon, Lészlé Babai, and Alon Itai. A Fast and Simple
Randomized Parallel Algorithm for the Maximal Independent Set
Problem. J. Algorithms, 7(4):567-583, 1986.

[BE09] Leonid Barenboim and Michael Elkin. Distributed (delta-+1)-
coloring in linear (in delta) time. In 41st ACM Symposium On
Theory of Computing (STOC), 2009.

[I186] Amos Israeli and Alon Itai. A Fast and Simple Randomized Parallel
Algorithm for Maximal Matching. Inf. Process. Lett., 22(2):77-80,
1986.

[KMWO04] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing (PODC), July 2004.

[KSOS06] Kishore Kothapalli, Christian Scheideler, Melih Onus, and Chris-
tian Schindelhauer. Distributed coloring in O(y/log n) Bit Rounds.
In 20th international conference on Parallel and Distributed Pro-
cessing (IPDPS), 2006.

[Kuh09] Fabian Kuhn. Weak graph colorings: distributed algorithms and
applications. In 21st ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA), 2009.

[Lub86] Michael Luby. A Simple Parallel Algorithm for the Maximal Inde-
pendent Set Problem. SIAM J. Comput., 15(4):1036-1053, 1986.

[LW11] Christoph Lenzen and Roger Wattenhofer. MIS on trees. In PODC,
pages 41-48, 2011.

BIBLIOGRAPHY 83

[MRSDZ11]

[Pel00]

[PS96]

[SWOS]

[WWO04]

Yves Métivier, John Michael Robson, Nasser Saheb-Djahromi, and
Akka Zemmari. An optimal bit complexity randomized distributed
MIS algorithm. Distributed Computing, 23(5-6):331-340, 2011.

David Peleg. Distributed Computing: a Locality-Sensitive Ap-
proach. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

Alessandro Panconesi and Aravind Srinivasan. On the Complexity
of Distributed Network Decomposition. J. Algorithms, 20(2):356—
374, 1996.

Johannes Schneider and Roger Wattenhofer. A Log-Star Distrib-
uted Maximal Independent Set Algorithm for Growth-Bounded
Graphs. In 27th ACM Symposium on Principles of Distributed
Computing (PODC), Toronto, Canada, August 2008.

Mirjam Wattenhofer and Roger Wattenhofer. Distributed
Weighted Matching. In 18th Annual Conference on Distributed
Computing (DISC), Amsterdam, Netherlands, October 2004.

84

CHAPTER 7. MAXIMAL INDEPENDENT SET

Chapter 8

Locality Lower Bounds

In Chapter 1, we looked at distributed algorithms for coloring. In particular,
we saw that rings and rooted trees can be colored with 3 colors in log™ n+ O(1)
rounds.

8.1 Model

In this chapter, we will reconsider the distributed coloring problem. We will look
at a classic lower bound that shows that the result of Chapter 1 is tight: Coloring
rings (and rooted trees) indeed requires Q(log* n) rounds. In particular, we will
prove a lower bound for coloring in the following setting:

e We consider deterministic, synchronous algorithms.
e Message size and local computations are unbounded.
e We assume that the network is a directed ring with n nodes.

e Nodes have unique labels (identifiers) from 1 to n.

Remarks:

e A generalization of the lower bound to randomized algorithms is pos-
sible.

e Except for restricting to deterministic algorithms, all the conditions
above make a lower bound stronger: Any lower bound for synchronous
algorithms certainly also holds for asynchronous ones. A lower bound
that is true if message size and local computations are not restricted
is clearly also valid if we require a bound on the maximal message
size or the amount of local computations. Similarly, assuming that
the ring is directed and that node labels are from 1 to n (instead of
choosing IDs from a more general domain) also strengthens the lower
bound.

e Instead of directly proving that 3-coloring a ring needs Q(log" n)
rounds, we will prove a slightly more general statement. We will con-
sider deterministic algorithms with time complexity r (for arbitrary

85

86 CHAPTER 8. LOCALITY LOWER BOUNDS

Algorithm 8.1 Synchronous Algorithm: Canonical Form

1: In r rounds: send complete initial state to nodes at distance at most r
2: // do all the communication first
3: Compute output based on complete information about r-neighborhood
4 // do all the computation in the end

r) and derive a lower bound on the number of colors that are needed if
we want to properly color an n-node ring with an r-round algorithm.
A 3-coloring lower bound can then be derived by taking the smallest
r for which an r-round algorithm needs 3 or fewer colors.

8.2 Locality

Let us for a moment look at distributed algorithms more generally (i.e., not
only at coloring and not only at rings). Assume that initially, all nodes only
know their own label (identifier) and potentially some additional input. As
information needs at least r rounds to travel r hops, after r rounds, a node v
can only learn about other nodes at distance at most r. If message size and local
computations are not restricted, it is in fact not hard to see, that in r rounds,
a node v can exactly learn all the node labels and inputs up to distance r.
As shown by the following lemma, this allows to transform every deterministic
r-round synchronous algorithm into a simple canonical form.

Lemma 8.2. If message size and local computations are not bounded, every
deterministic, synchronous r-round algorithm can be transformed into an algo-
rithm of the form given by Algorithm 8.1 (i.e., it is possible to first communicate
for r rounds and then do all the computations in the end).

Proof. Consider some r-round algorithm A. We want to show that A can be
brought to the canonical form given by Algorithm 8.1. First, we let the nodes
communicate for r rounds. Assume that in every round, every node sends its
complete state to all of its neighbors (remember that there is no restriction on
the maximal message size). By induction, after ¢ rounds, every node knows the
initial state of all other nodes at distance at most 7. Hence, after r rounds, a
node v has the combined initial knowledge of all the nodes in its r-neighborhood.
We want to show that this suffices to locally (at node v) simulate enough of
Algorithm A to compute all the messages that v receives in the » communication
rounds of a regular execution of Algorithm A.

Concretely, we prove the following statement by induction on . For all
nodes at distance at most 7 — 7 + 1 from v, node v can compute all messages
of the first ¢ rounds of a regular execution of 4. Note that this implies that v
can compute all the messages it receives from its neighbors during all r rounds.
Because v knows the initial state of all nodes in the r-neighborhood, v can
clearly compute all messages of the first round (i.e., the statement is true for
i =1). Let us now consider the induction step from i to i+ 1. By the induction
hypothesis, v can compute the messages of the first ¢ rounds of all nodes in
its (r — i 4+ 1)-neighborhood. It can therefore compute all messages that are
received by nodes in the (r — i)-neighborhood in the first ¢ rounds. This is of

8.2. LOCALITY 87

course exactly what is needed to compute the messages of round ¢ + 1 of nodes
in the (r — 4)-neighborhood. O

Remarks:

e It is straightforward to generalize the canonical form to randomized
algorithms: Every node first computes all the random bits it needs
throughout the algorithm. The random bits are then part of the initial
state of a node.

Definition 8.3 (r-hop view). We call the collection of the initial states of all
nodes in the r-neighborhood of a node v, the r-hop view of v.

Remarks:

e Assume that initially, every node knows its degree, its label (identi-
fier) and potentially some additional input. The r-hop view of a node
v then includes the complete topology of the r-neighborhood (exclud-
ing edges between nodes at distance r) and the labels and additional
inputs of all nodes in the r-neighborhood.

Based on the definition of an r-hop view, we can state the following corollary
of Lemma 8.2.

Corollary 8.4. A deterministic r-round algorithm A is a function that maps
every possible r-hop view to the set of possible outputs.

Proof. By Lemma 8.2, we know that we can transform Algorithm A to the
canonical form given by Algorithm 8.1. After » communication rounds, every
node v knows exactly its r-hop view. This information suffices to compute the
output of node v. O

Remarks:

e Note that the above corollary implies that two nodes with equal r-hop
views have to compute the same output in every r-round algorithm.

e For coloring algorithms, the only input of a node v is its label. The
r-hop view of a node therefore is its labeled r-neighborhood.

e If we only consider rings, r-hop neighborhoods are particularly simple.
The labeled r-neighborhood of a node v (and hence its r-hop view) in
an oriented ring is simply a (2r + 1)-tuple ((—,, €—_r11,..., Loy, &)
of distinct node labels where £y is the label of v. Assume that for
i > 0, ¢; is the label of the i** clockwise neighbor of v and ¢_; is
the label of the i** counterclockwise neighbor of v. A deterministic
coloring algorithm for oriented rings therefore is a function that maps
(2r 4 1)-tuples of node labels to colors.

e Consider two r-hop views V, = ({_,,...,¢.) and V. = (¢ ,,...,0).
If 0, =l;qq for —r <i<r—1andif €] #¢,; for —r < i <r, the r-hop
view V! can be the r-hop view of a clockwise neighbor of a node with
r-hop view V,. Therefore, every algorithm A that computes a valid
coloring needs to assign different colors to V,. and V... Otherwise, there
is a ring labeling for which A assigns the same color to two adjacent
nodes.

88 CHAPTER 8. LOCALITY LOWER BOUNDS

8.3 The Neighborhood Graph

We will now make the above observations concerning colorings of rings a bit
more formal. Instead of thinking of an r-round coloring algorithm as a function
from all possible r-hop views to colors, we will use a slightly different perspective.
Interestingly, the problem of understanding distributed coloring algorithms can
itself be seen as a classical graph coloring problem.

Definition 8.5 (Neighborhood Graph). For a given family of network graphs
G, the r-neighborhood graph N,.(G) is defined as follows. The node set of N.(G)
is the set of all possible labeled r-neighborhoods (i.e., all possible r-hop views).
There is an edge between two labeled r-neighborhoods V. and V. if V. and V..
can be the r-hop views of two adjacent nodes.

Lemma 8.6. For a given family of network graphs G, there is an r-round al-
gorithm that colors graphs of G with ¢ colors iff the chromatic number of the
neighborhood graph is x(N-(G)) < c.

Proof. We have seen that a coloring algorithm is a function that maps every
possible r-hop view to a color. Hence, a coloring algorithm assigns a color to
every node of the neighborhood graph N,.(G). If two r-hop views V, and V. can
be the r-hop views of two adjacent nodes u and v (for some labeled graph in
G), every correct coloring algorithm must assign different colors to V. and V..
Thus, specifying an r-round coloring algorithm for a family of network graphs
G is equivalent to coloring the respective neighborhood graph N,.(G). O

Instead of directly defining the neighborhood graph for directed rings, we de-
fine directed graphs By, that are closely related to the neighborhood graph. The
node set of By, contains all k-tuples of increasing node labels ([n] = {1,...,n}):

VB = {(oa,...;00) s €[n],i <j— o <oy} (8.1)

For a = (ay,...,ax) and 8 = (B,..., Bk) there is a directed edge from « to

Vie{l,...7k—1}:6i:ai+1. (82)

Lemma 8.7. Viewed as an undirected graph, the graph Ba,+1 is a subgraph of
the r-neighborhood graph of directed n-node rings with node labels from [n].

Proof. The claim follows directly from the observations regarding r-hop views
of nodes in a directed ring from Section 8.2. The set of k-tuples of increasing
node labels is a subset of the set of k-tuples of distinct node labels. Two nodes
of By, 41 are connected by a directed edge iff the two corresponding r-hop views
are connected by a directed edge in the neighborhood graph. Note that if there
is an edge between o and § in By, a1 # B because the node labels in ¢ and
are increasing. N a

To determine a lower bound on the number of colors an r-round algorithm
needs for directed n-node rings, it therefore suffices to determine a lower bound
on the chromatic number of Ba,;1. To obtain such a lower bound, we need the
following definition.

8.3. THE NEIGHBORHOOD GRAPH 89

Definition 8.8 (Diline Graph). The directed line graph (diline graph) DL(G)
of a directed graph G = (V, E) is defined as follows. The node set of DL(G) is
VIDL(G)] = E. There is a directed edge ((w,z), (y, 2)) between (w,z) € E and
(y,2) € E iff x =y, i.e., if the first edge ends where the second one starts.

Lemma 8.9. Ifn > k, the graph Bry1 can be defined recursively as follows:
B]c+]_ = D;C(Bk)

Proof. The edges of By, are pairs of k-tuples a = (avq,...,ax) and 8 = (B1, ..., Bk)
that satisfy Conditions (8.1) and (8.2). Because the last k& — 1 labels in « are
equal to the first £ — 1 labels in §, the pair («,) can be represented by a
(k+1)-tuple v = (Y1, ..., Voy1) With y1 = a1, 75 = i1 = a; for 2 < i < k, and
Ye+1 = Br. Because the labels in o and the labels in 8 are increasing, the labels
in v are increasing as well. The two graphs Bj,1 and DL(By) therefore have
the same node sets. There is an edge between two nodes (a;, B,) and (ay, 3,) of
DL(By) if B | = Qy. This is equivalent to requiring that the two corresponding
(k + 1)-tuples 7, and 7, are neighbors in By 1, i.e., that the last k labels of v,
are equal to the first £ labels of Yy O

The following lemma establishes a useful connection between the chromatic
numbers of a directed graph G and its diline graph DL(G).

Lemma 8.10. For the chromatic numbers x(G) and x(DL(G)) of a directed
graph G and its diline graph, it holds that

X(DL(G)) > log, (x(G)).

Proof. Given a c-coloring of DL(G), we show how to construct a 2¢ coloring of G.
The claim of the lemma then follows because this implies that x(G) < 2X(P£(G),

Assume that we are given a c-coloring of DL(G). A c-coloring of the diline
graph DL(G) can be seen as a coloring of the edges of G such that no two
adjacent edges have the same color. For a node v of G, let S, be the set of
colors of its outgoing edges. Let v and v be two nodes such that G' contains a
directed edge (u,v) from u to v and let = be the color of (u,v). Clearly, z € S,
because (u,v) is an outgoing edge of u. Because adjacent edges have different
colors, no outgoing edge (v, w) of v can have color x. Therefore x & S,. This
implies that S, # S,. We can therefore use these color sets to obtain a vertex
coloring of G, i.e., the color of u is S,, and the color of v is S,,. Because the
number of possible subsets of [¢] is 2¢, this yields a 2¢-coloring of G. O

Let log(i) x be the i-fold application of the base-2 logarithm to x:

logW 2 = log, z, logl ™tV o = logQ(log(i)).

Remember from Chapter 1 that
log"hx=1ifz <2, log"x=14 min{s: log™ z < 2}.

For the chromatic number of By, we obtain

Lemma 8.11. For alln > 1, x(B1) = n. Further, forn > k > 2, x(Bg) >
log(k_l) n.

90 CHAPTER 8. LOCALITY LOWER BOUNDS

Proof. For k = 1, By is the complete graph on n nodes with a directed edge
from node ¢ to node j iff i < j. Therefore, x(B1) = n. For k > 2, the claim
follows by induction and Lemmas 8.9 and 8.10. O

This finally allows us to state a lower bound on the number of rounds needed
to color a directed ring with 3 colors.

Theorem 8.12. Fvery deterministic, distributed algorithm to color a directed
ring with 3 or less colors needs at least (log" n)/2 — 1 rounds.

Proof. Using the connection between By and the neighborhood graph for di-
rected rings, it suffices to show that x(Bay+1) > 3 for all r < (log"n)/2 — 1.
From Lemma 8.11, we know that y(Bar11) > log®” n. To obtain log®®™ n < 2,
we need r > (log* n)/2 — 1. Because log, 3 < 2, we therefore have log®” n > 3
if r <log"n/2—1. O

Corollary 8.13. Every deterministic, distributed algorithm to compute an MIS
of a directed ring needs at least log" n/2 — O(1) rounds.

Remarks:

e It is straightforward to see that also for a constant ¢ > 3, the number
of rounds needed to color a ring with ¢ or less colors is log" n/2—O(1).

e There basically (up to additive constants) is a gap of a factor of 2
between the log* n+O(1) upper bound of Chapter 1 and the log* n/2—
O(1) lower bound of this chapter. It is possible to show that the lower
bound is tight, even for undirected rings (for directed rings, this will
be part of the exercises).

e Alternatively, the lower bound can also be presented as an application
of Ramsey’s theory. Ramsey’s theory is best introduced with an ex-
ample: Assume you host a party, and you want to invite people such
that there are no three people who mutually know each other, and no
three people which are mutual strangers. How many people can you
invite? This is an example of Ramsey’s theorem, which says that for
any given integer ¢, and any given integers ny, ..., n., there is a Ram-
sey number R(nq,...,n.), such that if the edges of a complete graph
with R(n1,...,n.) nodes are colored with ¢ different colors, then for
some color ¢ the graph contains some complete subgraph of color i of
size n;. The special case in the party example is looking for R(3, 3).

e Ramsey theory is more general, as it deals with hyperedges. A normal
edge is essentially a subset of two nodes; a hyperedge is a subset of
k nodes. The party example can be explained in this context: We
have (hyper)edges of the form {i,j}, with 1 < 4,5 < n. Choosing n
sufficiently large, coloring the edges with two colors must exhibit a
set S of 3 edges {i,j} C {v1,v2,v3}, such that all edges in S have the
same color. To prove our coloring lower bound using Ramsey theory,
we form all hyperedges of size k = 2r+1, and color them with 3 colors.
Choosing n sufficiently large, there must be a set S = {v1,...,vp41}
of k + 1 identifiers, such that all k£ + 1 hyperedges consisting of k

8.3. THE NEIGHBORHOOD GRAPH 91

nodes from S have the same color. Note that both {v,...,v;} and
{va,...,vps1} are in the set S, hence there will be two neighboring
views with the same color. Ramsey theory shows that in this case
n will grow as a power tower (tetration) in k. Thus, if n is so large
that k is smaller than some function growing like log™ n, the coloring
algorithm cannot be correct.

e The neighborhood graph concept can be used more generally to study
distributed graph coloring. It can for instance be used to show that
with a single round (every node sends its identifier to all neighbors) it
is possible to color a graph with (1+0(1))A% Inn colors, and that every
one-round algorithm needs at least Q(A2/log? A + loglogn) colors.

e One may also extend the proof to other problems, for instance one
may show that a constant approximation of the minimum dominating
set problem on unit disk graphs costs at least log-star time.

e Using r-hop views and the fact that nodes with equal r-hop views have
to make the same decisions is the basic principle behind almost all lo-
cality lower bounds (in fact, we are not aware of a locality lower bound
that does not use this principle). Using this basic technique (but a
completely different proof otherwise), it is for instance possible to show
that computing an MIS (and many other problems) in a general graph

requires at least Q(y/logn/loglogn) and Q(log A/loglog A) rounds.

Chapter Notes

The lower bound proof in this chapter is by Linial [Lin92], proving asymptotic
optimality of the technique of Chapter 1. This proof can also be found in
Chapter 7.5 of [Pel00]. An alternative proof that omits the neighborhood graph
construction is presented in [L.S14]. The lower bound is also true for randomized
algorithms [Nao91]. Recently, this lower bound technique was adapted to other
problems [CHWO08, LW08]. In some sense, Linial’s seminal work raised the
question of what can be computed in O(1) time [NS93], essentially starting
distributed complexity theory.

More recently, using a different argument, Kuhn et al. [KMW04, KMW16]
managed to show more substantial lower bounds for a number of combinatorial
problems including minimum vertex cover (MVC), minimum dominating set
(MDS), maximal matching, or maximal independent set (MIS). More concretely,
Kuhn et al. showed that all these problems need polylogarithmic time (for a
polylogarithmic approximation, in case of approximation problems such as MVC
and MDS). Some of these bounds are tight, e.g. the MVC Q(log A/loglog A)
lower bound is surprisingly tight [BYCHS16]. For recent surveys regarding
locality lower bounds we refer to e.g. [Suol2, KMW16].

Ramsey theory was started by Frank P. Ramsey with his 1930 article called
“On a problem of formal logic” [Ram30]. For an introduction to Ramsey theory
we refer to e.g. [NR90, LRO3].

92

CHAPTER 8. LOCALITY LOWER BOUNDS

Bibliography

[BYCHS16]

[CHWOS]

[KMW04]

[KMW16]

[Lin92]

[LRO3]

[LS14]

[LWOS]

[Nao91]

[NR90]

[NS93]

[Pel00]

[Ram30]

[Suol2]

Reuven Bar-Yehuda, Keren Censor-Hillel, and Gregory Schwartz-
man. A distributed (24e¢)-approximation for vertex cover in
o(logd /e log log) rounds. pages 3-8, 2016.

A. Czygrinow, M. Hanc¢kowiak, and W. Wawrzyniak. Fast Distrib-
uted Approximations in Planar Graphs. In Proceedings of the 22nd
International Symposium on Distributed Computing (DISC), 2008.

F. Kuhn, T. Moscibroda, and R. Wattenhofer. What Cannot Be
Computed Locally! In Proceedings of the 23rd ACM Symposium
on Principles of Distributed Computing (PODC), July 2004.

Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local
Computation: Lower and Upper Bounds. In Journal of the ACM
(JACM), 2016.

N. Linial. Locality in Distributed Graph Algorithms. STAM Journal
on Computing, 21(1)(1):193-201, February 1992.

Bruce M. Landman and Aaron Robertson. Ramsey Theory on the
Integers. American Mathematical Society, 2003.

Juhana Laurinharju and Jukka Suomela. Brief Announcement:
Linial’s Lower Bound Made Easy. In Proceedings of the 2014 ACM
Symposium on Principles of Distributed Computing, PODC 14,
pages 377-378, New York, NY, USA, 2014. ACM.

Christoph Lenzen and Roger Wattenhofer. Leveraging Linial’s Lo-
cality Limit. In 22nd International Symposium on Distributed Com-
puting (DISC), Arcachon, France, September 2008.

Moni Naor. A Lower Bound on Probabilistic Algorithms for Dis-
tributive Ring Coloring. SIAM J. Discrete Math., 4(3):409-412,
1991.

Jaroslav Nesetril and Vojtech Rodl, editors. Mathematics of Ram-
sey Theory. Springer Berlin Heidelberg, 1990.

Moni Naor and Larry Stockmeyer. What can be Computed Lo-
cally? In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, STOC ’93, pages 184-193, New York, NY,
USA, 1993. ACM.

David Peleg. Distributed Computing: a Locality-Sensitive Ap-
proach. Society for Industrial and Applied Mathematics, Philadel-
phia, PA, USA, 2000.

F. P. Ramsey. On a Problem of Formal Logic. Proc. London Math.
Soc. (3), 30:264-286, 1930.

Jukka Suomela. Survey of Local Algorithms.
http://www.cs.helsinki.fi/local-survey/, 2012.

Chapter 9

Social Networks

Distributed computing is applicable in various contexts. This lecture exemplar-
ily studies one of these contexts, social networks, an area of study whose origins
date back a century. To give you a first impression, consider Figure 9.1.

Figure 9.1: This graph shows the social relations between the members of a
karate club, studied by anthropologist Wayne Zachary in the 1970s. Two people
(nodes) stand out, the instructor and the administrator of the club, both happen
to have many friends among club members. At some point, a dispute caused
the club to split into two. Can you predict how the club partitioned? (If not,
just search the Internet for Zachary and Karate.)

93

94 CHAPTER 9. SOCIAL NETWORKS

9.1 Small World Networks

Back in 1929, Frigyes Karinthy published a volume of short stories that pos-
tulated that the world was “shrinking” because human beings were connected
more and more. Some claim that he was inspired by radio network pioneer
Guglielmo Marconi’s 1909 Nobel Prize speech. Despite physical distance, the
growing density of human “networks” renders the actual social distance smaller
and smaller. As a result, it is believed that any two individuals can be connected
through at most five (or so) acquaintances, i.e., within six hops.

The topic was hot in the 1960s. For instance, in 1964, Marshall McLuhan
coined the metaphor “Global Village”. He wrote: “As electrically contracted,
the globe is no more than a village”. He argues that due to the almost instanta-
neous reaction times of new (“electric”) technologies, each individual inevitably
feels the consequences of his actions and thus automatically deeply participates
in the global society. McLuhan understood what we now can directly observe —
real and virtual world are moving together. He realized that the transmission
medium, rather than the transmitted information is at the core of change, as
expressed by his famous phrase “the medium is the message”.

This idea has been followed ardently in the 1960s by several sociologists,
first by Michael Gurevich, later by Stanley Milgram. Milgram wanted to know
the average path length between two “random” humans, by using various ex-
periments, generally using randomly chosen individuals from the US Midwest
as starting points, and a stockbroker living in a suburb of Boston as target.
The starting points were given name, address, occupation, plus some personal
information about the target. They were asked to send a letter to the target.
However, they were not allowed to directly send the letter, rather, they had to
pass it to somebody they knew on first-name basis and that they thought to
have a higher probability to know the target person. This process was repeated,
until somebody knew the target person, and could deliver the letter. Shortly
after starting the experiment, letters have been received. Most letters were lost
during the process, but if they arrived, the average path length was about 5.5.
The observation that the entire population is connected by short acquaintance
chains got later popularized by the terms “six degrees of separation” and “small
world”.

Statisticians tried to explain Milgram’s experiments, by essentially giving
network models that allowed for short diameters, i.e., each node is connected
to each other node by only a few hops. Until today there is a thriving research
community in statistical physics that tries to understand network properties
that allow for “small world” effects.

The world is often fascinated by graphs with a small radius. For example,
movie fanatics study the who-acted-with-whom-in-the-same-movie graph. For
this graph it has long been believed that the actor Kevin Bacon has a partic-
ularly small radius. The number of hops from Bacon even got a name, the
Bacon Number. In the meantime, however, it has been shown that there are
“better” centers in the Hollywood universe, such as Sean Connery, Christopher
Lee, Rod Steiger, Gene Hackman, or Michael Caine. The center of other social
networks has also been explored, Paul Erdés for instance is well known in the
math community.

One of the keywords in this area are power-law graphs, networks where node
degrees are distributed according to a power-law distribution, i.e., the number

9.1. SMALL WORLD NETWORKS 95

of nodes with degree § is proportional to §=%, for some o > 1. Such power-
law graphs have been witnessed in many application areas, apart from social
networks also in the web, or in biology or physics.

Obviously, two power-law graphs might look and behave completely differ-
ently, even if @ and the number of edges is exactly the same.

One well-known model towards this end is the Watts-Strogatz model. Watts
and Strogatz argued that social networks should be modeled by a combination of
two networks: As the basis we take a network that has a large cluster coefficient

Definition 9.2. The cluster coefficient of a network is defined by the probability
that two friends of a node are likely to be friends as well, averaged over all the
nodes.

..., then we augment such a graph with random links, every node for in-
stance points to a constant number of other nodes, chosen uniformly at random.
This augmentation represents acquaintances that connect nodes to parts of the
network that would otherwise be far away.

Remarks:

o Without further information, knowing the cluster coefficient is of ques-
tionable value: Assume we arrange the nodes in a grid. Technically,
if we connect each node to its four closest neighbors, the graph has
cluster coefficient 0, since there are no triangles; if we instead connect
each node with its eight closest neighbors, the cluster coefficient is 3/7.
The cluster coefficient is quite different, even though both networks
have similar characteristics.

This is interesting, but not enough to really understand what is going on. For
Milgram’s experiments to work, it is not sufficient to connect the nodes in a
certain way. In addition, the nodes themselves need to know how to forward
a message to one of their neighbors, even though they cannot know whether
that neighbor is really closer to the target. In other words, nodes are not just
following physical laws, but they make decisions themselves.

Let us consider an artificial network with nodes on a grid topology, plus some
additional random links per node. In a quantitative study it was shown that the
random links need a specific distance distribution to allow for efficient greedy
routing. This distribution marks the sweet spot for any navigable network.

Definition 9.4 (Augmented Grid). We take n = m? nodes (i,j) € V =
{1,... ,m}2 that are identified with the lattice points on an m X m grid. We
define the distance between two nodes (i,j) and (k,€) as d((i,j), (k,0)) = |k —
i| + |€ — j| as the distance between them on the m x m lattice. The network
is modeled using a parameter a > 0. FEach node u has a directed edge to ev-
ery lattice neighbor. These are the local contacts of a node. In addition, each
node also has an additional random link (the long-range contact). For all u
and v, the long-range contact of u points to node v with probability proportional
to d(u,v)™%, i.e., with probability d(u,v)™*/ 3, ev\ (o3 d(u,w)~*. Figure 9.3
tllustrates the model.

96 CHAPTER 9. SOCIAL NETWORKS
Figure 9.3: Augmented grid with m =6
Remarks:

e The network model has the following geographic interpretation: nodes

(individuals) live on a grid and know their neighbors on the grid.
Further, each node has some additional acquaintances throughout the
network.

The parameter o controls how the additional neighbors are distributed
across the grid. If & = 0, long-range contacts are chosen uniformly at
random (as in the Watts-Strogatz model). As « increases, long-range
contacts become shorter on average. In the extreme case, if @ — o0,
all long-range contacts are to immediate neighbors on the grid.

It can be shown that as long as a < 2, the diameter of the resulting
graph is polylogarithmic in n (polynomial in logn) with high proba-
bility. In particular, if the long-range contacts are chosen uniformly
at random (a = 0), the diameter is O(logn).

Since the augmented grid contains random links, we do not know anything

for sure about how the random links are distributed. In theory, all links could
point to the same node! However, this is almost certainly not the case. Formally
this is captured by the term with high probability.

Definition 9.5 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p > 1 —

9.1. SMALL WORLD NETWORKS 97

1/nc, where ¢ is a constant. The constant ¢ may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Remarks:

e For instance, a running time bound of clogn or e® log n + 5000¢ with
probability at least 1 —1/n° would be O(logn) w.h.p., but a running
time of n¢ would not be O(n) w.h.p. since ¢ might also be 50.

e This definition is very powerful, as any polynomial (in 7) number
of statements that hold w.h.p. also holds w.h.p. at the same time,
regardless of any dependencies between random variables!

Theorem 9.6. The diameter of the augmented grid with o = 0 is O(logn) with
high probability.

Proof Sketch. For simplicity, we will only show that we can reach a target node
t starting from some source node s. However, it can be shown that (essentially)
each of the intermediate claims holds with high probability, which then by means
of the union bound yields that all of the claims hold simultaneously with high
probability for all pairs of nodes (see exercises).

Let N be the [logn]-hop neighborhood of source s on the grid, containing
Q(log® n) nodes. Each of the nodes in N, has a random link, probably leading
to distant parts of the graph. As long as we have reached only o(n) nodes, any
new random link will with probability 1 — o(1) lead to a node for which none of
its grid neighbors has been visited yet. Thus, in expectation we find almost | N|
new nodes whose neighbors are “fresh”. Using their grid links, we will reach
(4—0(1))|Ns| more nodes within one more hop. If bad luck strikes, it could still
happen that many of these links lead to a few nodes, already visited nodes, or
nodes that are very close to each other. But that is very unlikely, as we have
lots of random choices! Indeed, it can be shown that not only in expectation,
but with high probability (5 — o(1))|Ns| many nodes are reached this way (see
exercises).

Because all the new nodes have (so far unused) random links, we can repeat
this reasoning inductively, implying that the number of nodes grows by (at least)
a constant factor for every two hops. Thus, after O(logn) hops, we will have
reached n/logn nodes (which is still small compared to n). Finally, consider the
expected number of links from these nodes that enter the (logn)-neighborhood
of some target node ¢t with respect to the grid. Since this neighborhood consists
of Q(log®n) nodes, in expectation Q(logn) links come close enough to target
t. This is large enough to almost guarantee that this happens (see exercises).
Summing everything up, we still used merely O(logn) hops in total to get from
s to t.

O

This shows that for & = 0 (and in fact for all o < 2), the resulting net-
work has a small diameter. Recall however that we also wanted the network
to be navigable. For this, we consider a simple greedy routing strategy (Algo-
rithm 9.7).

Lemma 9.8. In the augmented grid, Algorithm 9.7 finds a routing path of length
at most 2(m — 1) € O(y/n).

98 CHAPTER 9. SOCIAL NETWORKS

Algorithm 9.7 Greedy Routing
1: while not at destination do
2: go to a neighbor which is closest to destination (considering grid distance
only)
3: end while

Proof. Because of the grid, there is always a neighbor which is closer to the
destination. Since with each hop we reduce the distance to the target at least
by one in one of the two grid dimensions, we will reach the destination within
2(m — 1) steps. O

This is not really what Milgram’s experiment promises. We want to know
how much the additional random links speed up the process. To this end, we
first need to understand how likely it is that the random link of node u points
to node v, in terms of their grid distance d(u,v), the number of nodes n, and
the constant parameter a.

Lemma 9.9. Node u’s random link points to a node v with probability
o O(1/(d(u,v)*m?*= %)) if a < 2.
o O(1/(d(u,v)*logn)) if a = 2,
e O(1/d(u,v)*) if « > 2.

Moreover, if a > 2, the probability to see a link of length at least d is in
O(1/d*=2).

Proof. For a constant a # 2, we have that

> mwer <k o (L) o (F=)

weV\{u}

If o < 2, this gives ©(m?~%), if a > 2, it is in O(1). If a = 2, we get

m m

2 d(ulw)a €. @X) =0(1)- Z% = O(logm) = O(logn).
’ r=1

weV\{u} r=1

Multiplying with d(u,v)® yields the first three bounds. For the last statement,
compute

3 e(1/d(u,0)*) = © (/n — dr) e ([;Q__Z]j) = O(1/d°2).

=q T
veV
d(u,v)>d

9.1. SMALL WORLD NETWORKS 99

Remarks:

e If a > 2, according to the lemma, the probability to see a random link
of length at least d = m'/(®=1D is ©(1/d*~2?) = O(1/m(*=2)/(e=1),
In expectation we have to take @(m(®~2/(@=1)) hops until we see a
random link of length at least d. When just following links of length
less than d, it takes more than m/d = m/m'/(@=1) = mla=2)/(a=1)
hops. In other words, in expectation, either way we need at least
me=2)/(e=1) — Q1) hops to the destination.

o If o < 2, there is a (slightly more complicated) argument. First we
draw a border around the nodes in distance mZ=®/3 to the target.
Within this border there are about m22~®)/3 many nodes in the tar-
get area. Assume that the source is outside the target area. Start-
ing at the source, the probability to find a random link that leads
directly inside the target area is according to the lemma at most
m22=)/3 . 9(1/m?>=)) = O(1/m~*)/3). In other words, until we
find a random link that leads into the target area, in expectation,
we have to do ©(m(~*)/3) hops. This is too slow, and our greedy
strategy is probably faster, as thanks to having o < 2 there are many
long-range links. However, it means that we will probably enter the
border of the target area on a regular grid link. Once inside the tar-
get area, again the probability of short-cutting our trip by a random
long-range link is ©(1/m~*)/3) so we probably just follow grid links,
m=/3 = 1) many of them.

e In summary, if o # 2, our greedy routing algorithm takes m®(!) =

n(M) expected hops to reach the destination. This is polynomial in
the number of nodes n, and the social network can hardly be called a
“small world”.

e Maybe we can get a polylogarithmic bound on n if we set a = 27

Definition 9.10 (Phase). Consider routing from source s to targett and assume
that we are at some intermediate node w. We say that we are in phase j at node

w if the lattice distance d(w,t) to the target node t is between 29 < d(w,t) <
27+,

Remarks:

e Enumerating the phases in decreasing order is useful, as notation be-
comes less cumbersome.

e There are [logm] € O(logn) phases.

Lemma 9.11. Assume that we are in phase j at node w when routing from s
to t. The probability for getting (at least) to phase j — 1 in one step is at least
Q(1/logn).

Proof. Let B; be the set of nodes z with d(z,t) < 27. We get from phase j to
(at least) phase j — 1 if the long-range contact of node w points to some node
in B;. Note that we always make progress while following the greedy routing
path. Therefore, we have not seen node w before and the long-range contact of

100 CHAPTER 9. SOCIAL NETWORKS

w points to a random node that is independent of anything seen on the path
from s to w.

For all nodes x € Bj, we have d(w,) < d(w,t) +d(z,t) <291 4+27 < 2742,
Hence, for each node = € Bj, the probability that the long-range contact of w
points to z is Q(1/227F*logn). Further, the number of nodes in B; is at least
(27)2/2 = 227=1. Hence, the probability that some node in B; is the long range
contact of w is at least

Q1B kY=o 2 Yo L O
(l j|.22ﬂ'+4logn>_ (22j+4logn)_ (10gn)'

Theorem 9.12. Consider the greedy routing path from a node s to a node t
on an augmented grid with parameter a = 2. The expected length of the path is
O(log®n).

Proof. We already observed that the total number of phases is O(logn) (the
distance to the target is halved when we go from phase j to phase j — 1). At
each point during the routing process, the probability of proceeding to the next
phase is at least 2(1/logn). Let X; be the number of steps in phase j. Because
the probability for ending the phase is 2(1/logn) in each step, in expectation
we need O(logn) steps to proceed to the next phase, i.e., E[X;] € O(logn). Let
X = Zj X be the total number of steps of the routing process. By linearity of
expectation, we have

E[X] =) E[X;] € O(log® n). O

Remarks:
e One can show that the O(log? n) result also holds w.h.p.

e In real world social networks, the parameter a was evaluated experi-
mentally. The assumption is that you are connected to the geograph-
ically closest nodes, and then have some random long-range contacts.
For Facebook grandpa LiveJournal it was shown that « is not really
2, but rather around 1.25.

9.2 Propagation Studies

In networks, nodes may influence each other’s behavior and decisions. There are
many applications where nodes influence their neighbors, e.g., they may impact
their opinions, or they may bias what products they buy, or they may pass on
a disease.

On a beach (modeled as a line segment), it is best to place an ice cream
stand right in the middle of the segment, because you will be able to “control”
the beach most easily. What about the second stand, where should it settle?
The answer generally depends on the model, but assuming that people will buy
ice cream from the stand that is closer, it should go right next to the first stand.

Rumors can spread surprisingly fast through social networks. Tradition-
ally this happens by word of mouth, but with the emergence of the Internet
and its possibilities new ways of rumor propagation are available. People write

9.2. PROPAGATION STUDIES 101

email, use instant messengers or publish their thoughts in a blog. Many factors
influence the dissemination of rumors. It is especially important where in a net-
work a rumor is initiated and how convincing it is. Furthermore the underlying
network structure decides how fast the information can spread and how many
people are reached. More generally, we can speak of diffusion of information in
networks. The analysis of these diffusion processes can be useful for viral mar-
keting, e.g., to target a few influential people to initiate marketing campaigns.
A company may wish to distribute the rumor of a new product via the most
influential individuals in popular social networks such as Facebook. A second
company might want to introduce a competing product and has hence to select
where to seed the information to be disseminated. Rumor spreading is quite
similar to our ice cream stand problem.

More formally, we may study propagation problems in graphs. Given a
graph, and two players. Let the first player choose a seed node u; afterwards
let the second player choose a seed node ug, with us # uy. The goal of the game
is to maximize the number of nodes that are closer to one’s own seed node.

In many graphs it is an advantage to choose first. In a star graph for instance
the first player can choose the center node of the star, controlling all but one
node. In some other graphs, the second player can at least score even. But is
there a graph where the second player has an advantage?

Theorem 9.13. In a two player rumor game where both players select one node
to initiate their rumor in the graph, the first player does not always win.

Proof. See Figure 9.14 for an example where the second player will always win,
regardless of the decision the first player. If the first player chooses the node xg
in the center, the second player can select x1. Choice z1 will be outwitted by s,
and xs itself can be answered by z;. All other strategies are either symmetric,
or even less promising for the first player. O

Figure 9.14: Counter example.

102 CHAPTER 9. SOCIAL NETWORKS

Chapter Notes

A simple form of a social network is the famous stable marriage problem [DS62]
in which a stable matching bipartite graph has to be found. There exists a great
many of variations which are based on this initial problem, e.g., [KC82, KMV94,
EO06, FKPS10, Hoell]. Social networks like Facebook, Twitter and others have
grown very fast in the last years and hence spurred interest to research them.
How users influence other users has been studied both from a theoretical point
of view [KKTO03] and in practice [CHBG10]. The structure of these networks
can be measured and studied [MMG™"07]. More than half of the users in social
networks share more information than they expect to [LGKM11].

The small world phenomenon that we presented in this chapter is analyzed
by Kleinberg [Kle00]. A general overview is in [DJ10].

This chapter has been written in collaboration with Michael Kuhn.

Bibliography

[CHBG10] Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P. Kr-
ishna Gummadi. Measuring User Influence in Twitter: The Million
Follower Fallacy. In ICWSM, 2010.

[DJ10] Easley David and Kleinberg Jon. Networks, Crowds, and Markets:
Reasoning About a Highly Connected World. Cambridge University
Press, New York, NY, USA, 2010.

[DS62] D. Gale and L.S. Shapley. College Admission and the Stability of
Marriage. American Mathematical Monthly, 69(1):9-15, 1962.

[EO06] Federico Echenique and Jorge Oviedo. A theory of stability in many-
to-many matching markets. Theoretical Economics, 1(2):233-273,
2006.

[FKPS10] Patrik Floréen, Petteri Kaski, Valentin Polishchuk, and Jukka
Suomela. Almost Stable Matchings by Truncating the Gale-Shapley
Algorithm. Algorithmica, 58(1):102-118, 2010.

[Hoell] Martin Hoefer. Local Matching Dynamics in Social Networks. Au-
tomata Languages and Programming, pages 113-124, 2011.

[Kar29] Frigyes Karinthy. Chain-Links, 1929.

[KC82] Alexander S. Kelso and Vincent P. Crawford. Job Matching, Coali-
tion Formation, and Gross Substitutes. Econometrica, 50(6):1483—
1504, 1982.

[KKT03] David Kempe, Jon M. Kleinberg, and Eva Tardos. Maximizing the
spread of influence through a social network. In KDD, 2003.

[K1e00] Jon M. Kleinberg. The small-world phenomenon: an algorithm
perspective. In STOC, 2000.

[KMV94] Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line
algorithms for weighted bipartite matching and stable marriages.
Theoretical Computer Science, 127:255-267, May 1994.

BIBLIOGRAPHY 103

[LGKM11]

[McL64]

[Mil67]

[MMG*07]

[WS98]

[ZacT77]

Yabing Liu, Krishna P. Gummadi, Balanchander Krishnamurthy,
and Alan Mislove. Analyzing Facebook privacy settings: User ex-
pectations vs. reality. In Proceedings of the 11th ACM/USENIX
Internet Measurement Conference (IMC’11), Berlin, Germany,
November 2011.

Marshall McLuhan. Understanding media: The extensions of man.
McGraw-Hill, New York, 1964.

Stanley Milgram. The Small World Problem. Psychology Today,
2:60-67, 1967.

Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter
Druschel, and Bobby Bhattacharjee. Measurement and analysis of
online social networks. In Internet Measurement Comference, 2007.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of
“small-world” networks. Nature, 393(6684):440-442, Jun 1998.

W W Zachary. An information flow model for conflict and fission in
small groups. Journal of Anthropological Research, 33(4):452—-473,
1977.

104 CHAPTER 9. SOCIAL NETWORKS

Chapter 10

Synchronization

So far, we have mainly studied synchronous algorithms. Generally, asynchro-
nous algorithms are more difficult to obtain. Also it is substantially harder
to reason about asynchronous algorithms than about synchronous ones. For in-
stance, computing a BFS tree (Chapter 2) efficiently requires much more work in
an asynchronous system. However, many real systems are not synchronous, and
we therefore have to design asynchronous algorithms. In this chapter, we will
look at general simulation techniques, called synchronizers, that allow running
synchronous algorithms in asynchronous environments.

10.1 Basics

A synchronizer generates sequences of clock pulses at each node of the network
satisfying the condition given by the following definition.

Definition 10.1 (valid clock pulse). We call a clock pulse generated at a node
v valid if it is generated after v received all the messages of the synchronous
algorithm sent to v by its neighbors in the previous pulses.

Given a mechanism that generates the clock pulses, a synchronous algorithm
is turned into an asynchronous algorithm in an obvious way: As soon as the 7'}
clock pulse is generated at node v, v performs all the actions (local computations
and sending of messages) of round ¢ of the synchronous algorithm.

Theorem 10.2. If all generated clock pulses are valid according to Definition
10.1, the above method provides an asynchronous algorithm that behaves exactly
the same way as the given synchronous algorithm.

Proof. When the i*" pulse is generated at a node v, v has sent and received
exactly the same messages and performed the same local computations as in
the first 4 — 1 rounds of the synchronous algorithm. O

The main problem when generating the clock pulses at a node v is that v can-
not know what messages its neighbors are sending to it in a given synchronous
round. Because there are no bounds on link delays, v cannot simply wait “long
enough” before generating the next pulse. In order satisfy Definition 10.1, nodes
have to send additional messages for the purpose of synchronization. The total

105

106 CHAPTER 10. SYNCHRONIZATION

complexity of the resulting asynchronous algorithm depends on the overhead
introduced by the synchronizer. For a synchronizer S, let T'(S) and M(S) be
the time and message complexities of S for each generated clock pulse. As we
will see, some of the synchronizers need an initialization phase. We denote the
time and message complexities of the initialization by Tinit(S) and Myt (S),
respectively. If T'(A) and M (A) are the time and message complexities of the
given synchronous algorithm A, the total time and message complexities Ty
and M;,; of the resulting asynchronous algorithm then become

Ttot = Tlmt(S)—i—T(A)(l—i—T(S)) and Mtot = Mmlt(S)-i-M(A)—f—T(A)M(S),

respectively.

Remarks:

e Because the initialization only needs to be done once for each network,
we will mostly be interested in the overheads T'(S) and M(S) per
round of the synchronous algorithm.

Definition 10.3 (Safe Node). A node v is safe with respect to a certain clock
pulse if all messages of the synchronous algorithm sent by v in that pulse have
already arrived at their destinations.

Lemma 10.4. If all neighbors of a node v are safe with respect to the current
clock pulse of v, the next pulse can be generated for v.

Proof. If all neighbors of v are safe with respect to a certain pulse, v has received
all messages of the given pulse. Node v therefore satisfies the condition of
Definition 10.1 for generating a valid next pulse. O

Remarks:

e In order to detect safety, we require that all algorithms send acknowl-
edgements for all received messages. As soon as a node v has received
an acknowledgement for each message that it has sent in a certain
pulse, it knows that it is safe with respect to that pulse. Note that
sending acknowledgements does not increase the asymptotic time and
message complexities.

10.2 The Local Synchronizer o

Algorithm 10.5 Synchronizer « (at node v)

1: wait until v is safe

2: send SAFE to all neighbors

3: wait until v receives SAFE messages from all neighbors
4: start new pulse

Synchronizer « is very simple. It does not need an initialization. Using
acknowledgements, each node eventually detects that it is safe. It then reports
this fact directly to all its neighbors. Whenever a node learns that all its neigh-
bors are safe, a new pulse is generated. Algorithm 10.5 formally describes the
synchronizer a.

10.3. SYNCHRONIZER 107

Theorem 10.6. The time and message complexities of synchronizer o per syn-
chronous round are

T(o) = O(1) and M(a) = O(m).

Proof. Communication is only between neighbors. As soon as all neighbors of
a node v become safe, v knows of this fact after one additional time unit. For
every clock pulse, synchronizer « sends at most four additional messages over
every edge: Each of the nodes may have to acknowledge a message and reports
safety. O

Remarks:

e Synchronizer o was presented in a framework, mostly set up to have
a common standard to discuss different synchronizers. Without the
framework, synchronizer o can be explained more easily:

1. Send message to all neighbors, include round information ¢ and
actual data of round 4 (if any).

2. Wait for message of round ¢ from all neighbors, and go to next
round.

e Although synchronizer « allows for simple and fast synchronization,
it produces awfully many messages. Can we do better? Yes.

10.3 The Global Synchronizer 3

Algorithm 10.7 Synchronizer § (at node v)

. wait until v is safe
: wait until v receives SAFE messages from all its children in T’
: if v # ¢ then
send SAFE message to parent in T’
wait until PULSE message received from parent in T'
end if
: send PULSE message to children in T'
: start new pulse

Synchronizer 8 needs an initialization that computes a leader node ¢ and a
spanning tree T" rooted at £. As soon as all nodes are safe, this information is
propagated to ¢ by a convergecast. The leader then broadcasts this information
to all nodes. The details of synchronizer § are given in Algorithm 10.7.

Theorem 10.8. The time and message complexities of synchronizer 3 per syn-
chronous round are

T(8) = O(diameter(T)) < O(n) and M(B) = O(n).
The time and message complezities for the initialization are

Tnit(8) = O(n) and Mini(8) = O(m +nlogn).

108 CHAPTER 10. SYNCHRONIZATION

Proof. Because the diameter of T is at most n — 1, the convergecast and the
broadcast together take at most 2n — 2 time units. Per clock pulse, the syn-
chronizer sends at most 2n — 2 synchronization messages (one in each direction
over each edge of T).

With the improved variant of the GHS algorithm (Algorithm 2.18) men-
tioned in Chapter 2, it is possible to construct an MST in time O(n) with
O(m + nlogn) messages in an asynchronous environment. Once the tree is
computed, the tree can be made rooted in time O(n) with O(n) messages. O

Remarks:

e We now got a time-efficient synchronizer («) and a message-efficient
synchronizer (/3), it is only natural to ask whether we can have the
best of both worlds. And, indeed, we can. How is that synchronizer
called? Quite obviously: ~.

10.4 The Hybrid Synchronizer ~

Figure 10.9: A cluster partition of a network: The dashed cycles specify the
clusters, cluster leaders are black, the solid edges are the edges of the intracluster
trees, and the bold solid edges are the intercluster edges

Synchronizer « can be seen as a combination of synchronizers a and g. In the
initialization phase, the network is partitioned into clusters of small diameter.
In each cluster, a leader node is chosen and a BFS tree rooted at this leader
node is computed. These trees are called the intracluster trees. Two clusters
C7 and (s are called neighboring if there are nodes v € C7 and v € Cy for
which (u,v) € E. For every two neighboring clusters, an intercluster edge is
chosen, which will serve for communication between these clusters. Figure 10.9
illustrates this partitioning into clusters. We will discuss the details of how to
construct such a partition in the next section. We say that a cluster is safe if
all its nodes are safe.

10.4. SYNCHRONIZER ~ 109

Synchronizer v works in two phases. In a first phase, synchronizer f is
applied separately in each cluster by using the intracluster trees. Whenever
the leader of a cluster learns that its cluster is safe, it reports this fact to all
the nodes in the clusters as well as to the leaders of the neighboring clusters.
Now, the nodes of the cluster enter the second phase where they wait until
all the neighboring clusters are known to be safe and then generate the next
pulse. Hence, we essentially apply synchronizer o between clusters. A detailed
description is given by Algorithm 10.10.

Algorithm 10.10 Synchronizer v (at node v)

1: wait until v is safe

2: wait until v receives SAFE messages from all children in intracluster tree

3: if v is not cluster leader then

4: send SAFE message to parent in intracluster tree

5: wait until CLUSTERSAFE message received from parent

6: end if

7: send CLUSTERSAFE message to all children in intracluster tree

8: send NEIGHBORSAFE message over all intercluster edges of v

9: wait until v receives NEIGHBORSAFE messages from all adjacent inter-
cluster edges and all children in intracluster tree

10: if v is not cluster leader then

11: send NEIGHBORSAFE message to parent in intracluster tree

12: wait until PULSE message received from parent

13: end if

14: send PULSE message to children in intracluster tree

15: start new pulse

Theorem 10.11. Let m¢ be the number of intercluster edges and let k be the
maximum cluster radius (i.e., the mazimum distance of a leaf to its cluster
leader). The time and message complexities of synchronizer v are

T(y) = O(k) and M(y) = O(n+mg).

Proof. We ignore acknowledgements, as they do not affect the asymptotic com-
plexities. Let us first look at the number of messages. Over every intraclus-
ter tree edge, exactly one SAFE message, one CLUSTERSAFE message, one
NEIGHBORSAFE message, and one PULSE message is sent. Further, one
NEIGHBORSAFE message is sent over every intercluster edge. Because there
are less than n intracluster tree edges, the total message complexity therefore
is at most 4n + 2me = O(n + me).

For the time complexity, note that the depth of each intracluster tree is at
most k. On each intracluster tree, two convergecasts (the SAFE and NEIGH-
BORSAFE messages) and two broadcasts (the CLUSTERSAFE and PULSE
messages) are performed. The time complexity for this is at most 4k. There
is one more time unit needed to send the NEIGHBORSAFE messages over the
intercluster edges. The total time complexity therefore is at most 4k + 1 =
O(k). O

110 CHAPTER 10. SYNCHRONIZATION

10.5 Network Partition

We will now look at the initialization phase of synchronizer v. Algorithm 10.12
describes how to construct a partition into clusters that can be used for syn-
chronizer . In Algorithm 10.12, B(v,r) denotes the ball of radius r around v,
ie, B(v,r) ={u € V : d(u,v) < r} where d(u,v) is the hop distance between
u and v. The algorithm has a parameter p > 1. The clusters are constructed
sequentially. Each cluster is started at an arbitrary node that has not been
included in a cluster. Then the cluster radius is grown as long as the cluster
grows by a factor more than p.

Algorithm 10.12 Cluster construction

1: while unprocessed nodes do
2 select an arbitrary unprocessed node v;
3 r:=0;
4: while |B(v,r + 1)| > p|B(v,r)| do
5: r:=r+1
6: end while
7. makeCluster(B(v,r)) // all nodes in B(v,r) are now processed
8: end while
Remarks:

e The algorithm allows a trade-off between the cluster diameter &k (and
thus the time complexity) and the number of intercluster edges m¢
(and thus the message complexity). We will quantify the possibilities
in the next section.

e Two very simple partitions would be to make a cluster out of every
single node or to make one big cluster that contains the whole graph.
We then get synchronizers o and [as special cases of synchronizer ~.

Theorem 10.13. Algorithm 10.12 computes a partition of the network graph
into clusters of radius at most log,n. The number of intercluster edges is at
most (p—1) - n.

Proof. The radius of a cluster is initially 0 and does only grow as long as it
grows by a factor larger than p. Since there are only n nodes in the graph, this
can happen at most log, n times.

To count the number of intercluster edges, observe that an edge can only
become an intercluster edge if it connects a node at the boundary of a cluster
with a node outside a cluster. Consider a cluster C' of size |C|. We know that
C = B(v,r) for some v € V and r > 0. Further, we know that |B(v,r + 1)| <
p - |B(v,r)|. The number of nodes adjacent to cluster C' is therefore at most
|B(v,r+1)\ B(v,r)| < p-|C|—|C|. Because there is only one intercluster edge
connecting two clusters by definition, the number of intercluster edges adjacent
to C is at most (p — 1) - |C]. Summing over all clusters, we get that the total
number of intercluster edges is at most (p — 1) - n. O

Corollary 10.14. Using p = 2, Algorithm 10.12 computes a clustering with
cluster radius at most logan and with at most n intercluster edges.

10.5. NETWORK PARTITION 111

Corollary 10.15. Using p = n'/*, Algorithm 10.12 computes a clustering with
cluster radius at most k and at most O(n'*/*) intercluster edges.

Remarks:

e Algorithm 10.12 describes a centralized construction of the partition-
ing of the graph. For p > 2, the clustering can be computed by an
asynchronous distributed algorithm in time O(n) with O(m +nlogn)
(reasonably sized) messages (showing this will be part of the exer-
cises).

e It can be shown that the trade-off between cluster radius and number
of intercluster edges of Algorithm 10.12 is asymptotically optimal.
There are graphs for which every clustering into clusters of radius at
most k requires n'+¢/* intercluster edges for some constant c.

The above remarks lead to a complete characterization of the complexity of
synchronizer ~.

Corollary 10.16. The time and message complexities of synchronizer v per
synchronous round are

T(y) = O(k) and M(y) = O(n'*t/%).
The time and message complexities for the initialization are

Tit(y) = O(n) and Mipi(y) = O(m+nlogn).

Remarks:

e In Chapter 2, you have seen that by using flooding, there is a very
simple synchronous algorithm to compute a BFS tree in time O(D)
with message complexity O(m). If we use synchronizer v to make this
algorithm asynchronous, we get an algorithm with time complexity
O(n+D logn) and message complexity O(m+nlogn+D-n) (including
initialization).

e The synchronizers «, [, and 7 achieve global synchronization, i.e.
every node generates every clock pulse. The disadvantage of this is
that nodes that do not participate in a computation also have to
participate in the synchronization. In many computations (e.g. in a
BF'S construction), many nodes only participate for a few synchronous
rounds. In such scenarios, it is possible to achieve time and message
complexity O(log®n) per synchronous round (without initialization).

e It can be shown that if all nodes in the network need to generate all
pulses, the trade-off of synchronizer « is asymptotically optimal.

e Partitions of networks into clusters of small diameter and coverings
of networks with clusters of small diameters come in many variations
and have various applications in distributed computations. In particu-
lar, apart from synchronizers, algorithms for routing, the construction
of sparse spanning subgraphs, distributed data structures, and even
computations of local structures such as a MIS or a dominating set
are based on some kind of network partitions or covers.

112 CHAPTER 10. SYNCHRONIZATION

10.6 Clock Synchronization

“A man with one clock knows what time it is — a man with two is never sure.”

Synchronizers can directly be used to give nodes in an asynchronous network a
common notion of time. In wireless networks, for instance, many basic protocols
need an accurate time. Sometimes a common time in the whole network is
needed, often it is enough to synchronize neighbors. The purpose of the time
division multiple access (TDMA) protocol is to use the common wireless channel
as efficiently as possible, i.e., interfering nodes should never transmit at the
same time (on the same frequency). If we use synchronizer 8 to give the nodes
a common notion of time, every single clock cycle costs D time units!

Often, each (wireless) node is equipped with an internal clock. Using this
clock, it should be possible to divide time into slots, and make each node send
(or listen, or sleep, respectively) in the appropriate slots according to the media
access control (MAC) layer protocol used.

However, as it turns out, synchronizing clocks in a network is not trivial.
As nodes’ internal clocks are not perfect, they will run at speeds that are time-
dependent. For instance, variations in temperature or supply voltage will affect
this clock drift. For standard clocks, the drift is in the order of parts per million,
i.e., within a second, it will accumulate to a couple of microseconds. Wireless
TDMA protocols account for this by introducing guard times. Whenever a node
knows that it is about to receive a message from a neighbor, it powers up its
radio a little bit earlier to make sure that it does not miss the message even
when clocks are not perfectly synchronized. If nodes are badly synchronized,
messages of different slots might collide.

In the clock synchronization problem, we are given a network (graph) with
n nodes. The goal for each node is to have a logical clock such that the logical
clock values are well synchronized, and close to real time. Each node is equipped
with a hardware clock, that ticks more or less in real time, i.e., the time between
two pulses is arbitrary between [1 — €, 1 + €], for a constant € < 1. Similarly as
in our asynchronous model, we assume that messages sent over the edges of the
graph have a delivery time between [0,1]. In other words, we have a bounded
but variable drift on the hardware clocks and an arbitrary jitter in the delivery
times. The goal is to design a message-passing algorithm that ensures that the
logical clock skew of adjacent nodes is as small as possible at all times.

Theorem 10.17. The global clock skew (the logical clock difference between any
two nodes in the graph) is Q(D), where D is the diameter of the graph.

Proof. For a node u, let t, be the logical time of v and let (u — v) denote a
message sent from u to a node v. Let t(m) be the time delay of a message m
and let u and v be neighboring nodes. First consider a case where the message
delays between u and v are 1/2. Then all the messages sent by u and v at time
i according to the clock of the sender arrive at time ¢ 4+ 1/2 according to the
clock of the receiver.

Then consider the following cases

o t,=t,+1/2, t(u—v)=1,tv—>u)=0

oty =1t,—1/2, t(fu > v) =0, t(v = u) =1,

10.6. CLOCK SYNCHRONIZATION 113

where the message delivery time is always fast for one node and slow for the
other and the logical clocks are off by 1/2. In both scenarios, the messages sent
at time 4 according to the clock of the sender arrive at time ¢ + 1/2 according
to the logical clock of the receiver. Therefore, for nodes v and v, both cases
with clock drift seem the same as the case with perfectly synchronized clocks.
Furthermore, in a linked list of D nodes, the left- and rightmost nodes [, r cannot
distinguish t; = ¢, + D/2 from ¢; = t,, — D/2. O

Remarks:

e From Theorem 10.17, it directly follows that all the clock synchro-
nization algorithms we studied have a global skew of Q(D).

e Many natural algorithms manage to achieve a global clock skew of
O(D).

As both the message jitter and hardware clock drift are bounded by con-
stants, it feels like we should be able to get a constant drift between neighboring
nodes. As synchronizer o pays most attention to the local synchronization, we
take a look at a protocol inspired by the synchronizer a. A pseudo-code repre-
sentation for the clock synchronization protocol « is given in Algorithm 10.18.

Algorithm 10.18 Clock synchronization « (at node v)

1: repeat

2: send logical time ¢, to all neighbors

3 if Receive logical time t,, where t,, > t,,, from any neighbor u then
4: ty 1=ty

5 end if

6: until done

Lemma 10.19. The clock synchronization protocol a has a local skew of Q(n).

Proof. Let the graph be a linked list of D nodes. We denote the nodes by
v1,V2,...,vp from left to right and the logical clock of node v; by ¢;. Apart
from the left-most node vy all hardware clocks run with speed 1 (real time).
Node v runs at maximum speed, i.e. the time between two pulses is not 1 but
1 — €. Assume that initially all message delays are 1. After some time, node vy
will start to speed up vo, and after some more time vy will speed up vz, and
so on. At some point of time, we will have a clock skew of 1 between any two
neighbors. In particular t; =tp + D — 1.

Now we start playing around with the message delays. Let ¢t; = T'. First we
set the delay between the v; and vy to 0. Now node v, immediately adjusts its
logical clock to T'. After this event (which is instantaneous in our model) we set
the delay between v and v3 to 0, which results in v3 setting its logical clock to T’
as well. We perform this successively to all pairs of nodes until vp_s and vp_1.
Now node vp_; sets its logical clock to 7', which indicates that the difference
between the logical clocks of vp_y and vp isT — (T —(D—-1))=D—-1. O

114 CHAPTER 10. SYNCHRONIZATION

Remarks:

e The introduced examples may seem cooked-up, but examples like this
exist in all networks, and for all algorithms. Indeed, it was shown that
any natural clock synchronization algorithm must have a bad local
skew. In particular, a protocol that averages between all neighbors
is even worse than the introduced a algorithm. This algorithm has a
clock skew of 2(D?) in the linked list, at all times.

e It was shown that the local clock skew is ©(log D), i.e., there is a pro-
tocol that achieves this bound, and there is a proof that no algorithm
can be better than this bound!

e Note that these are worst-case bounds. In practice, clock drift and
message delays may not be the worst possible, typically the speed of
hardware clocks changes at a comparatively slow pace and the mes-
sage transmission times follow a benign probability distribution. If we
assume this, better protocols do exist.

Chapter Notes

The idea behind synchronizers is quite intuitive and as such, synchronizers o and
B were implicitly used in various asynchronous algorithms [Gal76, Cha79, CL85]
before being proposed as separate entities. The general idea of applying syn-
chronizers to run synchronous algorithms in asynchronous networks was first
introduced by Awerbuch [Awe85a]. His work also formally introduced the syn-
chronizers « and . Improved synchronizers that exploit inactive nodes or hy-
percube networks were presented in [AP90, PUST|.

Naturally, as synchronizers are motivated by practical difficulties with local
clocks, there are plenty of real life applications. Studies regarding applications
can be found in, e.g., [SM86, Awe85b, LTC89, AP90, PU87]. Synchronizers in
the presence of network failures have been discussed in [AP88, HS94].

It has been known for a long time that the global clock skew is ©(D) [LL84,
ST87]. The problem of synchronizing the clocks of nearby nodes was intro-
duced by Fan and Lynch in [LF04]; they proved a surprising lower bound of
Q(log D/loglog D) for the local skew. The first algorithm providing a non-
trivial local skew of O(v/D) was given in [LW06]. Later, matching upper and
lower bounds of ©(log D) were given in [LLW10]. The problem has also been
studied in a dynamic setting [KLO09, KLLO10].

Clock synchronization is a well-studied problem in practice, for instance
regarding the global clock skew in sensor networks, e.g. [EGE02, GKSO03,
MKSL04, PSJ04]. One more recent line of work is focussing on the problem
of minimizing the local clock skew [BvRWO07, SW09, LSW09, FW10, FZTS11].

Bibliography

[AP88] Baruch Awerbuch and David Peleg. Adapting to Asynchronous Dy-
namic Networks with Polylogarithmic Overhead. In 24th ACM Sym-
posium on Foundations of Computer Science (FOCS), pages 206—
220, 1988.

BIBLIOGRAPHY 115

[AP90]

[Awe85a]

[Awe85D]

[BYRWO07]

[ChaT9]

[CL85]

[EGE02]

[FW10]

[FZTS11]

[Gal76]

[GKS03]

[HS94]

[KLLO10]

Baruch Awerbuch and David Peleg. Network Synchronization with
Polylogarithmic Overhead. In Proceedings of the 31st IEEE Sympo-
sium on Foundations of Computer Science (FOCS), 1990.

Baruch Awerbuch. Complexity of Network Synchronization. Journal
of the ACM (JACM), 32(4):804-823, October 1985.

Baruch Awerbuch. Reducing Complexities of the Distributed Max-
flow and Breadth-first-search Algorithms by Means of Network Syn-
chronization. Networks, 15:425-437, 1985.

Nicolas Burri, Pascal von Rickenbach, and Roger Wattenhofer.
Dozer: Ultra-Low Power Data Gathering in Sensor Networks. In
International Conference on Information Processing in Sensor Net-
works (IPSN), Cambridge, Massachusetts, USA, April 2007.

E.J.H. Chang. Decentralized Algorithms in Distributed Systems. PhD
thesis, University of Toronto, 1979.

K. Mani Chandy and Leslie Lamport. Distributed Snapshots: De-
termining Global States of Distributed Systems. ACM Transactions
on Computer Systems, 1:63—75, 1985.

Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained
Network Time Synchronization Using Reference Broadcasts. ACM
SIGOPS Operating Systems Review, 36:147-163, 2002.

Roland Flury and Roger Wattenhofer. Slotted Programming for
Sensor Networks. In International Conference on Information Pro-
cessing in Sensor Networks (IPSN), Stockholm, Sweden, April 2010.

Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh.
Efficient Network Flooding and Time Synchronization with Glossy.
In Proceedings of the 10th International Conference on Information
Processing in Sensor Networks (IPSN), pages 73-84, 2011.

Robert Gallager. Distributed Minimum Hop Algorithms. Technical
report, Lab. for Information and Decision Systems, 1976.

Saurabh Ganeriwal, Ram Kumar, and Mani B. Srivastava. Timing-
sync Protocol for Sensor Networks. In Proceedings of the 1st interna-
tional conference on Embedded Networked Sensor Systems (SenSys),
2003.

M. Harrington and A. K. Somani. Synchronizing Hypercube Net-
works in the Presence of Faults. IEEE Transactions on Computers,
43(10):1175-1183, 1994.

Fabian Kuhn, Christoph Lenzen, Thomas Locher, and Rotem Osh-
man. Optimal Gradient Clock Synchronization in Dynamic Net-
works. In 29th Symposium on Principles of Distributed Computing
(PODC), Zurich, Switzerland, July 2010.

116

[KLOOY]

[LF04]

[LL84]

[LLW10]

[LSW09)

[LTC89]

[LWO6]

[MKSL04]

[PSJ04]

[PUST]

[SMS6]

[ST87]

CHAPTER 10. SYNCHRONIZATION

Fabian Kuhn, Thomas Locher, and Rotem Oshman. Gradient Clock
Synchronization in Dynamic Networks. In 21st ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), Calgary,
Canada, August 2009.

Nancy Lynch and Rui Fan. Gradient Clock Synchronization. In
Proceedings of the 23rd Annual ACM Symposium on Principles of
Distributed Computing (PODC), 2004.

Jennifer Lundelius and Nancy Lynch. An Upper and Lower Bound
for Clock Synchronization. Information and Control, 62:190-204,
1984.

Christoph Lenzen, Thomas Locher, and Roger Wattenhofer. Tight
Bounds for Clock Synchronization. In Journal of the ACM, Volume
57, Number 2, January 2010.

Christoph Lenzen, Philipp Sommer, and Roger Wattenhofer. Op-
timal Clock Synchronization in Networks. In 7th ACM Conference
on Embedded Networked Sensor Systems (SenSys), Berkeley, Cali-
fornia, USA, November 2009.

K. B. Lakshmanan, K. Thulasiraman, and M. A. Comeau. An Ef-
ficient Distributed Protocol for Finding Shortest Paths in Networks
with Negative Weights. IEEE Trans. Softw. Eng., 15:639-644, 1989.

Thomas Locher and Roger Wattenhofer. Oblivious Gradient Clock
Synchronization. In 20th International Symposium on Distributed
Computing (DISC), Stockholm, Sweden, September 2006.

Miklés Maréti, Branislav Kusy, Gyula Simon, and Akos Lédeczi. The
Flooding Time Synchronization Protocol. In Proceedings of the 2nd
international Conference on Embedded Networked Sensor Systems,
SenSys 04, 2004.

Santashil PalChaudhuri, Amit Kumar Saha, and David B. Johnson.
Adaptive Clock Synchronization in Sensor Networks. In Proceedings
of the 3rd International Symposium on Information Processing in
Sensor Networks, IPSN 04, 2004.

David Peleg and Jeffrey D. Ullman. An Optimal Synchronizer for
the Hypercube. In Proceedings of the sizth annual ACM Symposium
on Principles of Distributed Computing, PODC 87, pages 77-85,
1987.

Baruch Shieber and Shlomo Moran. Slowing Sequential Algorithms
for Obtaining Fast Distributed and Parallel Algorithms: Maximum
Matchings. In Proceedings of the fifth annual ACM Symposium on
Principles of Distributed Computing, PODC ’86, pages 282-292,
1986.

T. K. Srikanth and S. Toueg. Optimal Clock Synchronization. Jour-
nal of the ACM, 34:626-645, 1987.

BIBLIOGRAPHY 117

[SW09] Philipp Sommer and Roger Wattenhofer. Gradient Clock Synchro-
nization in Wireless Sensor Networks. In 8th ACM/IEEE Inter-
national Conference on Information Processing in Sensor Networks
(IPSN), San Francisco, USA, April 2009.

118 CHAPTER 10. SYNCHRONIZATION

Chapter 11

Communication Complexity

This chapter is on “hard” problems in distributed computing. In sequential com-
puting, there are NP-hard problems which are conjectured to take exponential
time. Is there something similar in distributed computing? Using flooding/echo
(Algorithms 2.9,2.10) from Chapter 2, everything so far was solvable basically
in O(D) time, where D is the diameter of the network.

11.1 Diameter & APSP

But how do we compute the diameter itself!?! With flooding/echo, of course!

Algorithm 11.1 Naive Diameter Construction

1: all nodes compute their radius by synchronous flooding/echo
2: all nodes flood their radius on the constructed BFS tree
3: the maximum radius a node sees is the diameter

Remarks:

e Since all these phases only take O(D) time, nodes know the diameter
in O(D) time, which is asymptotically optimal.

e However, there is a problem! Nodes are now involved in n parallel
flooding/echo operations, thus a node may have to handle many and
big messages in one single time step. Although this is not strictly
illegal in the message passing model, it still feels like cheating! A
natural question is whether we can do the same by just sending short
messages in each round.

e In Definition 1.8 of Chapter 1 we postulated that nodes should send
only messages of “reasonable” size. In this chapter we strengthen the
definition a bit, and require that each message should have at most
O(logn) bits. This is generally enough to communicate a constant
number of ID’s or values to neighbors, but not enough to communicate
everything a node knows!

e A simple way to avoid large messages is to split them into small mes-
sages that are sent using several rounds. This can cause that messages

119

120 CHAPTER 11. COMMUNICATION COMPLEXITY

are getting delayed in some nodes but not in others. The flooding
might not use edges of a BFS tree anymore! These floodings might not
compute correct distances anymore! On the other hand we know that
the maximal message size in Algorithm 11.1 is O(nlogn). So we could
just simulate each of these “big message” rounds by n “small message”
rounds using small messages. This yields a runtime of O(nD) which
is not desirable. A third possible approach is “starting each flood-
ing/echo one after each other” and results in O(nD) in the worst case
as well.

e So let us fix the above algorithm! The key idea is to arrange the
flooding-echo processes in a more organized way: Start the flooding
processes in a certain order and prove that at any time, each node is
only involved in one flooding. This is realized in Algorithm 11.3.

Definition 11.2. (BFS,) Performing a breadth first search at node v produces
spanning tree BFS, (see Chapter 2). This takes time O(D) using small mes-
sages.

Remarks:

e A spanning tree of a graph G can be traversed in time O(n) by sending
a pebble over an edge in each time slot.

e This can be done using, e.g., a depth first search (DFS): Start at the
root of a tree, recursively visit all nodes in the following way. If the
current node still has an unvisited child, then the pebble always visits
that child first. Return to the parent only when all children have been
visited.

e Algorithm 11.3 works as follows: Given a graph G, first a leader I
computes its BFS tree BFS;. Then we send a pebble P to traverse
tree BFS;. Each time pebble P enters a node v for the first time, P
waits one time slot, and then starts a breadth first search (BFS) —
using edges in G — from v with the aim of computing the distances
from v to all other nodes. Since we start a BFS, from every node
v, each node u learns its distance to all these nodes v during the
according execution of BFS,. There is no need for an echo-process at
the end of BFS,,.

Remarks:

e Having all distances is nice, but how do we get the diameter? Well, as
before, each node could just flood its radius (its maximum distance)
into the network. However, messages are small now and we need to
modify this slightly. In each round a node only sends the maximal
distance that it is aware of to its neighbors. After D rounds each
node will know the maximum distance among all nodes.

Lemma 11.4. In Algorithm 11.8, at no time a node w is simultaneously active
for both BES,, and BFS,.

11.2. LOWER BOUND GRAPHS 121

Algorithm 11.3 Computes APSP on G.

1: Assume we have a leader node [(if not, compute one first)
2: compute BFS; of leader [
3: send a pebble P to traverse BFS; in a DFS way;
4: while P traverses BFS; do
5. if P visits a new node v then
6: wait one time slot; // avoid congestion
7: start BFS, from node v; // compute all distances to v
8: // the depth of node w in BFS, is d(u,v)
9: end if
10: end while

Proof. Assume a BFS,, is started at time ¢, at node u. Then node w will be
involved in BFS,, at time t, + d(u,w). Now, consider a node v whose BFS,
is started at time t, > t,. According to the algorithm this implies that the
pebble visits v after u and took some time to travel from u to v. In particular,
the time to get from w to v is at least d(u,v), in addition at least node v is
visited for the first time (which involves waiting at least one time slot), and
we have t, > t, + d(u,v) + 1. Using this and the triangle inequality, we get
that node w is involved in BFS, strictly after being involved in BFS,, since
ty +d(v,w) > (ty, + d(u,v) + 1) +d(v,w) > t, + d(u,w) + 1 > t, + d(u,w). O

Theorem 11.5. Algorithm 11.8 computes APSP (all pairs shortest path) in
time O(n).

Proof. Since the previous lemma holds for any pair of vertices, no two BFS
“interfere” with each other, i.e. all messages can be sent on time without con-
gestion. Hence, all BFS stop at most D time slots after they were started. We
conclude that the runtime of the algorithm is determined by the time O(D) we
need to build tree BFS;, plus the time O(n) that P needs to traverse BFS;, plus
the time O(D) needed by the last BFS that P initiated. Since D < n, this is
all in O(n). O

Remarks:

e All of a sudden our algorithm needs O(n) time, and possibly n > D.
We should be able to do better, right?!

e Unfortunately not! One can show that computing the diameter of a
network needs 2(n/logn) time.

e Note that one can check whether a graph has diameter 1 by exchanging
some specific information such as degree with the neighbors. However,
already checking diameter 2 is difficult.

11.2 Lower Bound Graphs

We define a family G of graphs that we use to prove a lower bound on the
rounds needed to compute the diameter. To simplify our analysis, we assume
that (n — 2) can be divided by 8. We start by defining four sets of nodes, each

122 CHAPTER 11. COMMUNICATION COMPLEXITY

consisting of ¢ = ¢(n) := (n —2)/4 nodes. Throughout this chapter we write [g]

as a short version of {1,...,¢} and define:
Lo = {li|li€q} // upper left in Figure 11.6
Ly = {ljlielqgd} //lower left
Ro = {rilic]d} // upper right
Ry = {ri|lielqd} // lower right

Figure 11.6: The above skeleton G’ contains n = 10 nodes, such that ¢ = 2.

We add node ¢y, and connect it to all nodes in Lg and L;. Then we add
node cg, connected to all nodes in Rg and R;. Furthermore, nodes ¢y, and cg
are connected by an edge. For i € [q] we connect I; to ; and I to r}. Also we
add edges such that nodes in Lg are a clique, nodes in Lj are a clique, nodes
in Rg are a clique, and nodes in Ry are a clique. The resulting graph is called
G’. Graph G’ is the skeleton of any graph in family G.

More formally skeleton G’ = (V', E') is:

Vv’ Lo U Li U Rg U Ry U {CL, CR}
E = U {(v,cr)} // connections to ¢y,
v€ELoU Ly
U U {(v,cr)} // connections to cg
vERoURy
U U {(Ti,ri), (U,r)y U {(cL,cr)} // connects left to right
i€lq]
U U U {(u,v)} // clique edges

= {LO, u#vES
Ll; RO; Rl}

To simplify our arguments, we partition G’ into two parts: Part L is the
subgraph induced by nodes Lo U Ly U {c1}. Part R is the subgraph induced
by nodes Ro U Ry U {cgr}.

11.2. LOWER BOUND GRAPHS 123

Family G contains any graph G that is derived from G’ by adding any com-
bination of edges of the form (I;, l;) resp. (ri,ré) with [; € Lo, l; €Ly, 7 € Ry,
and 7“2- cRy.

Figure 11.7: The above graph G has n = 10 and is a member of family G. What
is the diameter of G?

Lemma 11.8. The diameter of a graph G = (V, E) € G is 2 if and only if: For
each tuple (i, j) with,j € [q], there is either edge (l;,1}) or edge (r;,r5) (or both
edges) in E.

Proof. Note that the distance between most pairs of nodes is at most 2. In
particular, the radius of ¢y, resp. cg is 2. Thanks to ¢y, resp. cgr the distance
between, any two nodes within Part L resp. within Part R is at most 2.
Because of the cliques Lo, L1, Ro, R1, distances between I; and r; resp. I} and
7’ is at most 2.

The only interesting case is between a node I; € Lo and node 7’; € R, (or,
symmetrically, between I’ € Ly and node r; € Ro). If either edge (I;,1;) or
edge (r;,7%) is present, then this distance is 2, since the path (I;,1%,7}) or the
path (I;,r, r;) exists. If neither of the two edges exist, then the neighborhood
of [; consists of {cz,7;}, all nodes in Lo, and some nodes in Ly \ {I’}, and the
neighborhood of 75 consists of {cg,l;} , all nodes in Ry, and some nodes in
Ro \ {ri} (see for example Figure 11.9 with ¢ = 2 and j = 2.) Since the two
neighborhoods do not share a common node, the distance between [; and 7“; is
(at least) 3. O

Remarks:

e Each part contains up to ¢ € ©(n?) edges not belonging to the skele-
ton.

e There are 2¢ + 1 € O(n) edges connecting the left and the right part.
Since in each round we can transmit O(logn) bits over each edge

124 CHAPTER 11. COMMUNICATION COMPLEXITY

cp Cr
Iy 1
Iy o
i]
!
ly @)

Figure 11.9: Nodes in the neighborhood of I3 are cyan, the neighborhood of 74
is white. Since these neighborhoods do not intersect, the distance of these two
nodes is d(lg, r5) > 2. If edge (I2,15) was included, their distance would be 2.

(in each direction), the bandwidth between Part L and Part R is
O(nlogn).

e If we transmit the information of the ©(n?) edges in a naive way with
a bandwidth of O(nlogn), we need Q(n/logn) time. But maybe we
can do better?!? Can an algorithm be smarter and only send the
information that is really necessary to tell whether the diameter is 27

e It turns out that any algorithm needs Q(n/logn) rounds, since the
information that is really necessary to tell that the diameter is larger
than 2 contains basically ©(n?) bits.

11.3 Communication Complexity

To prove the last remark formally, we can use arguments from two-party com-
munication complexity. This area essentially deals with a basic version of dis-
tributed computation: two parties are given some input each and want to solve
a task on this input.

We consider two students (Alice and Bob) at two different universities con-
nected by a communication channel (e.g., via email) and we assume this channel
to be reliable. Now Alice and Bob want to check whether they received the same
problem set for homework (we assume their professors are lazy and wrote it on
the black board instead of putting a nicely prepared document online.) Do Alice
and Bob really need to type the whole problem set into their emails? In a more
formal way: Alice receives an k-bit string x and Bob another k-bit string y, and
the goal is for both of them to compute the equality function.

Definition 11.10. (Equality.) We define the equality function EQ to be:

B = o 11,

11.3. COMMUNICATION COMPLEXITY 125

Remarks:

e In a more general setting, Alice and Bob are interested in computing a
certain function f : {0,1}* x {0,1}* — {0, 1} with the least amount of
communication between them. Of course they can always succeed by
having Alice send her whole k-bit string to Bob, who then computes
the function, but the idea here is to find clever ways of calculating f
with less than k bits of communication. We measure how clever they
can be as follows:

Definition 11.11. (Communication complexity CC.) The communication com-
plexity of protocol A for function f is CC(A, f) := minimum number of bits
exchanged between Alice and Bob in the worst case when using A. The commu-
nication complexity of f is CC(f) := min{CC(A, f)| A solves f}. That is the
minimal number of bits that the best protocol needs to send in the worst case.

Definition 11.12. For a given function f, we define a 2F x 28 matriz M7
representing f. That is M{y = f(x,y).

Example 11.13. For EQ, in case k = 3, matriz M®R looks like this:

EQ | 000 001 010 011 100 101 110 111 « z
000 | 1 0 0 0 0 0 0 0

001 | 0 1 0 0 0 0 0 0

010 | 0 0 1 0 0 0 0 0

011 0 1 0 0 0

100 0 0 1 . 0 0

101 0 0 0 1 0 0

110 0 0 0 1 0

111 0 0 0 . 0 1

Ty

As a next step we define a (combinatorial) monochromatic rectangle. These
are “submatrices” of M7 which contain the same entry.

Definition 11.14. (monochromatic rectangle.) A set R C {0,1}* x {0,1}F is
called a monochromatic rectangle, if

o whenever (x1,y1) € R and (x2,y2) € R then (z1,y2) € R.
e there is a fized z such that f(x,y) = z for all (x,y) € R.

Example 11.15. The first three of the following rectangles are monochromatic,
the last one is not:

Ry {011} x {011} Ezample 11.13: light gray
R, = {011,100,101,110} x {000,001} Ezample 11.15: gray

Ry = {000,001,101} x {011,100, 110,111}
Ry, = {000,001} x {000,001} Ezample 11.13: bozed

Each time Alice and Bob exchange a bit, they can eliminate columns,/rows of
the matrix M/ and a combinatorial rectangle is left. They can stop communi-
cating when this remaining rectangle is monochromatic. However, maybe there
is a more efficient way to exchange information about a given bit string than

126 CHAPTER 11. COMMUNICATION COMPLEXITY

just naively transmitting contained bits? In order to cover all possible ways of
communication, we need the following definition:

Definition 11.16. (fooling set.) A set S C {0,1}* x {0,1}* fools f if there is
a fized z such that

e f(z,y) =z for each (x,y) € S

o For any (x1,y1) # (x2,y2) € S, the rectangle {x1,x2} X {y1,y2} is not
monochromatic: Either f(x1,y2) # z, f(x2,y1) # z or both # z.

Example 11.17. Consider S = {(000,000), (001,001)}. Take a look at the
non-monochromatic rectangle Ry in Example 11.15. Verify that S is indeed a
fooling set for EQ!

Remarks:
e Can you find a larger fooling set for FQ?

e We assume that Alice and Bob take turns in sending a bit. This results
in 2 possible actions (send 0/1) per round and in 2! action patterns
during a sequence of ¢ rounds.

Lemma 11.18. If S is a fooling set for f, then CC(f) = Q(log|S|).

Proof. We prove the statement via contradiction: fix a protocol A and assume
that it needs ¢ < log(|S|) rounds in the worst case. Then there are 2' possible
action patterns, with 2¢ < |S|. Hence for at least two elements of S, let us
call them (x1,1),(22,y2), protocol A produces the same action pattern P.
Naturally, the action pattern on the alternative inputs (z1,y2), (x2,y1) will be
P as well: in the first round Alice and Bob have no information on the other
party’s string and send the same bit that was sent in P. Based on this, they
determine the second bit to be exchanged, which will be the same as the second
one in P since they cannot distinguish the cases. This continues for all ¢ rounds.
We conclude that after ¢ rounds, Alice does not know whether Bob’s input is y1
or yo and Bob does not know whether Alice’s input is 1 or zs. By the definition
of fooling sets, either

o f(z1,y2) # f(x1,y1) in which case Alice (with input z1) does not know
the solution yet,

or

o f(z2,y1) # f(x1,y1) in which case Bob (with input y;) does not know the
solution yet.

This contradicts the assumption that A leads to a correct decision for all inputs
after t rounds. Therefore at least log(|S|) rounds are necessary. O

Theorem 11.19. CC(EQ) = Q(k).

Proof. The set S := {(x,z) | x € {0,1}*} fools EQ and has size 2¥. Now apply
Lemma 11.18. O

Definition 11.20. Denote the negation of a string z by Z and by x oy the
concatenation of strings x and y.

11.3. COMMUNICATION COMPLEXITY 127

Lemma 11.21. Let x,y be k-bit strings. Then x # vy if and only if there is an
index i € [2k] such that the it" bit of x o T and the it" bit of oy are both 0.

Proof. If © # vy, there is an j € [k] such that x and y differ in the j!* bit.
Therefore either the ;' bit of both # and 7 is 0, or the j** bit of T and y is
0. For this reason, there is an i € [2k| such that x o T and § o y are both 0 at
position i.

If 2 = y, then for any i € [2k] it is always the case that either the i** bit of
zoZ is 1 or the i*" bit of 3 oy (which is the negation of x o Z in this case) is
1. O

Remarks:

e With these insights we get back to the problem of computing the
diameter of a graph and relate this problem to EQ.

Definition 11.22. Using the parameter q defined before, we define a bijective
map between all pairs x,y of q>-bit strings and the graphs in G: each pair of
strings x,y is mapped to graph G, € G that is derived from skeleton G’ by
adding

e cdge (1;,15) to Part L if and only if the (j +q- (i — 1)) bit of x is 1.

e cdge (ri,7}) to Part R if and only if the (j +q- (i — 1)t bit of y is 1.

Remarks:

o Clearly, Part L of G, depends on z only and Part R depends on
y only.
q2

Lemma 11.23. Let v and y be 4--bit strings given to Alice and Bob.! Then

graph G := Grozgoy € G has diameter 2 if and only if x = y.

Proof. By Lemma 11.21 and the construction of G, there is neither edge (I;,1’)

J
nor edge (r;,73) in E(G) for some (i, j) if and only if z # y. Applying Lemma
11.8 yields: G has diameter 2 if and only if x = y. O

Theorem 11.24. Any distributed algorithm A that decides whether a graph G
has diameter 2 needs € (n_ 4 D) time.

logn

n
logn) °

Proof. Computing D for sure needs time (D). It remains to prove (
Assume there is a distributed algorithm A that decides whether the diameter of
a graph is 2 in time o(n/logn). When Alice and Bob are given %—bit inputs z
and y, they can simulate A to decide whether z = y as follows: Alice constructs
Part L of G0z 50y and Bob constructs Part R. As we remarked, both parts
are independent of each other such that Part L can be constructed by Alice
without knowing y and Part R can be constructed by Bob without knowing x.
Furthermore, G0z 5oy has diameter 2 if and only if z = y (Lemma 11.23.)
Now Alice and Bob simulate the distributed algorithm A round by round:
In the first round, they determine which messages the nodes in their part of

1Thats why we need that n — 2 can be divided by 8.

128 CHAPTER 11. COMMUNICATION COMPLEXITY

G would send. Then they use their communication channel to exchange all
2(2¢ + 1) € O(n) messages that would be sent over edges between Part L and
Part R in this round while executing A on GG. Based on this Alice and Bob
determine which messages would be sent in round two and so on. For each
round simulated by Alice and Bob, they only need to communicate O(nlogn)
bits: O(logn) bits for each of O(n) messages. Since A makes a decision after
o(n/logn) rounds, this yields a total communication of o(n?) bits. On the other
hand, Lemma 11.19 states that to decide whether z equals y, Alice and Bob

need to communicate at least (g) = Q(n?) bits. A contradiction. O

Remarks:

e Until now we only considered deterministic algorithms. Can one do
better using randomness?

Algorithm 11.25 Randomized evaluation of EQ).
1: Alice and Bob use public randomness. That is they both have access to the
same random bit string z € {0, 1}*

2: Alice sends bit a := Zie[k] x; - z; mod 2 to Bob
3: Bob sends bit b:= 3, (4, ¥i - 2 mod 2 to Alice
4: if a # b then

5: we know x # y

6: end if

Lemma 11.26. If x # y, Algorithm 11.25 discovers x # y with probability at
least 1/2.

Proof. Note that if x = y we have a = b for sure.

If z # y, Algorithm 11.25 may not reveal inequality. For instance, for k = 2,
ifx =01,y =10 and z = 11 we get a = b = 1. In general, let I be the set of
indices where x; # y;, i.e. I:={i € [k] | x; # y;}. Since x # y, we know that
|I| > 0. We have

la —b| = Zzi (mod 2),
el
and since all z; with ¢ € I are random, we get that a # b with probability at
least 1/2. O

Remarks:

e By excluding the vector z = 0F we can even get a discovery probability
strictly larger than 1/2.

e Repeating the Algorithm 11.25 with different random strings z, the
error probability can be reduced arbitrarily.

e Does this imply that there is a fast randomized algorithm to determine
the diameter? Unfortunately not!

11.4. DISTRIBUTED COMPLEXITY THEORY 129

e Sometimes public randomness is not available, but private randomness
is. Here Alice has her own random string and Bob has his own random
string. A modified version of Algorithm 11.25 also works with private
randomness at the cost of the runtime.

e One can prove an Q(n/logn) lower bound for any randomized distrib-
uted algorithm that computes the diameter. To do so one considers
the disjointness function DISJ instead of equality. Here, Alice is given
a subset X C [k] and and Bob is given a subset Y C [k] and they need
to determine whether Y N X = . (X and Y can be represented by
k-bit strings x,y.) The reduction is similar as the one presented above
but uses graph Gz 3 instead of G0z zoy. However, the lower bound for
the randomized communication complexity of DISJ is more involved
than the lower bound for CC(EQ).

e Since one can compute the diameter given a solution for APSP, an
Q(n/logn) lower bound for APSP is implied. As such, our simple
Algorithm 11.3 is almost optimal!

e Many prominent functions allow for a low communication complex-
ity. For instance, CC(PARITY) = 2. What is the Hamming dis-
tance (number of different entries) of two strings? It is known that
CC(HAM > d) = Q(d). Also, CC(decide whether “HAM > k/2 +
VE” or “HAM < k/2 —VE”) = Q(k), even when using randomness.
This problem is known as the Gap-Hamming-Distance.

e Lower bounds in communication complexity have many applications.
Apart from getting lower bounds in distributed computing, one can
also get lower bounds regarding circuit depth or query times for static
data structures.

e In the distributed setting with limited bandwidth we showed that
computing the diameter has about the same complexity as computing
all pairs shortest paths. In contrast, in sequential computing, it is
a major open problem whether the diameter can be computed faster
than all pairs shortest paths. No nontrivial lower bounds are known,
only that Q(n?) steps are needed — partly due to the fact that there can
be n? edges/distances in a graph. On the other hand the currently
best algorithm uses fast matrix multiplication and terminates after
O(n?3727) steps.

11.4 Distributed Complexity Theory

We conclude this chapter with a short overview on the main complexity classes
of distributed message passing algorithms. Given a network with n nodes and
diameter D, we managed to establish a rich selection of upper and lower bounds
regarding how much time it takes to solve or approximate a problem. Currently
we know five main distributed complexity classes:

e Strictly local problems can be solved in constant O(1) time, e.g., a constant
approximation of a dominating set in a planar graph.

130 CHAPTER 11. COMMUNICATION COMPLEXITY

o Just a little bit slower are problems that can be solved in log-star O(log™ n)
time, e.g., many combinatorial optimization problems in special graph
classes such as growth bounded graphs. 3-coloring a ring takes O(log™ n).

e A large body of problems is polylogarithmic (or pseudo-local), in the sense
that they seem to be strictly local but are not, as they need O(polylog n)
time, e.g., the maximal independent set problem.

e There are problems which are global and need O(D) time, e.g., to count
the number of nodes in the network.

e Finally there are problems which need polynomial O(poly n) time, even if
the diameter D is a constant, e.g., computing the diameter of the network.

Chapter Notes

The linear time algorithm for computing the diameter was discovered inde-
pendently by [HW12, PRT12]. The presented matching lower bound is by
Frischknecht et al. [FHW12], extending techniques by [DHK'11].

Due to its importance in network design, shortest path-problems in general
and the APSP problem in particular were among the earliest studied problems
in distributed computing. Developed algorithms were immediately used, e.g.,
as early as in 1969 in the ARPANET (see [Lyn96], p.506). Routing messages
via shortest paths were extensively discussed to be beneficial in [Taj77, MS79,
MRRA&0, SS80, CM82] and in many other papers. It is not surprising that there
is plenty of literature dealing with algorithms for distributed APSP, but most
of them focused on secondary targets such as trading time for message com-
plexity. E.g., papers [AR78, Tou80, Che82| obtain a communication complexity
of roughly O(n - m) bits/messages and still require superlinear runtime. Also a
lot of effort was spent to obtain fast sequential algorithms for various versions
of computing APSP or related problems such as the diameter problem, e.g.,
[CW90, AGM9I1, AMGN92, Sei95, SZ99, BVWO08]. These algorithms are based
on fast matrix multiplication such that currently the best runtime is O(n?37%7)
due to [Will2].

The problem sets in which one needs to distinguish diameter 2 from 4 are
inspired by a combinatorial (x,3/2)-approximation in a sequential setting by
Aingworth et. al. [ACIM99]. The main idea behind this approximation is to
distinguish diameter 2 from 4. This part was transferred to the distributed
setting in [HW12].

Two-party communication complexity was introduced by Andy Yao in [Yao79].
Later, Yao received the Turing Award. A nice introduction to communication
complexity covering techniques such as fooling-sets is the book by Nisan and
Kushilevitz [KN97].

This chapter was written in collaboration with Stephan Holzer.

Bibliography

[ACIM99] D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast Estima-
tion of Diameter and Shortest Paths (Without Matrix Multiplica-

BIBLIOGRAPHY 131

[AGMO91]

[AMGN92]

[ARTS]

[BVWOS]

[Che82)

[CMS2]

[CW90]

[DHK*11]

[FHW12]

[HW12]

[KN97]

[Lyn96)]

tion). STAM Journal on Computing (SICOMP), 28(4):1167-1181,
1999.

N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs
shortest path problem. In Proceedings of the 32nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages
569-575, 1991.

N. Alon, O. Margalit, Z. Galilt, and M. Naor. Witnesses for Boolean
Matrix Multiplication and for Shortest Paths. In Proceedings of
the 33rd Annual Symposium on Foundations of Computer Science
(FOCS), pages 417-426. IEEE Computer Society, 1992.

J.M. Abram and IB Rhodes. A decentralized shortest path algo-
rithm. In Proceedings of the 16th Allerton Conference on Commu-
nication, Control and Computing (Allerton), pages 271-277, 1978.

G.E. Blelloch, V. Vassilevska, and R. Williams. A New Combina-
torial Approach for Sparse Graph Problems. In Proceedings of the

35th international colloquium on Automata, Languages and Pro-
gramming, Part I (ICALP), pages 108-120. Springer-Verlag, 2008.

C.C. Chen. A distributed algorithm for shortest paths. IEEE Trans-
actions on Computers (TC), 100(9):898-899, 1982.

K.M. Chandy and J. Misra. Distributed computation on graphs:
Shortest path algorithms. Communications of the ACM (CACM),
25(11):833-837, 1982.

D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of symbolic computation (JSC),
9(3):251-280, 1990.

A. Das Sarma, S. Holzer, L. Kor, A. Korman, D. Nanongkai, G. Pan-
durangan, D. Peleg, and R. Wattenhofer. Distributed Verification
and Hardness of Distributed Approximation. Proceedings of the 43rd
annual ACM Symposium on Theory of Computing (STOC), 2011.

S. Frischknecht, S. Holzer, and R. Wattenhofer. Networks Can-
not Compute Their Diameter in Sublinear Time. In Proceedings
of the 23rd annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1150-1162, January 2012.

Stephan Holzer and Roger Wattenhofer. Optimal Distributed All
Pairs Shortest Paths and Applications. In PODC, page to appear,
2012.

E. Kushilevitz and N. Nisan. Communication complexity. Cam-
bridge University Press, 1997.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 1996.

132

[MRRSO0]

[MST79]

[PRT12]

[Sei95)]

SS80]

[SZ99]

[Taj77

[Tou80]

[Wil12]

[YaoT9]

CHAPTER 11. COMMUNICATION COMPLEXITY

J. McQuillan, I. Richer, and E. Rosen. The new routing algorithm
for the ARPANET. IEEE Transactions on Communications (TC),
28(5):711-719, 1980.

P. Merlin and A. Segall. A failsafe distributed routing proto-
col. IEEE Transactions on Communications (TC), 27(9):1280-
1287, 1979.

David Peleg, Liam Roditty, and Elad Tal. Distributed Algorithms
for Network Diameter and Girth. In ICALP, page to appear, 2012.

R. Seidel. On the all-pairs-shortest-path problem in unweighted
undirected graphs. Journal of Computer and System Sciences
(JCSS), 51(3):400-403, 1995.

M. Schwartz and T. Stern. Routing techniques used in computer
communication networks. IEFE Transactions on Communications
(TC), 28(4):539-552, 1980.

A. Shoshan and U. Zwick. All pairs shortest paths in undirected
graphs with integer weights. In Proceedings of the 40th Annual
IEEFE Symposium on Foundations of Computer Science (FOCS),
pages 605-614. IEEE, 1999.

W.D. Tajibnapis. A correctness proof of a topology information
maintenance protocol for a distributed computer network. Commu-
nications of the ACM (CACM), 20(7):477-485, 1977.

S. Toueg. An all-pairs shortest-paths distributed algorithm. Tech.
Rep. RC 8327, IBM TJ Watson Research Center, Yorktown
Heights, NY 10598, USA, 1980.

V.V. Williams. Multiplying Matrices Faster Than Coppersmith-
Winograd. Proceedings of the 44th annual ACM Symposium on
Theory of Computing (STOC), 2012.

A.C.C. Yao. Some complexity questions related to distributive com-
puting. In Proceedings of the 11th annual ACM symposium on The-
ory of computing (STOC), pages 209-213. ACM, 1979.

Chapter 12

Wireless Protocols

Wireless communication was one of the major success stories of the last decades.
Today, different wireless standards such as wireless local area networks (WLAN)
are omnipresent. In some sense, from a distributed computing viewpoint wireless
networks are quite simple, as they cannot form arbitrary network topologies.
Simplistic models of wireless networks include geometric graph models such as
the so-called unit disk graph. Modern models are more robust: The network
graph is restricted, e.g., the total number of neighbors of a node which are not
adjacent is likely to be small. This observation is hard to capture with purely
geometric models, and motivates more advanced network connectivity models
such as bounded growth or bounded independence.

However, on the other hand, wireless communication is also more difficult
than standard message passing, as for instance nodes are not able to transmit a
different message to each neighbor at the same time. And if two neighbors are
transmitting at the same time, they interfere, and a node may not be able to
decipher anything.

In this chapter we deal with the distributed computing principles of wireless
communication: We make the simplifying assumption that all n» nodes are in the
communication range of each other, i.e., the network graph is a clique. Nodes
share a synchronous time, in each time slot a node can decide to either transmit
or receive (or sleep). However, two or more nodes transmitting in the same
time slot will cause interference. Transmitting nodes are never aware if there is
interference because they cannot simultaneously transmit and receive.

12.1 Basics

The basic communication protocol in wireless networks is the medium access
control (MAC) protocol. Unfortunately it is difficult to claim that one MAC
protocol is better than another, because it all depends on the parameters, such as
the network topology, the channel characteristics, or the traffic pattern. When
it comes to the principles of wireless protocols, we usually want to achieve
much simpler goals. One basic and important question is the following: How
long does it take until one node can transmit successfully, without interference?
This question is often called the wireless leader election problem (Chapter 2),
with the node transmitting alone being the leader.

133

134 CHAPTER 12. WIRELESS PROTOCOLS

Clearly, we can use node IDs to solve leader election, e.g., a node with ID 3
transmits in time slot ¢. However, this may be incredibly slow. There are better
deterministic solutions, but by and large the best and simplest algorithms are
randomized.

Throughout this chapter, we use a random variable X to denote the number
of nodes transmitting in a given slot.

Algorithm 12.1 Slotted Aloha
1: Every node v executes the following code:
2: repeat
3: transmit with probability 1/n
4: until one node has transmitted alone

Theorem 12.2. Using Algorithm 12.1 allows one node to transmit alone (be-
come a leader) after expected time e.

Proof. The probability for success, i.e., only one node transmitting is

1 N\N""' 1
Pr(X =1] n(1> ~ =
n n e

where the last approximation is a result from Theorem 12.29 for sufficiently
large n. Hence, if we repeat this process e times, we can expect one success.
O

Remarks:

e The origin of the name is the ALOHAnet which was developed at the
University of Hawaii.

e How does the leader know that it is the leader? One simple solution is
a “distributed acknowledgment”. The nodes just continue Algorithm
12.1, including the ID of the the leader in their transmission. So the
leader learns that it is the leader.

e One more problem?! Indeed, node v which managed to transmit the
acknowledgment (alone) is the only remaining node which does not
know that the leader knows that it is the leader. We can fix this by
having the leader acknowledge v’s successful acknowledgment.

e One can also imagine an unslotted time model. In this model two
messages which overlap partially will interfere and no message is re-
ceived. As everything in this chapter, Algorithm 12.1 also works in
an unslotted time model, with a factor 2 penalty, i.e., the probability
for a successful transmission will drop from % to i Essentially, each
slot is divided into ¢ small time slots with ¢ — oo and the nodes start

a new t-slot long transmission with probability ﬁ

12.2. INITIALIZATION 135
12.2 Initialization

Sometimes we want the n nodes to have the IDs {1,2,...,n}. This process is
called initialization. Initialization can for instance be used to allow the nodes
to transmit one by one without any interference.

12.2.1 Non-Uniform Initialization

Theorem 12.3. If the nodes know n, we can initialize them in O(n) time slots.

Proof. We repeatedly elect a leader using e.g., Algorithm 12.1. The leader gets
the next free number and afterwards leaves the process. We know that this
works with probability 1/e. The expected time to finish is hence e - n.

O

Remarks:

e But this algorithm requires that the nodes know n in order to give
them IDs from 1,...,n! For a more realistic scenario we need a uni-
form algorithm, i.e, the nodes do not know n.

12.2.2 Uniform Initialization with CD

Definition 12.4 (Collision Detection, CD). Two or more nodes transmitting
concurrently is called interference. In a system with collision detection, a re-
ceiver can distinguish interference from nobody transmitting. In a system with-
out collision detection, a receiver cannot distinguish the two cases.

The main idea of the algorithm is to partition nodes iteratively into sets.
Each set is identified by a label (a bitstring), and by storing one such bitstring,
each node knows in which set it currently is. Initially, all nodes are in a single
set, identified by the empty bitstring. This set is then partitioned into two non-
empty sets, identified by 0’ and ’1’. In the same way, all sets are iteratively
partitioned into two non-empty sets, as long as a set contains more than one
node. If a set contains only a single node, this node receives the next free ID.
The algorithm terminates once every node is alone in its set. Note that this
partitioning process iteratively creates a binary tree which has exactly one node
in the set at each leaf, and thus has n leaves.

136 CHAPTER 12. WIRELESS PROTOCOLS

Algorithm 12.5 Initialization with Collision Detection

1: Every node v executes the following code:
2: nextld :=0
3: myBitstring := < initialize to empty string
4: bitstringsToSplit .= [*'] < a queue with sets to split
5: while bitstringsToSplit is not empty do
6: b := bitstringsToSplit.pop()
. repeat
8: if b = myBitstring then
: choose 7 uniformly at random from {0, 1}
10: in the next two time slots:
11: transmit in slot r, and listen in other slot
12: else
13: it is not my bitstring, just listen in both slots
14: end if

15: until there was at least 1 transmission in both slots

16: if b = myBitstring then

17: myBitstring := myBitstring +r < append bit r
18: end if

19: forr e {0,1} do

20: if some node u transmitted alone in slot r then
21: node u becomes ID nextId and becomes passive
22: nextld := nextld + 1

23: else

24: bitstringsToSplit.push(b + r)

25: end if

26: end for
27: end while

Remarks:

e In line 20 a transmitting node needs to know whether it was the only
one transmitting. This is achievable in several ways, for instance by
adding an acknowledgement round. To notify a node v that it has
transmitted alone in round r, every node that was silent in round r
sends an acknowledgement in round r + 1, while v is silent. If v hears
a message or interference in r + 1, it knows that it transmitted alone
in round r.

Theorem 12.6. Algorithm 12.5 correctly initializes n nodes in expected time

O(n).

Proof. A successful split is defined as a split in which both subsets are non-
empty. We know that there are exactly n — 1 successful splits because we have
a binary tree with n leaves and n — 1 inner nodes. Let us now calculate the
probability for creating two non-empty sets from a set of size k > 2 as
1 1 1
Pr[nggkfl]:lfPr[X:O]fPr[X:k]:172?72?25.

12.3. LEADER ELECTION 137

Thus, in expectation we need O(n) splits. O

Remarks:

e What if we do not have collision detection?

12.2.3 Uniform Initialization without CD

Let us assume that we have a special node ¢ (leader) and let S denote the set of
nodes which want to transmit. We now split every time slot from Algorithm 12.5
into two time slots and use the leader to help us distinguish between silence and
noise. In the first slot every node from the set S transmits, in the second slot
the nodes in S U {¢} transmit. This gives the nodes sufficient information to
distinguish the different cases (see Table 12.7).

nodes in S transmit | nodes in S U {{} transmit
S| =0 X v
S| =1,5={¢} v v
|S]=1,5 # {¢} v X
|S| > 2 X X

Table 12.7: Using a leader to distinguish between noise and silence: X represents
noise/silence, ¥ represents a successful transmission.

Remarks:

e As such, Algorithm 12.5 works also without CD, with only a factor 2
overhead.

e More generally, a leader immediately brings CD to any protocol.

e This protocol has an important real life application, for instance when
checking out a shopping cart with items which have RFID tags.

e But how do we determine such a leader? And how long does it take
until we are “sure” that we have one? Let us repeat the notion of with
high probability.

12.3 Leader Election

12.3.1 With High Probability

Definition 12.8 (With High Probability). Some probabilistic event is said to
occur with high probability (w.h.p.), if it happens with a probability p > 1 —
1/nc, where ¢ is a constant. The constant ¢ may be chosen arbitrarily, but it is
considered constant with respect to Big-O notation.

Theorem 12.9. Algorithm 12.1 elects a leader w.h.p. in O(logn) time slots.

138 CHAPTER 12. WIRELESS PROTOCOLS

Proof. The probability for not electing a leader after ¢ - logn time slots, i.e.,
clogn slots without a successful transmission is

clnn ec'Inn
1 1 1 1
(1 -) B (1 -) S 1 ' - a
e e elnn-c ne

Remarks:

e What about uniform algorithms, i.e. the number of nodes n is not
known?

12.3.2 Uniform Leader Election

Algorithm 12.10 Uniform leader election
1: Every node v executes the following code:
2: for k=1,2,3,... do
3: fori=1to ck do
transmit with probability p := 1/2%
if node v was the only node which transmitted then
v becomes the leader
break
end if
9: end for
10: end for

N U

Theorem 12.11. By using Algorithm 12.10 it is possible to elect a leader w.h.p.
in O(log®n) time slots if n is not known.

Proof. Let us briefly describe the algorithm. The nodes transmit with prob-
ability p = 27" for ck time slots for k = 1,2,.... At first p will be too high
and hence there will be a lot of interference. But after logn phases, we have
k =~ logn and thus the nodes transmit with probability ~ % For simplicity’s
sake, let us assume that n is a power of 2. Using the approach outlined above,
we know that after log n iterations, we have p = % Theorem 12.9 yields that we
can elect a leader w.h.p. in O(logn) slots. Since we have to try logn estimates
until k ~ n, the total runtime is O(log® n). O

Remarks:
e Note that our proposed algorithm has not used collision detection.

Can we solve leader election faster in a uniform setting with collision
detection?

12.3. LEADER ELECTION 139

Algorithm 12.12 Uniform leader election with CD
1: Every node v executes the following code:
2: repeat
3: transmit with probability %
4 if at least one node transmitted then
5 all nodes that did not transmit quit the protocol
6: end if
7: until one node transmits alone

12.3.3 Fast Leader Election with CD

Theorem 12.13. With collision detection we can elect a leader using Algorithm
12.12 w.h.p. in O(logn) time slots.

Proof. The number of active nodes k is monotonically decreasing and always
greater than 1 which yields the correctness. A slot is called successful if at most
half the active nodes transmit. We can assume that k > 2 since otherwise we
would have already elected a leader. We can calculate the probability that a
time slot is successful as
k k 1 1 1
pefiex<[E]]opxe [E]] -prixgzbo Lt

Since the number of active nodes at least halves in every successful time slot,
log n successful time slots are sufficient to elect a leader. Now let Y be a random
variable which counts the number of successful time slots after 8 - ¢ - logn time
slots. The expected value is E[Y] > 8- c¢-logn - % > 2-c-logn. Since all those
time slots are independent from each other, we can apply a Chernoff bound (see

Theorem 12.28) with § = 3 which states

2 1
PrlY < (1—08)E[Y]] < e 7BV < em52clogn < o

for any constant a.

Remarks:

e Can we be even faster?

12.3.4 Even Faster Leader Election with CD

Let us first briefly describe an algorithm for this. In the first phase the nodes
transmit with probability 1/220, 1/221 , 1/222, ... until no node transmits. This
yields a first approximation on the number of nodes. Afterwards, a binary search
is performed to determine an even better approximation of n. Finally, the third
phase finds a constant approximation of n using a biased random walk. The
algorithm stops in any case as soon as only one node is transmitting, which will
become the leader.

Lemma 12.15. If j > logn + loglogn, then PriX > 1] <

— logn "

140 CHAPTER 12. WIRELESS PROTOCOLS

Algorithm 12.14 Fast uniform leader election

1:=1
repeat
=21
transmit with probability 1/2¢
: until no node transmitted
{End of Phase 1}
[= 2i/2
u = 2
: while [+ 1 <u do
J= 5 |
10: transmit with probability 1/27
11: if no node transmitted then

A .

© ®© 3P

12: ui=j
13: else

14: l:=7
15: end if

16: end while

{End of Phase 2}
17: k:=u
18: repeat
19: transmit with probability 1/2*
20: if no node transmitted then
21: k=k-1

22: else
23: ki=k+1
24: end if

25: until exactly one node transmitted

Proof. The nodes transmit with probability 1/27 < 1/2lgn+tloglogn — 1

nlogn"’
The expected number of nodes transmitting is E[X] = ﬁgn. Using Markov’s

inequality (see Theorem 12.27) yields Pr[X > 1] < Pr[X > E[X] -logn] <
1
O

logn*

Lemma 12.16. If j < logn —loglogn, then P[X = 0] <

S

Proof. The nodes transmit with probability 1/27 > 1/2legn—loglogn — IOgT".
Thus, the probability that a node is silent is at most 1 — bng' Hence, the
probability for a silent time slot, i.e., Pr[X = 0], is at most (1 — 82 —

n
eflogn _ l'
n

Corollary 12.17. Ifi > 2logn, then Pr[X > 1] < —

— logn "

Proof. This follows from Lemma 12.15 since the deviation in this corollary is
even larger. O

Corollary 12.18. Ifi < 1logn, then P[X = 0] <

1
Proof. This follows from Lemma 12.16 since the deviation in this corollary is
even larger. O

12.3. LEADER ELECTION 141

Lemma 12.19. Let v be such that 2°~' <n < 2%, i.e., v~logn. Ifk > v+2,
then Pr(X > 1] < 1.

Proof. Markov’s inequality yields

o

2k 2k
Pr(X > 1] = Pr [X > nE[X]} < Pr[X > ﬁE[X]] < Pr[X > 4E[X]] <

Lemma 12.20. Ifk <v —2, then P[X =0] < 1.
Proof. A similar analysis is possible to upper bound the probability that a
transmission fails if our estimate is too small. We know that k < v —2 and thus

1\" _a
Pr[X:O]:(l—) <e T <e T <el<

1
2k 4

O

Lemma 12.21. Ifv—2 < k < v+ 2, then the probability that exactly one node
transmits s constant.

Proof. The transmission probability is p = m = O(1/n), and the lemma
follows with a slightly adapted version of Theorem 12.2.
O

Lemma 12.22. With probability 1— hén we find a leader in phase 3 in O(loglogn)
time.

Proof. For any k, because of Lemmas 12.19 and 12.20, the random walk of the
third phase is biased towards the good area. One can show that in O(loglogn)
steps one gets Q(loglogn) good transmissions. Let Y denote the number of
times exactly one node transmitted. With Lemma 12.21 we obtain E[Y] =
Q(loglogn). Now a direct application of a Chernoff bound (see Theorem 12.28)

yields that these transmissions elect a leader with probability 1 — loén' O

Theorem 12.23. The Algorithm 12.1/ elects a leader with probability of at

least 1 — loﬁ)gfl" in time O(loglogn).

Proof. From Corollary 12.17 we know that after O(loglogn) time slots, the
first phase terminates. Since we perform a binary search on an interval of size
O(logn), the second phase also takes at most O(loglogn) time slots. For the
third phase we know that O(loglogn) slots are sufficient to elect a leader with
probability 1 — loén by Lemma 12.22. Thus, the total runtime is O(loglogn).
Now we can combine the results. We know that the error probability for
every time slot in the first two phases is at most @. Using a union bound (see
Theorem 12.26), we can upper bound the probability that no error occurred by

lolgolﬂ. Thus, we know that after phase 2 our estimate is at most log logn away
gn

from logn with probability of at least 1 — loﬁ}%. Hence, we can apply Lemma

loglogn
logn

12.22 and thus successfully elect a leader with probability of at least 1 —
(again using a union bound) in time O(loglogn).
O

142 CHAPTER 12. WIRELESS PROTOCOLS

Remarks:

e Tightening this analysis a bit more, one can elect a leader with prob-
ability 1 — @ in time loglogn + o(loglogn).

e Can we be even faster?

12.3.5 Lower Bound

Theorem 12.24. Any uniform protocol that elects a leader with probability of
at least 1 — %t must Tun for at least t time slots.

Proof. Consider a system with only 2 nodes. The probability that exactly one
transmits is at most

1
PriXx=1=2-(1-p) <3.
Thus, after ¢ time slots the probability that a leader was elected is at most

1t
— 1, O

Remarks:

e Setting ¢t = loglogn shows that Algorithm 12.14 is almost tight.

12.3.6 Uniform Asynchronous Wakeup without CD

Until now we have assumed that all nodes start the algorithm in the same time
slot. But what happens if this is not the case? How long does it take to elect
a leader if we want a uniform and anonymous (nodes do not have an identifier
and thus cannot base their decision on it) algorithm?

Theorem 12.25. If nodes wake up in an arbitrary (worst-case) way, any al-
gorithm may take Q(n/logn) time slots until a single node can successfully
transmat.

Proof. Nodes must transmit at some point, or they will surely never successfully
transmit. With a uniform protocol, every node executes the same code. We
focus on the first slot where nodes may transmit. No matter what the protocol
is, this happens with probability p. Since the protocol is uniform, p must be a
constant, independent of n.

The adversary wakes up w = fjlnn nodes in each time slot with some con-
stant ¢. All nodes woken up in the first time slot will transmit with probability
p. We study the event E; that exactly one of them transmits in that first time
slot. Using the inequality (14 ¢/n)" < e! from Lemma 12.29 we get

12.4. USEFUL FORMULAS 143

PrlEy]=w-p-(1-p) """

=clnn(1 —p)%(dnn—p)
<clon e cintrp

=clnn-n"%"P

=n"°-0 (logn)
11
ne—1 ne'”

In other words, w.h.p. that time slot will not be successful. Since the nodes
cannot distinguish noise from silence, the same argument applies to every set of
nodes which wakes up. Let E, be the event that all n/w time slots will not be
successful. Using the inequality 1 — p < (1 — p/k)* from Lemma 12.30 we get

>1-—

1 ©(n/logn) 1
Pr(Ey] = (1 — Pr(E)V" > (1 — nc/) o
In other words, w.h.p. it takes more than n/w time slots until some node can
transmit alone.

O

12.4 Useful Formulas

In this chapter we have used several inequalities in our proofs. For simplicity’s
sake we list all of them in this section.

Theorem 12.26. Boole’s inequality or union bound: For a countable set of
events Fq, Fo, Fs, ..., we have

Pr[U Ej] < Z PrlE;).

Theorem 12.27. Markov’s inequality: If X is any random variable and a > 0,

then
E[X
Pr]|X| >a] < [a]

Theorem 12.28. Chernoff bound: Let Y1,...,Y, be a independent Bernoulli
random variables let Y := Zi Y;. For any 0 <§ <1 it holds

PrlY < (1 -8)E[Y]] < e” T EY]

and for § >0
min{s,52
Prly > (1406)- E[Y]] < e~ =" ElY]
Theorem 12.29. We have

144 CHAPTER 12. WIRELESS PROTOCOLS

for alln € N, |t| <n. Note that

t n
lim <1 + > = et
n—o00 n

Theorem 12.30. For all p,k such that 0 <p <1 and k > 1 we have

1—p<(1—p/k)".

Chapter Notes

The Aloha protocol is presented and analyzed in [Abr70, BAK*75, Abr85]; the
basic technique that unslotted protocols are twice as bad a slotted protocols is
from [Rob75]. The idea to broadcast in a packet radio network by building a
tree was first presented in [TM78, Cap79]. This idea is also used in [HNO99]
to initialize the nodes. Willard [Wil86] was the first that managed to elect a
leader in O(loglogn) time in expectation. Looking more carefully at the success
rate, it was shown that one can elect a leader with probability 1 — @ in time
loglogn + o(loglogn) [NO98]. Finally, approximating the number of nodes in
the network is analyzed in [JKZ02, CGK05, BKK*16]. The lower bound for
probabilistic wake-up is published in [JS02]. In addition to single-hop networks,
multi-hop networks have been analyzed, e.g. broadcast [BYGI92, KM98, CR06],
or deployment [MvRWO06].

This chapter was written in collaboration with Philipp Brandes.

Bibliography

[Abr70] Norman Abramson. THE ALOHA SYSTEM: another alternative
for computer communications. In Proceedings of the November 17-
19, 1970, fall joint computer conference, pages 281-285, 1970.

[Abr85] Norman M. Abramson. Development of the ALOHANET. IEFE
Transactions on Information Theory, 31(2):119-123, 1985.

[BAK'75] R. Binder, Norman M. Abramson, Franklin Kuo, A. Okinaka, and
D. Wax. ALOHA packet broadcasting: a retrospect. In American

Federation of Information Processing Societies National Computer
Conference (AFIPS NCC), 1975.

[BKK*16] Philipp Brandes, Marcin Kardas, Marek Klonowski, Dominik Pajk,
and Roger Wattenhofer. Approximating the Size of a Radio Net-
work in Beeping Model. In 23rd International Colloquium on Struc-
tural Information and Communication Complexity, Helsinki, Fin-
land, July 2016.

[BYGI92] Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the Time-
Complexity of Broadcast in Multi-hop Radio Networks: An Expo-
nential Gap Between Determinism and Randomization. J. Comput.
Syst. Sci., 45(1):104-126, 1992.

[Cap79] J. Capetanakis. Tree algorithms for packet broadcast channels.
IEEE Trans. Inform. Theory, 25(5):505-515, 1979.

BIBLIOGRAPHY 145

[CGKO5]

[CRO6]

[HNO99]

[JKZ02]

[7502]

[KMOS]

[MvRWO6]

[NOYS]

[Rob75]

[TM78]

[Wils6]

Toannis Caragiannis, Clemente Galdi, and Christos Kaklamanis. Ba-
sic Computations in Wireless Networks. In International Symposium
on Algorithms and Computation (ISAAC), 2005.

Artur Czumaj and Wojciech Rytter. Broadcasting algorithms in
radio networks with unknown topology. J. Algorithms, 60(2):115—
143, 2006.

Tatsuya Hayashi, Koji Nakano, and Stephan Olariu. Randomized
Initialization Protocols for Packet Radio Networks. In 13th Interna-
tional Parallel Processing Symposium € 10th Symposium on Parallel
and Distributed Processing (IPPS/SPDP), 1999.

Tomasz Jurdzinski, Miroslaw Kutylowski, and Jan Zatopianski.
Energy-Efficient Size Approximation of Radio Networks with No
Collision Detection. In Computing and Combinatorics (COCOON),
2002.

Tomasz Jurdzinski and Grzegorz Stachowiak. Probabilistic Al-
gorithms for the Wakeup Problem in Single-Hop Radio Net-
works. In International Symposium on Algorithms and Computation
(ISAAC), 2002.

Eyal Kushilevitz and Yishay Mansour. An Omega(D log (N/D))
Lower Bound for Broadcast in Radio Networks. SIAM J. Comput.,
27(3):702-712, 1998.

Thomas Moscibroda, Pascal von Rickenbach, and Roger Watten-
hofer. Analyzing the Energy-Latency Trade-off during the Deploy-
ment of Sensor Networks. In 25th Annual Joint Conference of
the IEEE Computer and Communications Societies (INFOCOM),
Barcelona, Spain, April 2006.

Koji Nakano and Stephan Olariu. Randomized O (log log n)-Round
Leader Election Protocols in Packet Radio Networks. In Interna-
tional Symposium on Algorithms and Computation (ISAAC), 1998.

Lawrence G. Roberts. ALOHA packet system with and without
slots and capture. SIGCOMM Comput. Commun. Rev., 5(2):28-42,
April 1975.

B. S. Tsybakov and V. A. Mikhailov. Slotted multiaccess packet
broadcasting feedback channel. Problemy Peredachi Informatsii,
14:32-59, October - December 1978.

Dan E. Willard. Log-Logarithmic Selection Resolution Protocols in
a Multiple Access Channel. STAM J. Comput., 15(2):468-477, 1986.

146 CHAPTER 12. WIRELESS PROTOCOLS

Chapter 13

Stabilization

A large branch of research in distributed computing deals with fault-tolerance.
Being able to tolerate a considerable fraction of failing or even maliciously be-
having (“Byzantine”) nodes while trying to reach consensus (on e.g. the output
of a function) among the nodes that work properly is crucial for building reli-
able systems. However, consensus protocols require that a majority of the nodes
remains non-faulty all the time.

Can we design a distributed system that survives transient (short-lived)
failures, even if all nodes are temporarily failing? In other words, can we build
a distributed system that repairs itself?

13.1 Self-Stabilization

Definition 13.1 (Self-Stabilization). A distributed system is self-stabilizing if,
starting from an arbitrary state, it is guaranteed to converge to a legitimate
state. If the system is in a legitimate state, it is guaranteed to remain there,
provided that no further faults happen. A state is legitimate if the state satisfies
the specifications of the distributed system.

Remarks:

e What kind of transient failures can we tolerate? An adversary can
crash nodes, or make nodes behave Byzantine. Indeed, temporarily
an adversary can do harm in even worse ways, e.g. by corrupting the
volatile memory of a node (without the node noticing — not unlike
the movie Memento), or by corrupting messages on the fly (without
anybody noticing). However, as all failures are transient, eventually
all nodes must work correctly again, that is, crashed nodes get res-
urrected, Byzantine nodes stop being malicious, messages are being
delivered reliably, and the memory of the nodes is secure.

e Clearly, the read only memory (ROM) must be taboo at all times for
the adversary. No system can repair itself if the program code itself or
constants are corrupted. The adversary can only corrupt the variables
in the volatile random access memory (RAM).

147

148 CHAPTER 13. STABILIZATION

Definition 13.2 (Time Complexity). The time complexity of a self-stabilizing
system is the time that passed after the last (transient) failure until the system
has converged to a legitimate state again, staying legitimate.

Remarks:

e Self-stabilization enables a distributed system to recover from a tran-
sient fault regardless of its nature. A self-stabilizing system does not
have to be initialized as it eventually (after convergence) will behave
correctly.

e One of the first self-stabilizing algorithms was Dijkstra’s token ring
network. A token ring is an early form of a local area network where
nodes are arranged in a ring, communicating by a token. The sys-
tem is correct if there is exactly one token in the ring. Let’s have
a look at a simple solution. Given an oriented ring, we simply call
the clockwise neighbor parent (p), and the counterclockwise neigh-
bor child (¢). Also, there is a leader node vy. Every node v is in a
state S(v) € {0,1,...,n}, perpetually informing its child about its
state. The token is implicitly passed on by nodes switching state.
Upon noticing a change of the parent state S(p), node v executes the
following code:

Algorithm 13.3 Self-stabilizing Token Ring
1: if v = vg then

2: if S(v) = S(p) then

3 S(v) == S(v)+1 (mod n)
4: end if

5: else

6: S(v) :=S5(p)

7: end if

Theorem 13.4. Algorithm 13.3 stabilizes correctly.

Proof: As long as some nodes or edges are faulty, anything can happen. In self-
stabilization, we only consider the system after all faults already have happened
(at time tp, however starting in an arbitrary state).

Every node apart from leader vy will always attain the state of its parent.
It may happen that one node after the other will learn the current state of the
leader. In this case the system stabilizes after the leader increases its state at
most n time units after time ¢¢. It may however be that the leader increases its
state even if the system is not stable, e.g. because its parent or parent’s parent
accidentally had the same state at time tg.

The leader will increase its state possibly multiple times without reaching
stability, however, at some point the leader will reach state s, a state that no
other node had at time tg. (Since there are n nodes and n states, this will
eventually happen.) At this point the system must stabilize because the leader
cannot push for s + 1 (mod n) until every node (including its parent) has s.

After stabilization, there will always be only one node changing its state,
i.e., the system remains in a legitimate state.

13.1. SELF-STABILIZATION 149

O

Remarks:

e Although one might think the time complexity of the algorithm is
quite bad, it is asymptotically optimal.

e It can be a lot of fun designing self-stabilizing algorithms. Let us try
to build a system, where the nodes organize themselves as a maximal
independent set (MIS, Chapter 7):

Algorithm 13.5 Self-stabilizing MIS
Require: Node IDs
Every node v executes the following code:
1: do atomically
2: Leave MIS if a neighbor with a larger ID is in the MIS
3: Join MIS if no neighbor with larger ID joins MIS
4: Send (node ID, MIS or not MIS) to all neighbors
5: end do

Remarks:

e Note that the main idea of Algorithm 13.5 is from Algorithm 7.3,
Chapter 7.

e As long as some nodes are faulty, anything can happen: Faulty nodes
may for instance decide to join the MIS, but report to their neighbors
that they did not join the MIS. Similarly messages may be corrupted
during transport. As soon as the system (nodes, messages) is correct,
however, the system will converge to a MIS. (The arguments are the
same as in Chapter 7).

o Self-stabilizing algorithms always run in an infinite loop, because tran-
sient failures can hit the system at any time. Without the infinite loop,
an adversary can always corrupt the solution “after” the algorithm
terminated.

e The problem of Algorithm 13.5 is its time complexity, which may be
linear in the number of nodes. This is not very exciting. We need
something better! Since Algorithm 13.5 was just the self-stabilizing
variant of the slow MIS Algorithm 7.3, maybe we can hope to “self-
stabilize” some of our fast algorithms from Chapter 77

e Yes, we can! Indeed there is a general transformation that takes any
local algorithm (efficient but not fault-tolerant) and turns it into a self-
stabilizing algorithm, keeping the same level of efficiency and efficacy.
We present the general transformation below.

Theorem 13.6 (Transformation). We are given a deterministic local algorithm
A that computes a solution of a given problem in k synchronous communication
rounds. Using our transformation, we get a self-stabilizing system with time
complexity k. In other words, if the adversary does not corrupt the system for k
time units, the solution is stable. In addition, if the adversary does not corrupt
any node or message closer than distance k from a node u, node u will be stable.

150 CHAPTER 13. STABILIZATION

Proof: In the proof, we present the transformation. First, however, we need to
be more formal about the deterministic local algorithm A. In A, each node of
the network computes its decision in k& phases. In phase ¢, node u computes
its local variables according to its local variables and received messages of the
earlier phases. Then node w sends its messages of phase ¢ to its neighbors.
Finally node u receives the messages of phase i from its neighbors. The set of
local variables of node u in phase i is given by Lf. (In the very first phase, node
u initializes its local variables with L1.) The message sent from node u to node
v in phase 7 is denoted by mfw. Since the algorithm A is deterministic, node u
can compute its local variables L and messages mfm of phase ¢ from its state
of earlier phases, by simply applying functions f; and f,,. In particular,

Li = fL(u,LZ_l,miTul), for 7 > 1, and (13.1)
mi, = fm(u,v, L), fori>1. (13.2)

The self-stabilizing algorithm needs to simulate all the k phases of the local
algorithm A in parallel. Each node u stores its local variables L., ..., L as well
as all messages received mi,u, cee m’,f’u in two tables in RAM. For simplicity,
each node u also stores all the sent messages mi,*, .. ,mﬁ’* in a third table. If
a message or a local variable for a particular phase is unknown, the entry in the
table will be marked with a special value L (“unknown”). Initially, all entries
in the table are L.

Clearly, in the self-stabilizing model, an adversary can choose to change
table values at all times, and even reset these values to L. Our self-stabilizing
algorithm needs to constantly work against this adversary. In particular, each

node u runs these two procedures constantly:

e For all neighbors: Send each neighbor v a message containing the complete
row of messages of algorithm A, that is, send the vector (mj, ,,,...,mk) to
neighbor v. Similarly, if neighbor u receives such a vector from neighbor
v, then neighbor u replaces neighbor v’s row in the table of incoming
messages by the received vector (mj ..., mb).

u’ s My

e Because of the adversary, node u must constantly recompute its local
variables (including the initialization) and outgoing message vectors using
Functions (13.1) and (13.2) respectively.

The proof is by induction. Let N%(u) be the i-neighborhood of node u (that
is, all nodes within distance i of node u). We assume that the adversary has not
corrupted any node in N*(u) since time to. At time to all nodes in N*(u) will
check and correct their initialization. Following Equation (13.2), at time ¢y all
nodes in N*(u) will send the correct message entry for the first round (m.) to
all neighbors. Asynchronous messages take at most 1 time unit to be received
at a destination. Hence, using the induction with Equations (13.1) and (13.2)
it follows that at time o + i, all nodes in N*~%(u) have received the correct
messages mly*, o ,mi* Consequently, at time ¢y + k node u has received all
messages of local algorithm A correctly, and will compute the same result value
as in A. O

13.1. SELF-STABILIZATION 151

Remarks:

e Using our transformation (also known as “local checking”), designing
self-stabilizing algorithms just turned from art to craft.

e As we have seen, many local algorithms are randomized. This brings
two additional problems. Firstly, one may not exactly know how long
the algorithm will take. This is not really a problem since we can
simply send around all the messages needed, until the algorithm is
finished. The transformation of Theorem 13.6 works also if nodes
just send all messages that are not 1. Secondly, we must be careful
about the adversary. In particular we need to restrict the adversary
such that a node can produce a reproducible sufficiently long string
of random bits. This can be achieved by storing the sufficiently long
string along with the program code in the read only memory (ROM).
Alternatively, the algorithm might not store the random bit string in
its ROM, but only the seed for a random bit generator. We need this in
order to keep the adversary from reshuffling random bits until the bits
become “bad”, and the expected (or with high probability) efficacy
or efficiency guarantees of the original local algorithm A cannot be
guaranteed anymore.

e Since most local algorithms have only a few communication rounds,
and only exchange small messages, the memory overhead of the trans-
formation is usually bearable. In addition, information can often be
compressed in a suitable way so that for many algorithms message size
will remain polylogarithmic. For example, the information of the fast
MIS algorithm (Algorithm 7.12) consists of a series of random val-
ues (one for each round), plus two boolean values per round. These
boolean values represent whether the node joins the MIS, or whether
a neighbor of the node joins the MIS. The order of the values tells in
which round a decision is made. Indeed, the series of random bits can
even be compressed just into the random seed value, and the neighbors
can compute the random values of each round themselves.

e There is hope that our transformation as well gives good algorithms
for mobile networks, that is for networks where the topology of the
network may change. Indeed, for deterministic local approximation
algorithms, this is true: If the adversary does not change the topology
of a node’s k-neighborhood in time k, the solution will locally be stable
again.

e For randomized local approximation algorithms however, this is not
that simple. Assume for example, that we have a randomized local al-
gorithm for the dominating set problem. An adversary can constantly
switch the topology of the network, until it finds a topology for which
the random bits (which are not really random because these random
bits are in ROM) give a solution with a bad approximation ratio. By
defining a weaker adversarial model, we can fix this problem. Essen-
tially, the adversary needs to be oblivious, in the sense that it cannot
see the solution. Then it will not be possible for the adversary to
restart the random computation if the solution is “too good”.

152 CHAPTER 13. STABILIZATION

e Self-stabilization is the original approach, and self-organization may
be the general theme, but new buzzwords pop up every now and
then, e.g. self-configuration, self-management, self-regulation, self-
repairing, self-healing, self-optimization, self-adaptivity, or self-protection.
Generally all these are summarized as “self-*”. One computing giant
coined the term “autonomic computing” to reflect the trend of self-
managing distributed systems.

13.2 Advanced Stabilization

We finish the chapter with a non-trivial example beyond self-stabilization, show-
ing the beauty and potential of the area: In a small town, every evening each
citizen calls all his (or her) friends, asking them whether they will vote for the
Democratic or the Republican party at the next election.! In our town citizens
listen to their friends, and everybody re-chooses his or her affiliation according
to the majority of friends.? Is this process going to “stabilize” (in one way or
another)?

Remarks:
e Is eventually everybody voting for the same party? No.
e Will each citizen eventually stay with the same party? No.

e Will citizens that stayed with the same party for some time, stay with
that party forever? No.

e And if their friends also constantly root for the same party? No.
e Will this beast stabilize at all?!? Yes!

Eventually every citizen will either stay with the same party for the rest of her
life, or switch her opinion every day.

Theorem 13.7 (Dems & Reps). Fuventually every citizen is rooting for the
same party every other day.

Proof: To prove that the opinions eventually become fixed or cycle every other
day, think of each friendship as a pair of (directed) edges, one in each direction.
Let us say an edge is currently bad if the party of the advising friend differs
from the next-day’s party of the advised friend. In other words, the edge is bad
if the advised friend did not follow the advisor’s opinion (which means that the
advisor was in the minority). An edge that is not bad, is good.

Consider the out-edges of citizen u on day ¢, during which (say) u roots for
the Democrats. Assume that on day ¢, g out-edges of u are good, and b out-
edges are bad. Note that g+ b is the degree of u. Since g out-edges are good, g
friends of u root for the Democrats on day t + 1. Likewise, b friends of u root
for the Republicans on day ¢ + 1. In other words, on the evening of day ¢t + 1
citizen u will receive g recommendations for Democrats, and b for Republicans.
We distinguish two cases:

1We are in the US, and as we know from The Simpsons, you “throw your vote away” if
you vote for somebody else. As a consequence our example has two parties only.
2 Assume for the sake of simplicity that everybody has an odd number of friends.

13.2. ADVANCED STABILIZATION 153

e g > b: In this case, citizen u will again root for the Democrats on day
t + 2. Note that this means, on day ¢ + 1, exactly ¢ in-edges of u are
good, and exactly b in-edges are bad. In other words, the number of bad
out-edges on day t is exactly the number of bad in-edges on day ¢ + 1.

e g < b: In this case, citizen u will root for the Republicans on day ¢ + 2.
Please note that on day ¢+ 1, exactly b in-edges of u are good, and exactly
g in-edges are bad. In other words, the number of bad out-edges on day
t was exactly the number of good in-edges on day ¢ + 1 (and vice versa).
This means that the number of bad out-edges on day ¢ is strictly larger
than the number of bad in-edges on day ¢ + 1.

We can summarize these two cases by the following observation. If a citizen
u votes for the same party on day ¢ as on day ¢t + 2, the number of her bad
out-edges on day t is the same as the number of her bad in-edges on day ¢ + 1.
If a citizen u votes for different parties on the days t and ¢ + 2, the number of
her bad out-edges on day t is strictly larger than the number of her bad in-edges
on day t + 1.

We now account for the total number of bad edges. We denote the total
number of bad out-edges on day ¢ with BO; and by the total number of bad
in-edges on day t with BI;. Using the analysis of the two cases, and summing
up for all citizens, we know that BO, > Bl;;. Moreover, each out-edge of a
citizen is an in-edge for another citizen, hence BO; = BI;. In fact, if any citizen
switches its party from day ¢ to t + 2, we know that the total number of bad
edges strictly decreases, i.e., BOyy1 = Bl 11 < BO;. But BO cannot decrease
forever. Once BOyy1 = BOy, every citizen u votes for the same party on day
t+2 as u voted on day t, and the system stabilizes in the sense that every citizen
will either stick with his or her party forever or flip-flop every day. a

Remarks:

e The model can be generalized considerably by, for example, adding
weights to vertices (meaning some citizens’ opinions are more impor-
tant than others), adding weights to edges (meaning the influence be-
tween some citizens is stronger than between others), allowing loops
(citizens who consider their own current opinions as well), allowing
tie-breaking mechanisms, and even allowing different thresholds for
party changes.

e How long does it take until the system stabilizes?

e Some may be reminded of Conway’s Game of Life: We are given an
infinite two-dimensional grid of cells, each of which is in one of two
possible states, dead or alive. Every cell interacts with its eight neigh-
bors. In each round, the following transitions occur: Any live cell
with fewer than two live neighbors dies, as if caused by loneliness.
Any live cell with more than three live neighbors dies, as if by over-
crowding. Any live cell with two or three live neighbors lives on to
the next generation. Any dead cell with exactly three live neighbors
is “born” and becomes a live cell. The initial pattern constitutes the
“seed” of the system. The first generation is created by applying the
above rules simultaneously to every cell in the seed, births and deaths

154 CHAPTER 13. STABILIZATION

happen simultaneously, and the discrete moment at which this hap-
pens is sometimes called a tick. (In other words, each generation is
a pure function of the one before.) The rules continue to be applied
repeatedly to create further generations. John Conway figured that
these rules were enough to generate interesting situations, including
“breeders” with create “guns” which in turn create “gliders”. As such
Life in some sense answers an old question by John von Neumann,
whether there can be a simple machine that can build copies of itself.
In fact Life is Turing complete, that is, as powerful as any computer.

Figure 13.8: A “glider gun”...

] E}.E.:-F.

=J

Figure 13.9: ...in action.

Chapter Notes

Self-stabilization was first introduced in a paper by Edsger W. Dijkstra in 1974
[Dij74], in the context of a token ring network. It was shown that the ring
stabilizes in time ©(n). For his work Dijkstra received the 2002 ACM PODC
Influential Paper Award. Shortly after receiving the award he passed away.
With Dijkstra being such an eminent person in distributed computing (e.g.
concurrency, semaphores,mutual exclusion, deadlock, finding shortest paths in
graphs, fault-tolerance, self-stabilization), the award was renamed Edsger W.
Dijkstra Prize in Distributed Computing. In 1991 Awerbuch et al. showed that
any algorithm can be modified into a self-stabilizing algorithm that stabilizes in
the same time that is needed to compute the solution from scratch [APSV91].

The Republicans vs. Democrats problem was popularized by Peter Winkler,
in his column “Puzzled” [Win08]. Goles et al. already proved in [GO80] that
any configuration of any such system with symmetric edge weights will end up
in a situation where each citizen votes for the same party every second day.

BIBLIOGRAPHY 155

Winkler additionally proved that the time such a system takes to stabilize is
bounded by O(n?). Frischknecht et al. constructed a worst case graph which
takes Q(n?/log® n) rounds to stabilize [FKW13]. Keller et al. generalized this
results in [KPW14], showing that a graph with symmetric edge weights stabi-
lizes in O(W(QG)), where W(G) is the sum of edge weights in graph G. They
also constructed a weighted graph with exponential stabilization time. Closely
related to this puzzle is the well known Game of Life which was described by
the mathematician John Conway and made popular by Martin Gardner [Gar70].
In the Game of Life cells can be either dead or alive and change their states
according to the number of alive neighbors.

Bibliography

[APSV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-
Stabilization By Local Checking and Correction. In In Proceedings
of IEEE Symposium on Foundations of Computer Science (FOCS),
1991.

[Dij74] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Communications of the ACM, 17(11):943-644, November
1974.

[FKW13] Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Conver-
gence in (Social) Influence Networks. In 27th International Sympo-
stum on Distributed Computing (DISC), Jerusalem, Israel, October
2013.

[Gar70] M. Gardner. Mathematical Games: The fantastic combinations
of John Conway’s new solitaire game Life. Scientific American,
223:120-123, October 1970.

[GO80] E. Goles and J. Olivos. Periodic behavior of generalized threshold
functions. Discrete Mathematics, 30:187-189, 1980.

[KPW14] Barbara Keller, David Peleg, and Roger Wattenhofer. How even Tiny
Influence can have a Big Impact! In 7th International Conference
on Fun with Algorithms (FUN), Lipari Island, Italy, July 2014.

[Win08] P. Winkler. Puzzled. Communications of the ACM, 51(9):103-103,
August 2008.

156 CHAPTER 13. STABILIZATION

Chapter 14

Labeling Schemes

Imagine you want to repeatedly query a huge graph, e.g., a social or a road
network. For example, you might need to find out whether two nodes are
connected, or what the distance between two nodes is. Since the graph is so
large, you distribute it among multiple servers in your data center.

14.1 Adjacency

Theorem 14.1. It is possible to assign labels of size 2logn bits to nodes in a
tree so that for every pair u,v of nodes, it is easy to tell whether u is adjacent
to v by just looking at u and v’s labels.

Proof. Choose a root in the tree arbitrarily so that every non-root node has a
parent. The label of each node u consists of two parts: The ID of « (from 1 to
n), and the ID of w’s parent (or nothing if w is the root). O

Remarks:

e What we have constructed above is called a labeling scheme, more
precisely a labeling scheme for adjacency in trees. Formally, a labeling
scheme is defined as follows.

Definition 14.2. A labeling scheme consists of an encoder e and a decoder
d. The encoder e assigns to each node v a label e(v). The decoder d receives
the labels of the nodes in question and returns an answer to some query. The
largest size (in bits) of a label assigned to a node is called the label size of the
labeling scheme.

Remarks:

e In Theorem 14.1, the decoder receives two node labels e(u) and e(v),
and its answer is YES or NO, depending on whether v and v are
adjacent or not. The label size is 2logn.

e The label size is the complexity measure we are going to focus on in
this chapter. The run-time of the encoder and the decoder are two
other complexity measures that are studied in the literature.

157

158 CHAPTER 14. LABELING SCHEMES

e There is an interesting connection between labeling schemes for ad-
jacency and so-called induced-universal graphs: Let F be a family
of graphs. The graph U(n) is called n-induced-universal for F if all
G € F with at most n nodes appear as a node-induced subgraph in
U(n). (A node-induced subgraph of U(n) = (V, E) is any graph that
can be obtained by taking a subset V’ of V and all edges from E which
have both endpoints in V'.)

e In the movie Good Will Hunting, the big open question was to find all
graphs of the family of homeomorphically irreducible (non-isomorphic,
no node with degree 2) trees with 10 nodes, T;9. What is the smallest
induced-universal graph for 717

e If a graph family F allows a labeling scheme for adjacency with label
size f(n), then there are n-induced-universal graphs for F so that the
size of U(n) is at most 2/(™). Since the size of U(n) is exponential in
f it is interesting to study the label size carefully: If f is logn, the
size of U(n) is n, whereas if f is 2logn the size of U(n) becomes n?!

e What about adjacency in general graphs?

Theorem 14.3. Any labeling scheme for adjacency in general graphs has a label
size of at least Q(n) bits.

Proof. Let G, denote the family of graphs with n nodes, and assume there is
a labeling scheme for adjacency in graphs from G, with label size s. First, we
argue that the encoder e must be injective on G,: Since the labeling scheme is
for adjacency, e cannot assign the same labels to two different graphs.

There are 2° possible labels for any node, and for every G € G, we can
choose n of them. Thus, we obtain that

i< (2)- 02

Moreover, a graph in G,, can have at most (g) edges, and thus |G,| > 2(%) /n!
when taking into account that the order of the nodes is irrelevant. Canceling
out the n! term and taking the logarithm on both sides of the inequality we
conclude that s € Q(n). O

Remarks:

e The lower bound for general graphs is a bit discouraging; we wanted
to use labeling schemes for queries on large graphs!

e The situation is less dire if the graph is not arbitrary. For instance,
in degree-bounded graphs, in planar graphs, and in trees, the bounds
change to O(logn) bits.

e What about other queries, e.g., distance?

e Next, we will focus on rooted trees.

14.2. ROOTED TREES 159

14.2 Rooted Trees

Theorem 14.4. There is a 2logn labeling scheme for ancestry, i.e., for two
nodes u and v, find out if u is an ancestor of v in the rooted tree T .

Proof. Traverse the tree with a depth first search, and consider the obtained
pre-ordering of the nodes, i.e., enumerate the nodes in the order in which they
are first visited. For a node u denote by [(u) the index in the pre-order. Our
encoder assigns labels e(u) = (I(uw),r(u)) to each node u, where r(u) is the
largest value [(v) that appears at any node v in the sub-tree rooted at u. With
the labels assigned in this manner, we can find out whether u is an ancestor of
v by checking if I(v) is contained in the interval (I(u),r(u)]. O

Algorithm 14.5 Naive-Distance-Labeling(7T)
1: Let [be the label of the root r of T
2: Let T1,...,Ts be the sub-trees rooted at each of the § children of r
3: fori=1,...,6 do

4: The root of T; gets the label obtained by appending i to [

5

6

Naive-Distance-Labeling(7;)
: end for

Theorem 14.6. There is an O(nlogn) labeling scheme for distance in trees.

Proof. Apply the encoder algorithm Naive-Distance-Labeling(T') to label the
tree T. The encoder assigns to every node v a sequence (l1,ls...). The length
of a sequence e(v) is at most n, and each entry in the sequence requires at most
logn bits. A label (Iy,...,lx) of a node v corresponds to a path from r to v in
T, and the nodes on the path are labeled (I1), (I1,12), (I1,12,13) and so on. The
distance between u and v in T is obtained by reconstructing the paths from e(u)
and e(v). O

Remarks:

e We can assign the labels more carefully to obtain a smaller label size.
For that, we use the following heavy-light decomposition.

Algorithm 14.7 Heavy-Light-Decomposition(7T’)
Node r is the root of T’
Let T1,...,Ts be the sub-trees rooted at each of the ¢ children of r
Let Trax be a largest tree in {T7,...,Ts} in terms of number of nodes
Mark the edge (7, Tmax) as heavy
Mark all edges to other children of r as light
Assign the names 1,...,6 — 1 to the light edges of r
fori=1,...,6 do
Heavy-Light-Decomposition(T;)
end for

Theorem 14.8. There is an O(log2 n) labeling scheme for distance in trees.

160 CHAPTER 14. LABELING SCHEMES

Proof. For our proof, use Heavy-Light-Decomposition(T") to partition 7”s edges
into heavy and light edges. All heavy edges form a collection of paths, called the
heavy paths. Moreover, every node is reachable from the root through a sequence
of heavy paths connected with light edges. Instead of storing the whole path to
reach a node, we only store the information about heavy paths and light edges
that were taken to reach a node from the root.

For instance, if node u can be reached by first using 2 heavy edges, then the
70 light edge, then 3 heavy edges, and then the light edges 1 and 4, then we
assign to v the label (2,7,3,1,4). For any node u, the path p(u) from the root
to u is now specified by the label. The distance between any two nodes can be
computed using the paths.

Since every parent has at most A < n children, the name of a light edge has
at most logn bits. The size (number of nodes in the sub-tree) of a light child is
at most half the size of its parent, so a path can have at most logn light edges.
Between any two light edges, there could be a heavy path, so we can have up to
logn heavy paths in a label. The length of such a heavy path can be described
with logn bits as well, since no heavy path has more than n nodes. Altogether
we therefore need at most O(log?n) bits. O

Remarks:

e One can show that any labeling scheme for distance in trees needs to
use labels of size at least Q(log? n).

e The distance encoder from Theorem 14.8 also supports decoders for
other queries. To check for ancestry, it therefore suffices to check if
p(u) is a prefix of p(v) or vice versa.

e The nearest common ancestor is the last node that is on both p(u)
and p(v), and the separation level is the length of the path to that
node.

e Two nodes are siblings if their distance is 2 but they are not ancestors.

e The heavy-light decomposition can be used to shave off a few bits in
other labeling schemes, e.g., ancestry or adjacency.

14.3 Road Networks

Labeling schemes are used to quickly find shortest paths in road networks.

Remarks:

e A naive approach is to store at every node u the shortest paths to
all other nodes v. This requires an impractical amount of memory.
For example, the road network for Western Europe has 18 million
nodes and 44 million directed edges, and the USA road network has
24 million nodes and 58 million directed edges.

e What if we only store the next node on the shortest path to all targets?
In a worst case this stills requires ©(n) bits per node. Moreover,
answering a single query takes many invocations of the decoder.

14.3. ROAD NETWORKS 161

e For simplicity, let us focus on answering distance queries only. Even

if we only want to know the distance, storing the full table of n?
distances costs more than 1000TB, too much for storing it in RAM.

e The idea for the encoder is to compute a set S of hub nodes that lie on

many shortest paths. We then store at each node u only the distance
to the hub nodes that appear on shortest paths originating or ending
in u.

e Given two labels e(u) and e(v), let H(u,v) denote the set of hub

nodes that appear in both labels. The decoder now simply returns
d(u,v) = min{dist(u, h) + dist(h,v) : h € H(u,v)}, all of which can
be computed from the two labels.

e The key in finding a good labeling scheme now lies in finding good

hub nodes.

Algorithm 14.9 Naive-Hub-Labeling(G)

1: Let P be the set of all n? shortest paths
2: while P # () do

10:

4
5
6
7
8
9

Let h be a node which is on a maximum number of paths in P
for all paths p = (u,...,v) € P do

if A is on p then
Add h with the distance dist(u, k) to the label of u
Add h with the distance dist(h,v) to the label of v
Remove p from P

end if

end for

11: end while

Remarks:

e Unfortunately, algorithm 14.9 takes a prohibitively long time to com-

pute.

Another approach computes the set S as follows. The encoder (Algo-
rithm 14.10) first constructs so-called shortest path covers. The node
set S; is a shortest path cover if S; contains a node on every shortest
path of length between 2¢~1 and 2¢. At node v only the hub nodes in
S; that are within the ball of radius 2¢ around v (denoted by B(v,2%))
are stored.

Algorithm 14.10 Hub-Labeling(G)

:fori=1,...,logD do

P N DT W

Compute the shortest path cover .S;

end for
: for allv € V do

Let F;(v) be the set S; N B(v,2)
Let F(v) be the set Fy(v) U Fa(v)U...
The label of v consists of the nodes in F'(v), with their distance to v

end for

162 CHAPTER 14. LABELING SCHEMES

Remarks:

e The size of the shortest path covers will determine how space efficient
the solution will be. It turns out that real-world networks allow for
small shortest path covers: The parameter h is the so-called highway
dimension of G, is defined as h = max; , F;(v), and h is conjectured
to be small for road networks.

e Computing S; with a minimal number of hubs is NP-hard, but one
can compute a O(logn) approximation of S; in polynomial time. Con-
sequently, the label size is at most O(hlognlog D). By ordering the
nodes in each label by their ID, the decoder can scan through both
node lists in parallel in time O(hlognlog D).

e While this approach yields good theoretical bounds, the encoder is
still too slow in practice. Therefore, before computing the shortest
path covers, the graph is contracted by introducing shortcuts first.

e Based on this approach a distance query on a continent-sized road
network can be answered in less that 1us on current hardware, orders
of magnitude faster than a single random disk access. Storing all the
labels requires roughly 20 GB of RAM.

e The method can be extended to support shortest path queries, e.g.,
by storing the path to/from the hub nodes, or by recursively querying
for nodes that lie on the shortest path to the hub.

Chapter Notes

Adjacency labelings were first studied by Breuer and Folkman [BF67]. The
logn + O(log™n) upper bound for trees is due to [AR02] using a clustering
technique. In contrast, it was shown that for general graphs the size of universal
graphs is at least 2("~1/21 Since graphs of arboricity d can be decomposed into
d forests [NW61], the labeling scheme from [AR02] can be used to label graphs
of arboricity d with dlogn + O(logn) bit labels. For a thorough survey on
labeling schemes for rooted trees please check [AHR].

Universal graphs were studied already by Ackermann [Ack37], and later
by Erdés, Rényi, and Rado [ER63, Rad64]. The connection between labeling
schemes and universal graphs [KNR88] was investigated thoroughly. Our adja-
cency lower bound follows the presentation in [AKTZ14], which also summarizes
recent results in this field of research.

Distance labeling schemes were first studied by Peleg [Pel00]. The notion of
highway dimension was introduced by [AFGW10] in an attempt to explain the
good performance of many heuristics to speed up shortest path computations,
e.g., Transit Node Routing [BFSS07]. Their suggestions to modify the SHARC
heuristic [BDO08] lead to the hub labeling scheme and were implemented and
evaluated [ADGW11], and later refined [DGSW14]. The (n) label size lower
bound for routing (shortest paths) with stretch smaller than 3 is due to [GGO1].

This chapter was written in collaboration with Jochen Seidel. Thanks to
Noy Rotbart for suggesting the topic.

BIBLIOGRAPHY 163

Bibliography

[Ack37]

[ADGW11]

[AFGW10]

[AHR]

[AKTZ14]

[ARO2]

[BDOS]

[BF67]

[BFSS07]

[DGSW14]

[ER63]

[GGO1]

[KNR8S]

[NW61]

[Pel00]

[Rad64]

Wilhelm Ackermann. Die Widerspruchsfreiheit der allgemeinen
Mengenlehre. Mathematische Annalen, 114(1):305-315, 1937.

Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato
Fonseca F. Werneck. A hub-based labeling algorithm for shortest
paths in road networks. In SEA, 2011.

Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato Fon-
seca F. Werneck. Highway dimension, shortest paths, and provably
efficient algorithms. In SODA, 2010.

Stephen Alstrup, Esben Bistrup Halvorsen, and Noy Rotbart. A
survey on labeling schemes for trees. To appear.

Stephen Alstrup, Haim Kaplan, Mikkel Thorup, and Uri Zwick.
Adjacency labeling schemes and induced-universal graphs. CoRR,
abs/1404.3391, 2014.

Stephen Alstrup and Theis Rauhe. Small induced-universal graphs
and compact implicit graph representations. In FOCS, 2002.

Reinhard Bauer and Daniel Delling. SHARC: fast and robust uni-
directional routing. In ALENEX, 2008.

Melvin A Breuer and Jon Folkman. An unexpected result in cod-
ing the vertices of a graph. Journal of Mathematical Analysis and
Applications, 20(3):583 — 600, 1967.

Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes.
Fast routing in road networks with transit nodes. Science,
316(5824):566, 2007.

Daniel Delling, Andrew V. Goldberg, Ruslan Savchenko, and Re-
nato F. Werneck. Hub labels: Theory and practice. In SEA, 2014.

P. Erdés and A. Rényi. Asymmetric graphs. Acta Mathematica
Academiae Scientiarum Hungarica, 14(3-4):295-315, 1963.

Cyril Gavoille and Marc Gengler. Space-efficiency for routing
schemes of stretch factor three. J. Parallel Distrib. Comput.,
61(5):679-687, 2001.

Sampath Kannan, Moni Naor, and Steven Rudich. Implicit repre-
sentation of graphs. In STOC, 1988.

C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite
graphs. J. London Math. Soc., 36:445-450, 1961.

David Peleg. Proximity-preserving labeling schemes. Journal of
Graph Theory, 33(3):167-176, 2000.

Richard Rado. Universal graphs and universal functions. Acta
Arith., 9:331-340, 1964.

164 CHAPTER 14. LABELING SCHEMES

Chapter 15

Fault-Tolerance & Paxos

How do you create a fault-tolerant distributed system? In this chapter we start
out with simple questions, and, step by step, improve our solutions until we
arrive at a system that works even under adverse circumstances, Paxos.

15.1 Client/Server

Definition 15.1 (node). We call a single actor in the system node. In a
computer network the computers are the nodes, in the classical client-server
model both the server and the client are nodes, and so on. If not stated otherwise,
the total number of nodes in the system is n.

Model 15.2 (message passing). In the message passing model we study dis-
tributed systems that consist of a set of modes. FEach mode can perform local
computations, and can send messages to every other node.

Remarks:

e We start with two nodes, the smallest number of nodes in a distributed
system. We have a client node that wants to “manipulate” data (e.g.,
store, update, ...) on a remote server node.

Algorithm 15.3 Naive Client-Server Algorithm
1: Client sends commands one at a time to server

Model 15.4 (message loss). In the message passing model with message loss,
for any specific message, it is not guaranteed that it will arrive safely at the
recetver.

Remarks:

e A related problem is message corruption, i.e., a message is received
but the content of the message is corrupted. In practice, in contrast
to message loss, message corruption can be handled quite well, e.g. by
including additional information in the message, such as a checksum.

165

166 CHAPTER 15. FAULT-TOLERANCE & PAXOS

e Algorithm 15.3 does not work correctly if there is message loss, so we
need a little improvement.

Algorithm 15.5 Client-Server Algorithm with Acknowledgments
1: Client sends commands one at a time to server
2: Server acknowledges every command
3: If the client does not receive an acknowledgment within a reasonable time,
the client resends the command

Remarks:

e Sending commands “one at a time” means that when the client sent
command ¢, the client does not send any new command ¢’ until it
received an acknowledgment for c.

e Since not only messages sent by the client can be lost, but also ac-
knowledgments, the client might resend a message that was already
received and executed on the server. To prevent multiple executions of
the same command, one can add a sequence number to each message,
allowing the receiver to identify duplicates.

e This simple algorithm is the basis of many reliable protocols, e.g.
TCP.

e The algorithm can easily be extended to work with multiple servers:
The client sends each command to every server, and once the client
received an acknowledgment from each server, the command is con-
sidered to be executed successfully.

e What about multiple clients?

Model 15.6 (variable message delay). In practice, messages might experience
different transmission times, even if they are being sent between the same two
nodes.

Remarks:
e Throughout this chapter, we assume the variable message delay model.

Theorem 15.7. If Algorithm 15.5 is used with multiple clients and multiple
servers, the servers might see the commands in different order, leading to an
inconsistent state.

Proof. Assume we have two clients u; and us, and two servers s; and so. Both
clients issue a command to update a variable x on the servers, initially x = 0.
Client uq sends command x = x + 1 and client us sends z = 2 - x.

Let both clients send their message at the same time. With variable message
delay, it can happen that s; receives the message from w; first, and sy receives
the message from wuy first.! Hence, s; computes z = (0 + 1) -2 = 2 and s
computes z = (0-2) +1=1.

O

1For example, u; and s; are (geographically) located close to each other, and so are us
and sa.

15.1. CLIENT/SERVER 167

Definition 15.8 (state replication). A set of nodes achieves state replication,
if all nodes execute a (potentially infinite) sequence of commands c1,ca,cs,. ..,
in the same order.

Remarks:
e State replication is a fundamental property for distributed systems.

e For people working in the financial tech industry, state replication is
often synonymous with the term blockchain. The Bitcoin blockchain
we will discuss in Chapter 20 is indeed one way to implement state
replication. However, as we will see in all the other chapters, there
are many alternative concepts that are worth knowing, with different
properties.

e Since state replication is trivial with a single server, we can desig-
nate a single server as a serializer. By letting the serializer distribute
the commands, we automatically order the requests and achieve state
replication!

Algorithm 15.9 State Replication with a Serializer
1: Clients send commands one at a time to the serializer
2: Serializer forwards commands one at a time to all other servers
3: Once the serializer received all acknowledgments, it notifies the client about
the success

Remarks:
e This idea is sometimes also referred to as master-slave replication.
e What about node failures? Our serializer is a single point of failure!

e Can we have a more distributed approach of solving state replication?
Instead of directly establishing a consistent order of commands, we
can use a different approach: We make sure that there is always at
most one client sending a command; i.e., we use mutual exclusion,
respectively locking.

Algorithm 15.10 Two-Phase Protocol

Phase 1
1: Client asks all servers for the lock
Phase 2

if client receives lock from every server then

Client sends command reliably to each server, and gives the lock back
else

Clients gives the received locks back

Client waits, and then starts with Phase 1 again
end if

168

CHAPTER 15. FAULT-TOLERANCE & PAXOS

Remarks:

This idea appears in many contexts and with different names, usually
with slight variations, e.g. two-phase locking (2PL).

Another example is the two-phase commit (2PC) protocol, typically
presented in a database environment. The first phase is called the
preparation of a transaction, and in the second phase the transaction
is either committed or aborted. The 2PC process is not started at the
client but at a designated server node that is called the coordinator.

It is often claimed that 2PL and 2PC provide better consistency guar-
antees than a simple serializer if nodes can recover after crashing. In
particular, alive nodes might be kept consistent with crashed nodes,
for transactions that started while the crashed node was still running.
This benefit was even improved in a protocol that uses an additional
phase (3PC).

The problem with 2PC or 3PC is that they are not well-defined if
exceptions happen.

Does Algorithm 15.10 really handle node crashes well? No! In fact,
it is even worse than the simple serializer approach (Algorithm 15.9):
Instead of having a only one node which must be available, Algorithm
15.10 requires all servers to be responsive!

Does Algorithm 15.10 also work if we only get the lock from a subset
of servers? Is a majority of servers enough?

What if two or more clients concurrently try to acquire a majority
of locks? Do clients have to abandon their already acquired locks, in
order not to run into a deadlock? How? And what if they crash before
they can release the locks? Do we need a slightly different concept?

15.2. PAXOS 169

15.2 Paxos

Definition 15.11 (ticket). A ticket is a weaker form of a lock, with the follow-
1ng properties:

e Reissuable: A server can issue a ticket, even if previously issued tickets
have not yet been returned.

e Ticket expiration: If a client sends a message to a server using a previ-
ously acquired ticket t, the server will only accept t, if t is the most recently
issued ticket.

Remarks:

e There is no problem with crashes: If a client crashes while holding
a ticket, the remaining clients are not affected, as servers can simply
issue new tickets.

e Tickets can be implemented with a counter: Each time a ticket is
requested, the counter is increased. When a client tries to use a ticket,
the server can determine if the ticket is expired.

e What can we do with tickets? Can we simply replace the locks in
Algorithm 15.10 with tickets? We need to add at least one additional
phase, as only the client knows if a majority of the tickets have been
valid in Phase 2.

170 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Algorithm 15.12 Naive Ticket Protocol

Phase 1
1: Client asks all servers for a ticket

Phase 2

2: if a majority of the servers replied then
3: Client sends command together with ticket to each server
4: Server stores command only if ticket is still valid, and replies to client
5: else
6: Client waits, and then starts with Phase 1 again
7: end if
Phase 3

8: if client hears a positive answer from a majority of the servers then
Client tells servers to execute the stored command

10: else

11: Client waits, and then starts with Phase 1 again

12: end if

Remarks:

e There are problems with this algorithm: Let w; be the first client
that successfully stores its command ¢; on a majority of the servers.
Assume that u; becomes very slow just before it can notify the servers
(Line 7), and a client us updates the stored command in some servers
to ¢o. Afterwards, uq tells the servers to execute the command. Now
some servers will execute ¢; and others cs!

e How can this problem be fixed? We know that every client uy that
updates the stored command after u; must have used a newer ticket
than u;. As wuy’s ticket was accepted in Phase 2, it follows that wus
must have acquired its ticket after u, already stored its value in the
respective server.

e Idea: What if a server, instead of only handing out tickets in Phase
1, also notifies clients about its currently stored command? Then, us
learns that u; already stored c; and instead of trying to store cs, us
could support u; by also storing c¢;. As both clients try to store and
execute the same command, the order in which they proceed is no
longer a problem.

e But what if not all servers have the same command stored, and wus
learns multiple stored commands in Phase 1. What command should
ug support?

e Observe that it is always safe to support the most recently stored
command. As long as there is no majority, clients can support any
command. However, once there is a majority, clients need to support
this value.

15.2. PAXOS 171

e So, in order to determine which command was stored most recently,
servers can remember the ticket number that was used to store the
command, and afterwards tell this number to clients in Phase 1.

o If every server uses its own ticket numbers, the newest ticket does not
necessarily have the largest number. This problem can be solved if
clients suggest the ticket numbers themselves!

172

CHAPTER 15. FAULT-TOLERANCE & PAXOS

Algorithm 15.13 Paxos

Client (Proposer)
Initialization

c < command to execute
t =0 < ticket number to try

Phase 1

1:t=t+1
2: Ask all servers for ticket ¢

Phase 2

7. if a majority answers ok then
8 Pick (Tstore, C) with largest Ttore
if Tiiore > 0 then
c=C
end if
Send propose(t, ¢) to same
majority
end if

10:
11:
12:

13:

Phase 3

19: if a majority answers success
then
20: Send execute(c) to every server

21: end if

14:
15:
16:
17:
18:

Server (Acceptor)

Tmax = 0 < largest issued ticket

CcC=1 < stored command
Tistore = 0 < ticket used to store C

if ¢ > Ty then

Tmax =t

Answer with ok(Tytore, C)
end if

if ¢t = Thhax then

C=c

Tstore =t

Answer success
end if

Remarks:

e Unlike previously mentioned algorithms, there is no step where a client
explicitly decides to start a new attempt and jumps back to Phase 1.
Note that this is not necessary, as a client can decide to abort the
current attempt and start a new one at any point in the algorithm.
This has the advantage that we do not need to be careful about se-
lecting “good” values for timeouts, as correctness is independent of
the decisions when to start new attempts.

e The performance can be improved by letting the servers send negative

15.2. PAXOS 173

replies in phases 1 and 2 if the ticket expired.

e The contention between different clients can be alleviated by random-
izing the waiting times between consecutive attempts.

Lemma 15.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a magjority of
servers (Line 15). For every issued propose(t',c') with t' >t holds that ¢’ = ¢,
if there was a chosen propose(t,c).

Proof. Observe that there can be at most one proposal for every ticket number
7 since clients only send a proposal if they received a majority of the tickets for
7 (Line 7). Hence, every proposal is uniquely identified by its ticket number 7.

Assume that there is at least one propose(t',c’) with ¢ > t and ¢’ # ¢; of
such proposals, consider the proposal with the smallest ticket number ¢'. Since
both this proposal and also the propose(t,c) have been sent to a majority of the
servers, we can denote by S the non-empty intersection of servers that have been
involved in both proposals. Recall that since propose(t,c) has been chosen, this
means that that at least one server s € S must have stored command c; thus,
when the command was stored, the ticket number ¢ was still valid. Hence, s
must have received the request for ticket ¢ after it already stored propose(t,c),
as the request for ticket ¢’ invalidates ticket ¢.

Therefore, the client that sent propose(t’,c’) must have learned from s that
a client already stored propose(t,c). Since a client adapts its proposal to the
command that is stored with the highest ticket number so far (Line 8), the client
must have proposed ¢ as well. There is only one possibility that would lead to
the client not adapting c: If the client received the information from a server
that some client stored propose(t*,c*), with ¢* # c and t* > ¢t. But in that case,
a client must have sent propose(t*,c*) with ¢ < t* < ¢/, but this contradicts the
assumption that ¢’ is the smallest ticket number of a proposal issued after t. [J

Theorem 15.15. If a command c is executed by some servers, all servers (even-
tually) execute c.

Proof. From Lemma 15.14 we know that once a proposal for ¢ is chosen, every
subsequent proposal is for c¢. As there is exactly one first propose(t,c) that is
chosen, it follows that all successful proposals will be for the command c. Thus,
only proposals for a single command ¢ can be chosen, and since clients only
tell servers to execute a command, when it is chosen (Line 20), each client will
eventually tell every server to execute c. O

Remarks:

e If the client with the first successful proposal does not crash, it will
directly tell every server to execute c.

e However, if the client crashes before notifying any of the servers, the
servers will execute the command only once the next client is success-
ful. Once a server received a request to execute c, it can inform every
client that arrives later that there is already a chosen command, so
that the client does not waste time with the proposal process.

174 CHAPTER 15. FAULT-TOLERANCE & PAXOS

e Note that Paxos cannot make progress if half (or more) of the servers
crash, as clients cannot achieve a majority anymore.

e The original description of Paxos uses three roles: Proposers, accep-
tors and learners. Learners have a trivial role: They do nothing, they
just learn from other nodes which command was chosen.

e We assigned every node only one role. In some scenarios, it might
be useful to allow a node to have multiple roles. For example in a
peer-to-peer scenario nodes need to act as both client and server.

e Clients (Proposers) must be trusted to follow the protocol strictly.
However, this is in many scenarios not a reasonable assumption. In
such scenarios, the role of the proposer can be executed by a set of
servers, and clients need to contact proposers, to propose values in
their name.

e So far, we only discussed how a set of nodes can reach decision for a
single command with the help of Paxos. We call such a single decision
an instance of Paxos.

e If we want to execute multiple commands, we can extend each in-
stance with an instance number, that is sent around with every mes-
sage. Once a command is chosen, any client can decide to start a new
instance with the next number. If a server did not realize that the
previous instance came to a decision, the server can ask other servers
about the decisions to catch up.

Chapter Notes

Two-phase protocols have been around for a long time, and it is unclear if there
is a single source of this idea. One of the earlier descriptions of this concept can
found in the book of Gray [Gra78].

Leslie Lamport introduced Paxos in 1989. But why is it called Paxos? Lam-
port described the algorithm as the solution to a problem of the parliament
of a fictitious Greek society on the island Paxos. He even liked this idea so
much, that he gave some lectures in the persona of an Indiana-Jones-style ar-
chaeologist! When the paper was submitted, many readers were so distracted by
the descriptions of the activities of the legislators, they did not understand the
meaning and purpose of the algorithm. The paper was rejected. But Lamport
refused to rewrite the paper, and he later wrote that he “was quite annoyed at
how humorless everyone working in the field seemed to be”. A few years later,
when the need for a protocol like Paxos arose again, Lamport simply took the
paper out of the drawer and gave it to his colleagues. They liked it. So Lamport
decided to submit the paper (in basically unaltered form!) again, 8 years after
he wrote it — and it got accepted! But as this paper [Lam98] is admittedly hard
to read, he had mercy, and later wrote a simpler description of Paxos [Lam01].

This chapter was written in collaboration with David Stolz.

BIBLIOGRAPHY 175

Bibliography
[Gra78] James N Gray. Notes on data base operating systems. Springer, 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133-169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18-25,
2001.

176 CHAPTER 15. FAULT-TOLERANCE & PAXOS

Chapter 16

Consensus

16.1 Two Friends

Alice wants to arrange dinner with Bob, and since both of them are very re-
luctant to use the “call” functionality of their phones, she sends a text message
suggesting to meet for dinner at 6pm. However, texting is unreliable, and Alice
cannot be sure that the message arrives at Bob’s phone, hence she will only go
to the meeting point if she receives a confirmation message from Bob. But Bob
cannot be sure that his confirmation message is received; if the confirmation is
lost, Alice cannot determine if Bob did not even receive her suggestion, or if
Bob’s confirmation was lost. Therefore, Bob demands a confirmation message
from Alice, to be sure that she will be there. But as this message can also be
lost. ..

You can see that such a message exchange continues forever, if both Alice
and Bob want to be sure that the other person will come to the meeting point!

Remarks:

e Such a protocol cannot terminate: Assume that there are protocols
which lead to agreement, and P is one of the protocols which require
the least number of messages. As the last confirmation might be lost
and the protocol still needs to guarantee agreement, we can simply
decide to always omit the last message. This gives us a new protocol
P’ which requires less messages than P, contradicting the assumption
that P required the minimal amount of messages.

e Can Alice and Bob use Paxos?

16.2 Consensus

In Chapter 15 we studied a problem that we vaguely called agreement. We will
now introduce a formally specified variant of this problem, called consensus.

Definition 16.1 (consensus). There are n nodes, of which at most f might
crash, i.e., at least n — f nodes are correct. Node i starts with an input value
v;. The nodes must decide for one of those wvalues, satisfying the following
properties:

177

178 CHAPTER 16. CONSENSUS

e Agreement All correct nodes decide for the same value.
e Termination All correct nodes terminate in finite time.

e Validity The decision value must be the input value of a node.

Remarks:

e We assume that every node can send messages to every other node,
and that we have reliable links, i.e., a message that is sent will be
received.

e There is no broadcast medium. If a node wants to send a message to
multiple nodes, it needs to send multiple individual messages.

e Does Paxos satisfy all three criteria? If you study Paxos carefully, you
will notice that Paxos does not guarantee termination. For example,
the system can be stuck forever if two clients continuously request
tickets, and neither of them ever manages to acquire a majority.

16.3 Impossibility of Consensus

Model 16.2 (asynchronous). In the asynchronous model, algorithms are event
based (“upon receiving message ..., do ...”). Nodes do not have access to a
synchronized wall-clock. A message sent from one node to another will arrive
i a finite but unbounded time.

Remarks:

e The asynchronous time model is a widely used formalization of the
variable message delay model (Model 15.6).

Definition 16.3 (asynchronous runtime). For algorithms in the asynchronous
model, the runtime is the number of time units from the start of the execution
to its completion in the worst case (every legal input, every execution scenario),
assuming that each message has a delay of at most one time unit.

Remarks:

e The maximum delay cannot be used in the algorithm design, i.e., the
algorithm must work independent of the actual delay.

e Asynchronous algorithms can be thought of as systems, where local
computation is significantly faster than message delays, and thus can
be done in no time. Nodes are only active once an event occurs (a
message arrives), and then they perform their actions “immediately”.

e We will show now that crash failures in the asynchronous model can
be quite harsh. In particular there is no deterministic fault-tolerant
consensus algorithm in the asynchronous model, not even for binary
input.

16.3. IMPOSSIBILITY OF CONSENSUS 179

Definition 16.4 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration C. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Definition 16.5 (univalent). We call a configuration C' univalent, if the deci-
sion value is determined independently of what happens afterwards.

Remarks:
e We call a configuration that is univalent for value v v-valent.

e Note that a configuration can be univalent, even though no single
node is aware of this. For example, the configuration in which all
nodes start with value 0 is O-valent (due to the validity requirement).

e As we restricted the input values to be binary, the decision value
of any consensus algorithm will also be binary (due to the validity
requirement).

Definition 16.6 (bivalent). A configuration C is called bivalent if the nodes
might decide for O or 1.

Remarks:

e The decision value depends on the order in which messages are re-
ceived or on crash events. l.e., the decision is not yet made.

e We call the initial configuration of an algorithm Cy. When nodes are
in Cp, all of them executed their initialization code and possibly sent
some messages, and are now waiting for the first message to arrive.

Lemma 16.7. There is at least one selection of input values V' such that the
according initial configuration Cy is bivalent, if f > 1.

Proof. Note that Cj only depends on the input values of the nodes, as no event
occurred yet. Let V = [vg, v1,...,v,—1] denote the array of input values, where
v; is the input value of node i.

We construct n+ 1 arrays Vy, Vi, ..., V,, where the index ¢ in V; denotes the
position in the array up to which all input values are 1. So, V5 = [0,0,0,...,0],
V1 =[1,0,0,...,0], and so on, up to V,, = [1,1,1,...,1].

Note that the configuration corresponding to Vi must be 0-valent so that the
validity requirement is satisfied. Analogously, the configuration corresponding
to V,, must be 1-valent. Assume that all initial configurations with starting val-
ues V; are univalent. Therefore, there must be at least one index b, such that the
configuration corresponding to Vj, is 0-valent, and configuration corresponding
to Vi1 is 1-valent. Observe that only the input value of the b** node differs
from V; to Vpgi.

Since we assumed that the algorithm can tolerate at least one failure, i.e.,
f > 1, we look at the following execution: All nodes except b start with their
initial value according to V; respectively V,11. Node b is “extremely slow”;
i.e., all messages sent by b are scheduled in such a way, that all other nodes
must assume that b crashed, in order to satisfy the termination requirement.

180 CHAPTER 16. CONSENSUS

Since the nodes cannot determine the value of b, and we assumed that all initial
configurations are univalent, they will decide for a value v independent of the
initial value of b. Since V; is O-valent, v must be 0. However we know that
Vi41 is 1-valent, thus v must be 1. Since v cannot be both 0 and 1, we have a
contradiction.

O

Definition 16.8 (transition). A transition from configuration C to a following
configuration C; is characterized by an event 7 = (u,m), i.e., node u receiving
message m.

Remarks:

e Transitions are the formally defined version of the “events” in the
asynchronous model we described before.

e A transition T = (u,m) is only applicable to C, if m was still in transit
in C.

e (. differs from C as follows: m is no longer in transit, u has possibly
a different state (as u can update its state based on m), and there are
(potentially) new messages in transit, sent by w.

Definition 16.9 (configuration tree). The configuration tree is a directed tree
of configurations. Its root is the configuration Cy which is fully characterized by
the input values V.. The edges of the tree are the transitions; every configuration
has all applicable transitions as outgoing edges.

Remarks:

e For any algorithm, there is exactly one configuration tree for every
selection of input values.

e Leaves are configurations where the execution of the algorithm termi-
nated. Note that we use termination in the sense that the system as
a whole terminated, i.e., there will not be any transition anymore.

e Every path from the root to a leaf is one possible asynchronous exe-
cution of the algorithm.

e Leaves must be univalent, or the algorithm terminates without agree-
ment.

e If a node u crashes when the system is in C, all transitions (u, *) are
removed from C' in the configuration tree.

Lemma 16.10. Assume two transitions 71 = (u1,my1) and 7o = (ug, ma) for
u1 # ug are both applicable to C. Let Cr 1, be the configuration that follows C
by first applying transition 71 and then T2, and let Cr,,, be defined analogously.
1t holds that Cr, -, = Cryry -

16.3. IMPOSSIBILITY OF CONSENSUS 181

Proof. Observe that 7 is applicable to C,, since my is still in transit and m
cannot change the state of us. With the same argument 7y is applicable to C.,,
and therefore both C7, ,, and C7,,, are well-defined. Since the two transitions
are completely independent of each other, meaning that they consume the same
messages, lead to the same state transitions and to the same messages being
sent, it follows that Cr -, = Cryry . O

Definition 16.11 (critical configuration). We say that a configuration C is
critical, if C is bivalent, but all configurations that are direct children of C in
the configuration tree are univalent.

Remarks:

e Informally, C' is critical, if it is the last moment in the execution where
the decision is not yet clear. As soon as the next message is processed
by any node, the decision will be determined.

Lemma 16.12. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.

Proof. Recall that there is at least one bivalent initial configuration (Lemma
16.7). Assuming that this configuration is not critical, there must be at least
one bivalent following configuration; hence, the system may enter this configura-
tion. But if this configuration is not critical as well, the system may afterwards
progress into another bivalent configuration. As long as there is no critical con-
figuration, an unfortunate scheduling (selection of transitions) can always lead
the system into another bivalent configuration. The only way how an algo-
rithm can enforce to arrive in a univalent configuration is by reaching a critical
configuration.

Therefore we can conclude that a system which does not reach a critical
configuration has at least one possible execution where it will terminate in a
bivalent configuration (hence it terminates without agreement), or it will not
terminate at all.

O

Lemma 16.13. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Proof. Let C denote critical configuration in a configuration tree, and let T'
be the set of transitions applicable to C. Let 19 = (ug,mo) € T and 7 =
(u1,m1) € T be two transitions, and let Cr, be O-valent and C., be l-valent.
Note that T" must contain these transitions, as C' is a critical configuration.

Assume that ug # u1. Using Lemma 16.10 we know that C has a following
configuration Cr,,, = Cr,-,. Since this configuration follows C, it must be 0-
valent. However, this configuration also follows C;, and must hence be 1-valent.
This is a contradiction and therefore ug = ©; must hold.

Therefore we can pick one particular node « for which there is a transition
7 = (u,m) € T which leads to a 0-valent configuration. As shown before, all
transitions in 7" which lead to a 1-valent configuration must also take place on
u. Since C is critical, there must be at least one such transition. Applying the
same argument again, it follows that all transitions in 7" that lead to a 0-valent

182 CHAPTER 16. CONSENSUS

configuration must take place on u as well, and since C' is critical, there is no
transition in 7" that leads to a bivalent configuration. Therefore all transitions
applicable to C' take place on the same node u!

If this node u crashes while the system is in C, all transitions are removed,
and therefore the system is stuck in C| i.e., it terminates in C'. But as C' is
critical, and therefore bivalent, the algorithm fails to reach an agreement.

O

Theorem 16.14. There is no deterministic algorithm which always achieves
consensus in the asynchronous model, with f > 0.

Proof. We assume that the input values are binary, as this is the easiest non-
trivial possibility. From Lemma 16.7 we know that there must be at least one
bivalent initial configuration C'. Using Lemma 16.12 we know that if an algo-
rithm solves consensus, all executions starting from the bivalent configuration
C must reach a critical configuration. But if the algorithm reaches a critical
configuration, a single crash can prevent agreement (Lemma 16.13). O

Remarks:

e If f =0, then each node can simply send its value to all others, wait
for all values, and choose the minimum.

e But if a single node may crash, there is no deterministic solution to
consensus in the asynchronous model.

e How can the situation be improved? For example by giving each node
access to randomness, i.e., we allow each node to toss a coin.

16.4. RANDOMIZED CONSENSUS 183

16.4 Randomized Consensus

Algorithm 16.15 Randomized Consensus (Ben-Or)

1. v; € {0, 1} < input bit
2: round = 1

3: decided = false

11:

12:
13:
14:
15:

16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

Broadcast myValue(v;, round)

while true do

Propose

Wait until a majority of myValue messages of current round arrived
if all messages contain the same value v then
Broadcast propose(v, round)
else
Broadcast propose(L, round)
end if

if decided then
Broadcast myValue(v;, round+1)
Decide for v; and terminate

end if

Adapt

Wait until a majority of propose messages of current round arrived
if all messages propose the same value v then
Vi =0
decide = true
else if there is at least one proposal for v then
Vi = U
else
Choose v; randomly, with Pr[v; = 0] = Prlv; = 1] =1/2
end if
round = round + 1
Broadcast myValue(v;, round)

27: end while

Remarks:

e The idea of Algorithm 16.15 is very simple: Either all nodes start
with the same input bit, which makes consensus easy. Otherwise,
nodes toss a coin until a large number of nodes get — by chance — the
same outcome.

Lemma 16.16. As long as no node sets decided to true, Algorithm 16.15 always
makes progress, independent of which nodes crash.

Proof. The only two steps in the algorithm when a node waits are in Lines 6
and 15. Since a node only waits for a majority of the nodes to send a message,

184 CHAPTER 16. CONSENSUS

and since f < n/2, the node will always receive enough messages to continue,
as long as no correct node set its value decided to true and terminates. O

Lemma 16.17. Algorithm 16.15 satisfies the validity requirement.

Proof. Observe that the validity requirement of consensus, when restricted to
binary input values, corresponds to: If all nodes start with v, then v must be
chosen; otherwise, either 0 or 1 is acceptable, and the validity requirement is
automatically satisfied.

Assume that all nodes start with v. In this case, all nodes propose v in the
first round. As all nodes only hear proposals for v, all nodes decide for v (Line
17) and exit the loop in the following round. O

Lemma 16.18. Algorithm 16.15 satisfies the agreement requirement.

Proof. Observe that proposals for both 0 and 1 cannot occur in the same round,
as nodes only send a proposal for v, if they hear a majority for v in Line 8.

Let u be the first node that decides for a value v in round r. Hence, it
received a majority of proposals for v in r (Line 17). Note that once a node
receives a majority of proposals for a value, it will adapt this value and terminate
in the next round. Since there cannot be a proposal for any other value in r, it
follows that no node decides for a different value in 7.

In Lemma 16.16 we only showed that nodes make progress as long as no node
decides, thus we need to be careful that no node gets stuck if u terminates.

Any node v’ # u can experience one of two scenarios: Either it also receives
a majority for v in round r and decides, or it does not receive a majority. In
the first case, the agreement requirement is directly satisfied, and also the node
cannot get stuck. Let us study the latter case. Since u heard a majority of
proposals for v, it follows that every node hears at least one proposal for v.
Hence, all nodes set their value v; to v in round r. Therefore, all nodes will
broadcast v at the end of round r, and thus all nodes will propose v in round
r + 1. The nodes that already decided in round r will terminate in » + 1 and
send one additional myValue message (Line 13). All other nodes will receive a
majority of proposals for v in r + 1, and will set decided to true in round 7 + 1,
and also send a myValue message in round r + 1. Thus, in round r + 2 some
nodes have already terminated, and others hear enough myValue messages to
make progress in Line 6. They send another propose and a myValue message
and terminate in r + 2, deciding for the same value v. O

Lemma 16.19. Algorithm 16.15 satisfies the termination requirement, i.e., all
nodes terminate in expected time O(2™).

Proof. We know from the proof of Lemma 16.18 that once a node hears a ma-
jority of proposals for a value, all nodes will terminate at most two rounds later.
Hence, we only need to show that a node receives a majority of proposals for
the same value within expected time O(2").

Assume that no node receives a majority of proposals for the same value.
In such a round, some nodes may update their value to v based on a proposal
(Line 20). As shown before, all nodes that update the value based on a proposal,
adapt the same value v. The rest of the nodes choses 0 or 1 randomly. The
probability that all nodes choose the same value v in one round is hence at
least 1/2™. Therefore, the expected number of rounds is bounded by O(2"). As

16.4. RANDOMIZED CONSENSUS 185

every round consists of two message exchanges, the asymptotic runtime of the
algorithm is equal to the number of rounds. O

Theorem 16.20. Algorithm 16.15 achieves binary consensus with expected run-
time O(2") if up to f < n/2 nodes crash.

Remarks:
e How good is a fault tolerance of f < n/2?

Theorem 16.21. There is no consensus algorithm for the asynchronous model
that tolerates f > n/2 many failures.

Proof. Assume that there is an algorithm that can handle f = n/2 many fail-
ures. We partition the set of all nodes into two sets N, N’ both containing n/2
many nodes. Let us look at three different selection of input values: In V; all
nodes start with 0. In V; all nodes start with 1. In Vj.¢ all nodes in IV start
with 0, and all nodes in N’ start with 1.

Assume that nodes start with V4,16, Since the algorithm must solve consensus
independent of the scheduling of the messages, we study the scenario where
all messages sent from nodes in N to nodes in N’ (or vice versa) are heavily
delayed. Note that the nodes in N cannot determine if they started with Vj or
Vhate- Analogously, the nodes in N’ cannot determine if they started in V5 or
Vhatt- Hence, if the algorithm terminates before any message from the other set
is received, N must decide for 0 and N’ must decide for 1 (to satisfy the validity
requirement, as they could have started with Vj respectively V7). Therefore,
the algorithm would fail to reach agreement.

The only possibility to overcome this problem is to wait for at least one
message sent from a node of the other set. However, as f = n/2 many nodes
can crash, the entire other set could have crashed before they sent any message.
In that case, the algorithm would wait forever and therefore not satisfy the
termination requirement.

O

Remarks:

e Algorithm 16.15 solves consensus with optimal fault-tolerance — but it
is awfully slow. The problem is rooted in the individual coin tossing:
If all nodes toss the same coin, they could terminate in a constant
number of rounds.

e Can this problem be fixed by simply always choosing 1 at Line 227!

e This cannot work: Such a change makes the algorithm deterministic,
and therefore it cannot achieve consensus (Theorem 16.14). Simulat-
ing what happens by always choosing 1, one can see that it might
happen that there is a majority for 0, but a minority with value 1
prevents the nodes from reaching agreement.

e Nevertheless, the algorithm can be improved by tossing a so-called
shared coin. A shared coin is a random variable that is 0 for all nodes
with constant probability, and 1 with constant probability. Of course,
such a coin is not a magic device, but it is simply an algorithm. To

186 CHAPTER 16. CONSENSUS

improve the expected runtime of Algorithm 16.15, we replace Line 22
with a function call to the shared coin algorithm.

16.5 Shared Coin

Algorithm 16.22 Shared Coin (code for node u)
1: Choose local coin ¢, = 0 with probability 1/n, else ¢, =1
2: Broadcast myCoin(c,)

3: Wait for n — f coins and store them in the local coin set C,
Broadcast mySet(C,)

>

Wait for n — f coin sets

if at least one coin is 0 among all coins in the coin sets then
return 0

else
return 1

10: end if

Remarks:

e Since at most f nodes crash, all nodes will always receive n — f coins
respectively coin sets in Lines 3 and 5. Therefore, all nodes make
progress and termination is guaranteed.

e We show the correctness of the algorithm for f < n/3. To simplify
the proof we assume that n = 3f + 1, i.e., we assume the worst case.

Lemma 16.23. Let u be a node, and let W be the set of coins that u received
in at least f + 1 different coin sets. It holds that |W| > f + 1.

Proof. Let C be the multiset of coins received by u. Observe that u receives
exactly |C| = (n— f)? many coins, as u waits for n — f coin sets each containing
n — f coins.

Assume that the lemma does not hold. Then, at most f coins are in all n— f
coin sets, and all other coins (n — f) are in at most f coin sets. In other words,
the number of total of coins that u received is bounded by

ICl<f-(n=f)+n—f)f=2f(n—])

Our assumption was that n > 3f, i.e., n— f > 2f. Therefore |C| < 2f(n— f) <
(n — f)? = |C|, which is a contradiction. O

Lemma 16.24. All coins in W are seen by all correct nodes.

Proof. Let w € W be such a coin. By definition of W we know that w is in at
least f + 1 sets received by u. Since every other node also waits for n — f sets
before terminating, each node will receive at least one of these sets, and hence
w must be seen by every node that terminates. O

Theorem 16.25. If f < n/3 nodes crash, Algorithm 16.22 implements a shared
coin.

16.5. SHARED COIN 187

Proof. Let us first bound the probability that the algorithm returns 1 for all
nodes. With probability (1 — 1/n)" ~ 1/e ~ 0.37 all nodes chose their local
coin equal to 1 (Line 1), and in that case 1 will be decided. This is only a lower
bound on the probability that all nodes return 1, as there are also other scenarios
based on message scheduling and crashes which lead to a global decision for 1.
But a probability of 0.37 is good enough, so we do not need to consider these
scenarios.

With probability 1 — (1 — 1/n)IW! there is at least one 0 in W. Using
Lemma 16.23 we know that |W| > f + 1 ~ n/3, hence the probability is about
1—(1—1/n)"3 =~ 1— (1/e)'/? ~ 0.28. We know that this 0 is seen by all
nodes (Lemma 16.24), and hence everybody will decide 0. Thus Algorithm
16.22 implements a shared coin. O

Remarks:

e We only proved the worst case. By choosing f fairly small, it is clear
that f + 1 % n/3. However, Lemma 16.23 can be proved for |W| >
n — 2f. To prove this claim you need to substitute the expressions
in the contradictory statement: At most n —2f — 1 coins can be in
all n — f coin sets, and n — (n — 2f — 1) = 2f + 1 coins can be in at
most f coin sets. The remainder of the proof is analogous, the only
difference is that the math is not as neat. Using the modified Lemma
we know that |W| > n/3, and therefore Theorem 16.25 also holds for
any [<n/3.

e We implicitly assumed that message scheduling was random; if we
need a 0 but the nodes that want to propose 0 are “slow”, nobody is
going to see these 0’s, and we do not have progress.

Theorem 16.26. Plugging Algorithm 16.22 into Algorithm 16.15 we get a ran-
domized consensus algorithm which terminates in a constant expected number
of rounds tolerating up to f < n/3 crash failures.

Chapter Notes

The problem of two friends arranging a meeting was presented and studied under
many different names; nowadays, it is usually referred to as the Two Generals
Problem. The impossibility proof was established in 1975 by Akkoyunlu et
al. [AEHT75].

The proof that there is no deterministic algorithm that always solves con-
sensus is based on the proof of Fischer, Lynch and Paterson [FLP85], known
as FLP, which they established in 1985. This result was awarded the 2001
PODC Influential Paper Award (now called Dijkstra Prize). The idea for the
randomized consensus algorithm was originally presented by Ben-Or [Ben83].
The concept of a shared coin was introduced by Bracha [Bra87].

This chapter was written in collaboration with David Stolz.

188 CHAPTER 16. CONSENSUS

Bibliography

[AEHT75] EA Akkoyunlu, K Ekanadham, and RV Huber. Some constraints and
tradeoffs in the design of network communications. In ACM SIGOPS
Operating Systems Review, volume 9, pages 67-74. ACM, 1975.

[Ben83] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In Proceedings of the
second annual ACM symposium on Principles of distributed computing,

pages 27-30. ACM, 1983.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. Infor-
mation and Computation, 75(2):130-143, 1987.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM, 32(2):374—
382, 1985.

Chapter 17

Byzantine Agreement

In order to make flying safer, researchers studied possible failures of various
sensors and machines used in airplanes. While trying to model the failures,
they were confronted with the following problem: Failing machines did not just
crash, instead they sometimes showed arbitrary behavior before stopping com-
pletely. With these insights researchers modeled failures as arbitrary failures,
not restricted to any patterns.

Definition 17.1 (Byzantine). A node which can have arbitrary behavior is
called byzantine. This includes “anything imaginable”, e.g., not sending any
messages at all, or sending different and wrong messages to different neighbors,
or lying about the input value.

Remarks:

e Byzantine behavior also includes collusion, i.e., all byzantine nodes
are being controlled by the same adversary.

e We assume that any two nodes communicate directly, and that no
node can forge an incorrect sender address. This is a requirement, such
that a single byzantine node cannot simply impersonate all nodes!

e We call non-byzantine nodes correct nodes.

Definition 17.2 (Byzantine Agreement). Finding consensus as in Definition
16.1 in a system with byzantine nodes is called byzantine agreement. An algo-
rithm is f-resilient if it still works correctly with f byzantine nodes.

Remarks:

e As for consensus (Definition 16.1) we also need agreement, termination
and validity. Agreement and termination are straight-forward, but
what about validity?

189

190 CHAPTER 17. BYZANTINE AGREEMENT

17.1 Validity

Definition 17.3 (Any-Input Validity). The decision value must be the input
value of any node.

Remarks:

e This is the validity definition we implicitly used for consensus, in Def-
inition 16.1.

e Does this definition still make sense in the presence of byzantine
nodes? What if byzantine nodes lie about their inputs?

e We would wish for a validity definition which differentiates between
byzantine and correct inputs.

Definition 17.4 (Correct-Input Validity). The decision value must be the input
value of a correct node.

Remarks:

e Unfortunately, implementing correct-input validity does not seem to
be easy, as a byzantine node following the protocol but lying about
its input value is indistinguishable from a correct node. Here is an
alternative.

Definition 17.5 (All-Same Validity). If all correct nodes start with the same
input v, the decision value must be v.

Remarks:

e If the decision values are binary, then correct-input validity is induced
by all-same validity.

e If the input values are not binary, but for example from sensors that
deliever values in R, all-same validity is in most scenarios not really
useful.

Definition 17.6 (Median Validity). If the input values are orderable, e.g. v €
R, byzantine outliers can be prevented by agreeing on a value close to the median

of the correct input values, where close is a function of the number of byzantine
nodes f.

Remarks:

e Is byzantine agreement possible? If yes, with what validity condition?

e Let us try to find an algorithm which tolerates 1 single byzantine node,
first restricting to the so-called synchronous model.

Model 17.7 (synchronous). In the synchronous model, nodes operate in syn-
chronous rounds. In each round, each node may send a message to the other
nodes, receive the messages sent by the other nodes, and do some local compu-
tation.

Definition 17.8 (synchronous runtime). For algorithms in the synchronous
model, the runtime is simply the number of rounds from the start of the execution
to its completion in the worst case (every legal input, every execution scenario).

17.2. HOW MANY BYZANTINE NODES?

17.2 How Many Byzantine Nodes?

191

Algorithm 17.9 Byzantine Agreement with f = 1.

1:

Code for node u, with input value z:
Round 1

Send tuple(u,z) to all other nodes

3: Receive tuple(v,y) from all other nodes v

Store all received tuple(v,y) in a set S,
Round 2

Send set S, to all other nodes

Receive sets S, from all nodes v

T = set of tuple(v,y) seen in at least two sets 5, including own S,
Let tuple(v,y) € T be the tuple with the smallest value y

Decide on value y

Remarks:

e Byzantine nodes may not follow the protocol and send syntactically in-

correct messages. Such messages can easily be deteced and discarded.
It is worse if byzantine nodes send syntactically correct messages, but
with a bogus content, e.g., they send different messages to different
nodes.

Some of these mistakes cannot easily be detected: For example, if a
byzantine node sends different values to different nodes in the first
round; such values will be put into S,,. However, some mistakes can
and must be detected: Observe that all nodes only relay information
in Round 2, and do not say anything about their own value. So, if a
byzantine node sends a set S,, which contains a tuple(v,y), this tuple
must be removed by u from S, upon receiving it (Line 6).

Recall that we assumed that nodes cannot forge their source address;
thus, if a node receives tuple(v,y) in Round 1, it is guaranteed that
this message was sent by v.

Lemma 17.10. Ifn > 4, all correct nodes have the same set T .

Proof. With f =1 and n > 4 we have at least 3 correct nodes. A correct node
will see every correct value at least twice, once directly from another correct
node, and once through the third correct node. So all correct values are in 7.
If the byzantine node sends the same value to at least 2 other (correct) nodes,
all correct nodes will see the value twice, so all add it to set 7. If the byzantine
node sends all different values to the correct nodes, none of these values will
end up in any set T'. O

Theorem 17.11. Algorithm 17.9 reaches byzantine agreement if n > 4.

192 CHAPTER 17. BYZANTINE AGREEMENT

Proof. We need to show agreement, any-input validity and termination. With
Lemma 17.10 we know that all correct nodes have the same set T', and therefore
agree on the same minimum value. The nodes agree on a value proposed by any
node, so any-input validity holds. Moreover, the algorithm terminates after two
rounds. O

Remarks:
e If n > 4 the byzantine node can put multiple values into T

e The idea of this algorithm can be generalized for any f and n >
3f. In the generalization, every node sends in every of f 4 1 rounds
all information it learned so far to all other nodes. In other words,
message size increases exponentially with f.

e Does Algorithm 17.9 also work with n = 37

Theorem 17.12. Three nodes cannot reach byzantine agreement with all-same
validity if one node among them is byzantine.

Proof. We have three nodes u,v,w. In order to achieve all-same validity, a
correct node must decide on its own value if another node supports that value.
The third node might disagree, but that node could be byzantine. If correct
node u has input 0 and correct node v has input 1, the byzantine node w can
fool them by telling u that its value is 0 and simultaneously telling v that its
value is 1. This leads to u and v deciding on their own values, which results in
violating the agreement condition. Even if u talks to v, and they figure out that
they have different assumptions about w’s value, u cannot distinguish whether
w or v is byzantine. O

Theorem 17.13. A network with n nodes cannot reach byzantine agreement
with f > n/3 byzantine nodes.

Proof. Let us assume (for the sake of contradiction) that there exists an algo-
rithm A that reaches byzantine agreement for n nodes with f > n/3 byzantine
nodes. With A, we can solve byzantine agreement with 3 nodes. For simplicity,
we call the 3 nodes u, v, w supernodes.

Each supernode simulates n/3 nodes, either |n/3| or [n/3], if n is not di-
visible by 3. Each simulated node starts with the input of its supernode. Now
the three supernodes simulate algorithm A. The single byzantine supernode
simulates [n/3] byzantine nodes. As algorithm A promises to solve byzantine
agreement for f > n/3, A has to be able to handle [n/3] byzantine nodes.
Algorithm A guarantees that the correct nodes simulated by the correct two su-
pernodes will achieve byzantine agreement. So the two correct supernodes can
just take the value of their simulated nodes (these values have to be the same
by the agreement property), and we have achieved agreement for three supern-
odes, one of them byzantine. This contradicts Lemma 17.12, hence algorithm
A cannot exist. U

17.3. THE KING ALGORITHM 193

17.3 The King Algorithm

Algorithm 17.14 King Algorithm (for f < n/3)
1: x = my input value
2: for phase =1to f+1 do

Round 1

3: Broadcast value(z)
Round 2

if some value(y) at least n — f times then
Broadcast propose(y)

end if

if some propose(z) received more than f times then
r=z

end if

Round 3

10: Let node v; be the predefined king of this phase ¢
11: The king v; broadcasts its current value w
12: if received strictly less than n — f propose(z) then

13: r=w
14: end if
15: end for

Lemma 17.15. Algorithm 17.14 fulfills the all-same validity.

Proof. If all correct nodes start with the same value, all correct nodes propose
it in Round 2. All correct nodes will receive at least n — f proposals, i.e., all
correct nodes will stick with this value, and never change it to the king’s value.
This holds for all phases. O

Lemma 17.16. If a correct node proposes x, no other correct node proposes vy,
with y # x, if n > 3f.

Proof. Assume (for the sake of contradiction) that a correct node proposes value
x and another correct node proposes value y. Since a good node only proposes
a value if it heard at least n — f value messages, we know that both nodes must
have received their value from at least n — 2 distinct correct nodes (as at most
f nodes can behave byzantine and send z to one node and y to the other one).
Hence, there must be a total of at least 2(n — 2f) + f = 2n — 3f nodes in the
system. Using 3f < n, we have 2n — 3f > n nodes, a contradiction. O

Lemma 17.17. There is at least one phase with a correct king.

Proof. There are f + 1 phases, each with a different king. As there are only f
byzantine nodes, one king must be correct. O

Lemma 17.18. After a round with a correct king, the correct nodes will not
change their values v anymore, if n > 3f.

194 CHAPTER 17. BYZANTINE AGREEMENT

Proof. If all correct nodes change their values to the king’s value, all correct
nodes have the same value. If some correct node does not change its value to
the king’s value, it received a proposal at least n — f times, therefore at least
n—2f correct nodes broadcasted this proposal. Thus, all correct nodes received
it at least n — 2f > f times (using n > 3f), therefore all correct nodes set
their value to the proposed value, including the correct king. Note that only
one value can be proposed more than f times, which follows from Lemma 17.16.
With Lemma 17.15, no node will change its value after this round. O

Theorem 17.19. Algorithm 17.14 solves byzantine agreement.

Proof. The king algorithm reaches agreement as either all correct nodes start
with the same value, or they agree on the same value latest after the phase
where a correct node was king according to Lemmas 17.17 and 17.18. Because
of Lemma 17.15 we know that they will stick with this value. Termination is
guaranteed after 3(f + 1) rounds, and all-same validity is proved in Lemma
17.15. O

Remarks:

e Algorithm 17.14 requires f 4 1 predefined kings. We assume that the
kings (and their order) are given. Finding the kings indeed would be
a byzantine agreement task by itself, so this must be done before the
execution of the King algorithm.

e Do algorithms exist which do not need predefined kings? Yes, see
Section 17.5.

e Can we solve byzantine agreement (or at least consensus) in less than
f + 1 rounds?

17.4 Lower Bound on Number of Rounds

Theorem 17.20. A synchronous algorithm solving consensus in the presence
of f crashing nodes needs at least f+1 rounds, if nodes decide for the minimum
seen value.

Proof. Let us assume (for the sake of contradiction) that some algorithm A
solves consensus in f rounds. Some node u; has the smallest input value z, but
in the first round w; can send its information (including information about its
value x) to only some other node us before u; crashes. Unfortunately, in the
second round, the only witness us of x also sends x to exactly one other node w3
before uy crashes. This will be repeated, so in round f only node uf4q knows
about the smallest value z. As the algorithm terminates in round f, node us41
will decide on value z, all other surviving (correct) nodes will decide on values
larger than z. O

17.5. ASYNCHRONOUS BYZANTINE AGREEMENT 195

Remarks:

e A general proof without the restriction to decide for the minimum
value exists as well.

e Since byzantine nodes can also just crash, this lower bound also holds
for byzantine agreement, so Algorithm 17.14 has an asymptotically
optimal runtime.

e So far all our byzantine agreement algorithms assume the synchronous
model. Can byzantine agreement be solved in the asynchronous model?

17.5 Asynchronous Byzantine Agreement

Algorithm 17.21 Asynchronous Byzantine Agreement (Ben-Or, for f < n/9)
1. x; € {0, 1} < input bit
2r=1 < round
3: decided = false
4: Broadcast propose(x;,r)
5. repeat

6: Wait until n — f propose messages of current round r arrived

7. if at least n — 2f propose messages contain the same value x then

8: x; = x, decided = true

9: else if at least n — 4f propose messages contain the same value then
10: T, =

11: else

12: choose z; randomly, with Pr{z; = 0] = Pr[z; =1] =1/2

13: end if

14: r=r1+1

15: Broadcast propose(z;,r)
16: until decided (see Line 8)
17: decision = x;

Lemma 17.22. Assume n > 9f. If a correct node chooses value x in Line 10,
then no other correct node chooses value y # x in Line 10.

Proof. For the sake of contradiction, assume that both 0 and 1 are chosen in Line
10. This means that both 0 and 1 had been proposed by at least n —5f correct
nodes. In other words, we have a total of at least 2(n—5f)+f = n+(n—9f) >n
nodes. Contradiction! O

Theorem 17.23. Algorithm 17.21 solves binary byzantine agreement as in Def-
inition 17.2 for up to f < n/9 byzantine nodes.

Proof. First note that it is not a problem to wait for n — f propose messages in
Line 6, since at most f nodes are byzantine. If all correct nodes have the same
input value z, then all (except the f byzantine nodes) will propose the same
value x. Thus, every node receives at least n—2f propose messages containing x,
deciding on z in the first round already. We have established all-same validity!

196 CHAPTER 17. BYZANTINE AGREEMENT

If the correct nodes have different (binary) input values, the validity condition
becomes trivial as any result is fine.

What about agreement? Let u be the first node to decide on value x (in
Line 8). Due to asynchrony another node v received messages from a different
subset of the nodes, however, at most f senders may be different. Taking
into account that byzantine nodes may lie (send different propose messages to
different nodes), f additional propose messages received by v may differ from
those received by w. Since node u had at least n — 2f propose messages with
value x, node v has at least n — 4f propose messages with value x. Hence every
correct node will propose x in the next round, and then decide on x.

So we only need to worry about termination: We have already seen that as
soon as one correct node terminates (Line 8) everybody terminates in the next
round. So what are the chances that some node u terminates in Line 87 Well,
we can hope that all correct nodes randomly propose the same value (in Line
12). Maybe there are some nodes not choosing at random (entering Line 10
instead of 12), but according to Lemma 17.22 they will all propose the same.

Thus, at worst all n— f correct nodes need to randomly choose the same bit,
which happens with probability 2= ("=H+1 If so, all correct nodes will send the
same propose message, and the algorithm terminates. So the expected running
time is exponential in the number of nodes n. O

Remarks:

e This Algorithm is a proof of concept that asynchronous byzantine
agreement can be achieved. Unfortunately this algorithm is not useful
in practice, because of its runtime.

e For a long time, there was no algorithm with subexponential runtime.
The currently fastest algorithm has an expected runtime of O(n??)
but only tolerates f < 1/500n many byzantine nodes. This algorithm
works along the lines of the shared coin algorithm; additionally nodes
try to detect which nodes are byzantine.

Chapter Notes

The project which started the study of byzantine failures was called SIFT and
was founded by NASA [WLGT78], and the research regarding byzantine agree-
ment started to get significant attention with the results by Pease, Shostak, and
Lamport [PSL80, LSP82|. In [PSL80] they presented the generalized version
of Algorithm 17.9 and also showed that byzantine agreement is unsolvable for
n < 3f. The algorithm presented in that paper is nowadays called Exponential
Information Gathering (EIG), due to the exponential size of the messages.

There are many algorithms for the byzantine agreement problem. For ex-
ample the Queen Algorithm [BG89] which has a better runtime than the King
algorithm [BGP89], but tolerates less failures. That byzantine agreement re-
quires at least f + 1 many rounds was shown by Dolev and Strong [DS83],
based on a more complicated proof from Fischer and Lynch [FL82].

While many algorithms for the synchronous model have been around for a
long time, the asynchronous model is a lot harder. The only results were by Ben-
Or and Bracha. Ben-Or [Ben83] was able to tolerate f < n/5. Bracha [BT85]

BIBLIOGRAPHY 197

improved this tolerance to f < n/3. The first algorithm with a polynomial
expected runtime was found by King and Saia [KS13] just recently.

Nearly all developed algorithms only satisfy all-same validity. There are a
few exceptions, e.g., correct-input validity [FGO03], available if the initial values
are from a finite domain, or median validity [SW15] if the input values are
orderable.

Before the term byzantine was coined, the terms Albanian Generals or Chi-
nese Generals were used in order to describe malicious behavior. When the
involved researchers met people from these countries they moved — for obvious
reasons — to the historic term byzantine [LSP82].

This chapter was written in collaboration with Barbara Keller.

Bibliography

[Ben83] Michael Ben-Or. Another advantage of free choice (extended ab-
stract): Completely asynchronous agreement protocols. In Proceed-
ings of the second annual ACM symposium on Principles of distrib-
uted computing, pages 27-30. ACM, 1983.

[BG89] Piotr Berman and Juan A Garay. Asymptotically optimal distributed
consensus. Springer, 1989.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards
optimal distributed consensus (extended abstract). In 30th Annual
Symposium on Foundations of Computer Science, Research Triangle
Park, North Carolina, USA, 30 October - 1 November 1989, pages
410415, 1989.

[BT85] Gabriel Bracha and Sam Toueg. Asynchronous consensus and broad-
cast protocols. Journal of the ACM (JACM), 32(4):824-840, 1985.

[DS83] Danny Dolev and H. Raymond Strong. Authenticated algorithms for
byzantine agreement. SIAM Journal on Computing, 12(4):656-666,
1983.

[FG03] Matthias Fitzi and Juan A Garay. Efficient player-optimal protocols
for strong and differential consensus. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing,
pages 211-220. ACM, 2003.

[FL82] Michael J. Fischer and Nancy A. Lynch. A lower bound for the time
to assure interactive consistency. 14(4):183-186, June 1982.

[KS13] Valerie King and Jared Saia. Byzantine agreement in polynomial
expected time:[extended abstract]. In Proceedings of the forty-fifth
annual ACM symposium on Theory of computing, pages 401-410.
ACM, 2013.

[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The
byzantine generals problem. ACM Trans. Program. Lang. Syst.,
4(3):382-401, 1982.

198

[PSL80]

[SW15]

[WLG*78]

CHAPTER 17. BYZANTINE AGREEMENT

Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reach-
ing agreement in the presence of faults. J. ACM, 27(2):228-234,
1980.

David Stolz and Roger Wattenhofer. Byzantine Agreement with
Median Validity. In 19th International Conference on Priniciples of
Distributed Systems (OPODIS), Rennes, France, 2015.

John H. Wensley, Leslie Lamport, Jack Goldberg, Milton W. Green,
Karl N. Levitt, P. M. Melliar-Smith, Robert E. Shostak, and
Charles B. Weinstock. Sift: Design and analysis of a fault-tolerant
computer for aircraft control. In Proceedings of the IEEE, pages
1240-1255, 1978.

Chapter 18

Authenticated Agreement

Byzantine nodes are able to lie about their inputs as well as received messages.
Can we detect certain lies and limit the power of byzantine nodes? Possibly,
the authenticity of messages may be validated using signatures?

18.1 Agreement with Authentication

Definition 18.1 (Signature). If a node never signs a message, then no correct
node ever accepts that message. We denote a message msg(z) signed by node u
with msg(x)y.

Remarks:

e Algorithm 18.2 shows an agreement protocol for binary inputs relying
on signatures. We assume there is a designated “primary” node p.
The goal is to decide on p’s value.

199

200 CHAPTER 18. AUTHENTICATED AGREEMENT

Algorithm 18.2 Byzantine Agreement with Authentication

Code for primary p:

if input is 1 then
broadcast value(1),
decide 1 and terminate
else
decide 0 and terminate
end if

Code for all other nodes v:

7: for all rounds ¢t € 1,...,f+1do
S is the set of accepted messages value(1),.
. if |S] > i and value(l), € S then
10: broadcast S U {value(1),}

11: decide 1 and terminate
12: end if
13: end for

14: decide 0 and terminate

Theorem 18.3. Algorithm 18.2 can tolerate f < n byzantine failures while
terminating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then
p broadcasts value(1), in the first round, which will trigger all correct nodes
to decide for 1. If p’s input is 0, there is no signed message value(l),, and no
node can decide for 1.

If primary p is byzantine, we need all correct nodes to decide for the same
value for the algorithm to be correct. Let us assume that p convinces a correct
node v that its value is 1 in round ¢ with ¢ < f + 1. We know that v received
1 signed messages for value 1. Then, v will broadcast i + 1 signed messages for
value 1, which will trigger all correct nodes to also decide for 1. If p tries to
convince some node v late (in round ¢ = f 4 1), v must receive f 4 1 signed
messages. Since at most f nodes are byzantine, at least one correct node u
signed a message value(1), in some round i < f + 1, which puts us back to the
previous case. O

Remarks:

e The algorithm only takes f + 1 rounds, which is optimal as described
in Theorem 17.20.

e Using signatures, Algorithm 18.2 solves consensus for any number of
failures! Does this contradict Theorem 17.127 Recall that in the proof
of Theorem 17.12 we assumed that a byzantine node can distribute
contradictory information about its own input. If messages are signed,
correct nodes can detect such behavior — a node u signing two contra-
dicting messages proves to all nodes that node u is byzantine.

e Does Algorithm 18.2 satisfy any of the validity conditions introduced
in Section 17.17 No! A byzantine primary can dictate the decision

18.2. ZYZZYVA 201

value. Can we modify the algorithm such that the correct-input va-
lidity condition is satisfied? Yes! We can run the algorithm in parallel
for 2f 4+ 1 primary nodes. Either 0 or 1 will occur at least f+ 1 times,
which means that one correct process had to have this value in the
first place. In this case, we can only handle f < § byzantine nodes.

e In reality, a primary will usually be correct. If so, Algorithm 18.2 only
needs two rounds! Can we make it work with arbitrary inputs? Also,
relying on synchrony limits the practicality of the protocol. What if
messages can be lost or the system is asynchronous?

e Zyzzyva uses authenticated messages to achieve state replication, as
in Definition 15.8. It is designed to run fast when nodes run correctly,
and it will slow down to fix failures!

18.2 Zyzzyva

Definition 18.4 (View). A view V describes the current state of a replicated
system, enumerating the 3f + 1 replicas. The view V also marks one of the
replicas as the primary p.

Definition 18.5 (Command). If a client wants to update (or read) data, it
sends a suitable command c¢ in a Request message to the primary p. Apart
from the command c itself, the Request message also includes a timestamp t.
The client signs the message to guarantee authenticity.

Definition 18.6 (History). The history h is a sequence of commands c1,ca, . ..
i the order they are executed by Zyzzyva. We denote the history up to ci with
h-

Remarks:

e In Zyzzyva, the primary p is used to order commands submitted by
clients to create a history h.

e Apart from the globally accepted history, node u may also have a local
history, which we denote as h* or h}.

Definition 18.7 (Complete command). If a command completes, it will remain
in its place in the history h even in the presence of failures.

Remarks:

e As long as clients wait for the completion of their commands, clients
can treat Zyzzyva like one single computer even if there are up to f
failures.

202 CHAPTER 18. AUTHENTICATED AGREEMENT

In the Absence of Failures

Algorithm 18.8 Zyzzyva: No failures

At time t client u wants to execute command ¢

Client u sends request R = Request(c,t),, to primary p

Primary p appends c to its local history, i.e., h? = (hP, ¢)
Primary p sends OR = OrderedRequest(h?,c, R), to all replicas
Each replica r appends command ¢ to local history h" = (h", ¢) and checks
whether h" = hP

Each replica r runs command c¢; and obtains result a

Each replica r sends Response(a,0R), to client u

Client u collects the set S of received Response(a,0R), messages
Client u checks if all histories A" are consistent

10: if |S| =3f+ 1 then

11: Client u considers command c¢ to be complete

12: end if

Remarks:

e Since the client receives 3 f+1 consistent responses, all correct replicas
have to be in the same state.

e Only three communication rounds are required for the command c to
complete.

e Note that replicas have no idea which commands are considered com-
plete by clients! How can we make sure that commands that are
considered complete by a client are actually executed? We will see in
Theorem 18.23.

e Commands received from clients should be ordered according to time-
stamps to preserve the causal order of commands.

e There is a lot of optimization potential. For example, including the en-
tire command history in most messages introduces prohibitively large
overhead. Rather, old parts of the history that are agreed upon can be
truncated. Also, sending a hash value of the remainder of the history
is enough to check its consistency across replicas.

e What if a client does not receive 3f + 1 Response(a,0R), messages?
A byzantine replica may omit sending anything at alll In practice,
clients set a timeout for the collection of Response messages. Does
this mean that Zyzzyva only works in the synchronous model? Yes
and no. We will discuss this in Lemma 18.26 and Lemma 18.27.

18.2. ZYZZYVA 203

Byzantine Replicas

Algorithm 18.9 Zyzzyva: Byzantine Replicas (append to Algorithm 18.8)
1 if 2f+1<|S|<3f+1 then
2: Client u sends Commit(S),, to all replicas
3: Each replica r replies with a LocalCommit(S), message to u
4: Client u collects at least 2f + 1 LocalCommit(S), messages and considers
¢ to be complete
5: end if

Remarks:

e If replicas fail, a client © may receive less than 3f 4+ 1 consistent re-
sponses from the replicas. Client u can only assume command c¢ to
be complete if all correct replicas r eventually append command ¢ to
their local history hA”.

Definition 18.10 (Commit Certificate). A commit certificate S contains 2f+1
consistent and signed Response(a,0R), messages from 2f + 1 different replicas
.

Remarks:

e The set S is a commit certificate which proves the execution of the
command on 2f + 1 replicas, of which at least f + 1 are correct. This
commit certificate S must be acknowledged by 2f + 1 replicas before
the client considers the command to be complete.

e Why do clients have to distribute this commit certificate to 2f + 1
replicas? We will discuss this in Theorem 18.21.

e What if |S| < 2f + 1, or what if the client receives 2f + 1 messages
but some have inconsistent histories? Since at most f replicas are
byzantine, the primary itself must be byzantine! Can we resolve this?

Byzantine Primary

Definition 18.11 (Proof of Misbehavior). Proof of misbehavior of some node
can be established by a set of contradicting signed messages.

Remarks:

e For example, if a client u receives two Response(a,0R), messages that
contain inconsistent OR messages signed by the primary, client u can
prove that the primary misbehaved. Client u broadcasts this proof of
misbehavior to all replicas r which initiate a view change by broad-
casting a IHatePrimary, message to all replicas.

204 CHAPTER 18. AUTHENTICATED AGREEMENT

Algorithm 18.12 Zyzzyva: Byzantine Primary (append to Algorithm 18.9)
1. if |S| < 2f +1 then

2: Client u sends the original R = Request(c,t), to all replicas
3 Each replica r sends a ConfirmRequest(R), message to p
4: if primary p replies with OR then
5: Replica r forwards OR to all replicas
6 Continue as in Algorithm 18.8, Line 5
7. else
8 Replica r initiates view change by broadcasting IHatePrimary, to all
replicas
9: end if
10: end if
Remarks:

e A faulty primary can slow down Zyzzyva by not sending out the
OrderedRequest messages in Algorithm 18.8, repeatedly escalating
to Algorithm 18.12.

e Line 5 in the Algorithm is necessary to ensure liveness. We will discuss
this in Theorem 18.27.

e Again, there is potential for optimization. For example, a replica
might already know about a command that is requested by a client. In
that case, it can answer without asking the primary. Furthermore, the
primary might already know the message R requested by the replicas.
In that case, it sends the old OR message to the requesting replica.

Safety

Definition 18.13 (Safety). We call a system safe if the following condition
holds: If a command with sequence number j and a history h; completes, then
for any command that completed earlier (with a smaller sequence number i < j),
the history h; is a prefix of history h;.

Remarks:

e In Zyzzyva a command can only complete in two ways, either in Al-
gorithm 18.8 or in Algorithm 18.9.

e If a system is safe, complete commands cannot be reordered or drop-
ped. So is Zyzzyva so far safe?

Lemma 18.14. Let ¢; and c; be two different complete commands. Then c;
and c; must have different sequence numbers.

Proof. If a command ¢ completes in Algorithm 18.8, 3f + 1 replicas sent a
Response(a,0R), to the client. If the command ¢ completed in Algorithm 18.9,
at least 2f + 1 replicas sent a Response(a,0R), message to the client. Hence, a
client has to receive at least 2f + 1 Response(a,0R), messages.

Both ¢; and ¢; are complete. Therefore there must be at least 2f 41 replicas
that responded to ¢; with a Response(a,0R), message. But there are also at least

18.2. ZYZZYVA 205

2f + 1 replicas that responded to ¢; with a Response(a,0R), message. Because
there are only 3f + 1 replicas, there is at least one correct replica that sent a
Response(a,0R), message for both ¢; and ¢;. A correct replica only sends one
Response(a,0R), message for each sequence number, hence the two commands
must have different sequence numbers. O

Lemma 18.15. Let ¢; and c; be two complete commands with sequence numbers
1 < j. The history h; is a prefiz of h;.

Proof. As in the proof of Lemma 18.14, there has to be at least one correct
replica that sent a Response(a,0R), message for both ¢; and c;.

A correct replica r that sent a Response(a,0R), message for ¢; will only
accept ¢; if the history for ¢; provided by the primary is consistent with the
local history of replica r, including c;. O

Remarks:

e A byzantine primary can cause the system to never complete any
command. Either by never sending any messages or by inconsistently
ordering client requests. In this case, replicas have to replace the
primary.

View Changes

Definition 18.16 (View Change). In Zyzzyva, a view change is used to replace
a byzantine primary with another (hopefully correct) replica. View changes are
initiated by replicas sending IHatePrimary, to all other replicas. This only
happens if a replica obtains a valid proof of misbehavior from a client or after a
replica fails to obtain an OR message from the primary in Algorithm 18.12.

Remarks:

e How can we safely decide to initiate a view change, i.e. demote a
byzantine primary? Note that byzantine nodes should not be able to
trigger a view change!

Algorithm 18.17 Zyzzyva: View Change Agreement
1: All replicas continuously collect the set H of IHatePrimary, messages
2: if a replica r received |H| > f messages or a valid ViewChange message
then
Replica r broadcasts ViewChange(H",h",S]),
Replica r stops participating in the current view
Replica r switches to the next primary “p=p+ 1"
end if

20

6 CHAPTER 18. AUTHENTICATED AGREEMENT

Remarks:

e The f + 1 IHatePrimary, messages in set H prove that at least one
correct replica initiated a view change. This proof is broadcast to all
replicas to make sure that once the first correct replica stopped acting
in the current view, all other replicas will do so as well.

e S/ is the most recent commit certificate that the replica obtained
in the ending view as described in Algorithm 18.9. S} will be used
to recover the correct history before the new view starts. The local
histories A" are included in the ViewChange(H",h",S]), message such
that commands that completed after a correct client received 3f + 1
responses from replicas can be recovered as well.

e In Zyzzyva, a byzantine primary starts acting as a normal replica after
a view change. In practice, all machines eventually break and rarely
fix themselves after that. Instead, one could consider to replace a
byzantine primary with a fresh replica that was not in the previous
view.

Algorithm 18.18 Zyzzyva: View Change Execution

10:
11:
12:

1
2
3:
4

: The new primary p collects the set C of ViewChange(H",h",S]), messages
. if new primary p collected |C| > 2f + 1 messages then

New primary p sends NewView(C), to all replicas

: end if

if a replica r received a NewView(C), message then
Replica r recovers new history hpey as shown in Algorithm 18.20
Replica r broadcasts ViewConfirm(hpey), message to all replicas
end if

if a replica r received 2f 4+ 1 ViewConfirm(hyey), messages then
Replica r accepts h" = hyey as the history of the new view
Replica r starts participating in the new view

end if

Remarks:

e Analogously to Lemma 18.15, commit certificates are ordered. For
two commit certificates S; and S; with sequence numbers ¢ < j, the
history h; certified by S; is a prefix of the history h; certified by S;.

e Zyzzyva collects the most recent commit certificate and the local his-
tory of 2f + 1 replicas. This information is distributed to all replicas,
and used to recover the history for the new view h,eq.

e If areplica does not receive the NewView(C'), or the ViewConfirm(hney),
message in time, it triggers another view change by broadcasting
IHatePrimary, to all other replicas.

18.2. ZYZZYVA 207

e How is the history recovered exactly? It seems that the set of histo-
ries included in C' can be messy. How can we be sure that complete
commands are not reordered or dropped?

commands up to S > f + 1 consistent histories < f + 1 consistent histories
)
-5 @ [J
o O
TEd
-~ g 5
3 T T T T
s-‘
o O
oo
© o
bt
hnew discarded commands

Inconsistent or missing commands
] Consistent commands

[Consistent commands with commit certificate

Figure 18.19: The structure of the data reported by different replicas in C.
Commands up to the last commit certificate S; were completed in either Algo-
rithm 18.8 or Algorithm 18.9. After the last commit certificate S; there may be
commands that completed at a correct client in Algorithm 18.8. Algorithm 18.20
shows how the new history h,e., is recovered such that no complete commands
are lost.

Algorithm 18.20 Zyzzyva: History Recovery
C = set of 2f 4+ 1 ViewChange(H",h",S"), messages in NewView(C),
R = set of replicas included in C
S; = most recent commit certificate S| reported in C
hpew = history h; contained in 5;
k =1+ 1, next sequence number
while command ¢, exists in C' do
if ¢y is reported by at least f + 1 replicas in R then
Remove replicas from R that do not support ¢y
Pnew = (hnew; Ck)
end if
k=k+1
: end while
: returnl Apey

e

Remarks:
e Commands up to S; are included into the new history hpeq-

e If at least f+1 replicas share a consistent history after the last commit
certificate Sj, also the commands after that are included.

e Even if f + 1 correct replicas consistently report a command c after
the last commit certificate S;, ¢ may not be considered complete by
a client, e.g., because one of the responses to the client was lost.

208 CHAPTER 18. AUTHENTICATED AGREEMENT

Such a command is included in the new history hj,e.,. When the
client retries executing ¢, the replicas will be able to identify the same
command c¢ using the timestamp included in the client’s request, and
avoid duplicate execution of the command.

e Can we be sure that all commands that completed at a correct client
are carried over into the new view?

Lemma 18.21. The globally most recent commit certificate S is included in C.

Proof. Any two sets of 2f+1 replicas share at least one correct replica. Hence, at
least one correct replica which acknowledged the most recent commit certificate
S; also sent a LocalCommit(S)), message that is in C. O

Lemma 18.22. Any command and its history that completes after S; has to be
reported in C at least f 4+ 1 times.

Proof. A command ¢ can only complete in Algorithm 18.8 after S;. Hence, 3f+1
replicas sent a Response(a,0R), message for c¢. C includes the local histories of
2f + 1 replicas of which at most f are byzantine. As a result, ¢ and its history
is consistently found in at least f + 1 local histories in C. O

Lemma 18.23. If a command c is considered complete by a client, command
c remains in its place in the history during view changes.

Proof. We have shown in Lemma 18.21 that the most recent commit certificate
is contained in C, and hence any command that terminated in Algorithm 18.9
is included in the new history after a view change. Every command that com-
pleted before the last commit certificate) is included in the history as a result.
Commands that completed in Algorithm 18.8 after the last commit certificate
are supported by at least f 4+ 1 correct replicas as shown in Lemma 18.22. Such
commands are added to the new history as described in Algorithm 18.20. Algo-
rithm 18.20 adds commands sequentially until the histories become inconsistent.
Hence, complete commands are not lost or reordered during a view change. [

Theorem 18.24. Zyzzyva is safe even during view changes.

Proof. Complete commands are not reordered within a view as described in
Lemma 18.15. Also, no complete command is lost or reordered during a view
change as shown in Lemma 18.23. Hence, Zyzzyva is safe. O

Remarks:

e So Zyzzyva correctly handles complete commands even in the presence
of failures. We also want Zyzzyva to make progress, i.e., commands
issued by correct clients should complete eventually.

e If the network is broken or introduces arbitrarily large delays, com-
mands may never complete.

e Can we be sure commands complete in periods in which delays are
bounded?

18.2. ZYZZYVA 209

Definition 18.25 (Liveness). We call a system live if every command eventu-
ally completes.

Lemma 18.26. Zyzzyva is live during periods of synchrony if the primary is
correct and a command is requested by a correct client.

Proof. The client receives a Response(a,0R), message from all correct replicas.
If it receives 3f + 1 messages, the command completes immediately in Algo-
rithm 18.8. If the client receives fewer than 3f + 1 messages, it will at least
receive 2f + 1, since there are at most f byzantine replicas. All correct replicas
will answer the client’s Commit(S), message with a correct LocalCommit(.S),
message after which the command completes in Algorithm 18.9. O

Lemma 18.27. If, during a period of synchrony, a request does mot complete
in Algorithm 18.8 or Algorithm 18.9, a view change occurs.

Proof. If a command does not complete for a sufficiently long time, the client
will resend the R = Request(c,t), message to all replicas. After that, if a
replica’s ConfirmRequest(R), message is not answered in time by the primary,
it broadcasts an IHatePrimary, message. If a correct replica gathers f + 1
IHatePrimary, messages, the view change is initiated. If no correct replica col-
lects more than f IHatePrimary, messages, at least one correct replica received
a valid OrderedRequest(h?, ¢, R), message from the primary which it forwards
to all other replicas. In that case, the client is guaranteed to receive at least
2f + 1 Response(a,0R), messages from the correct replicas and can complete
the command by assembling a commit certificate. O

Remarks:

e If the newly elected primary is byzantine, the view change may never
terminate. However, we can detect if the new primary does not assem-
ble C' correctly as all contained messages are signed. If the primary
refuses to assemble C, replicas initiate another view change after a
timeout.

Chapter Notes

Algorithm 18.2 was introduced by Dolev et al. [DFFT82] in 1982. Byzantine
fault tolerant state machine replication (BFT) is a problem that gave rise to
various protocols. Castro and Liskov [MC99] introduced the Practical Byzantine
Fault Tolerance (PBFT) protocol in 1999, applications such as Farsite [ABCT02]
followed. This triggered the development of, e.g., Q/U [AEMGG™05] and HQ
[CML™06]. Zyzzyva [KADT07] improved on performance especially in the case
of no failures, while Aardvark [CWA09] improved performance in the presence
of failures. Guerraoui at al. [GKQV10] introduced a modular system which
allows to more easily develop BFT protocols that match specific applications in
terms of robustness or best case performance.
This chapter was written in collaboration with Pascal Bissig.

210

CHAPTER 18. AUTHENTICATED AGREEMENT

Bibliography

[ABC102]

[AEMGG+05]

[CML*06]

[CWA*09]

[DFF*82]

[GKQV10]

[KAD*07]

[MC99)]

Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermalk,
Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch,
Marvin Theimer, and Roger P. Wattenhofer. Farsite: Federated,
available, and reliable storage for an incompletely trusted en-
vironment. SIGOPS Oper. Syst. Rev., 36(SI):1-14, December
2002.

Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson,
Michael K Reiter, and Jay J Wylie. Fault-scalable byzantine
fault-tolerant services. ACM SIGOPS Operating Systems Re-
view, 39(5):59-74, 2005.

James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. Hq replication: A hybrid quorum
protocol for byzantine fault tolerance. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 177-190, Berkeley, CA, USA, 2006. USENIX
Association.

Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael
Dahlin, and Mirco Marchetti. Making byzantine fault tolerant
systems tolerate byzantine faults. In NSDI, volume 9, pages
153-168, 2009.

Danny Dolev, Michael J Fischer, Rob Fowler, Nancy A Lynch,
and H Raymond Strong. An efficient algorithm for byzantine
agreement without authentication. Information and Control,
52(3):257-274, 1982.

Rachid Guerraoui, Nikola Knezevi¢, Vivien Quéma, and Marko
Vukoli¢. The next 700 bft protocols. In Proceedings of the 5th Eu-
ropean conference on Computer systems, pages 363-376. ACM,
2010.

Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative byzantine
fault tolerance. In ACM SIGOPS Operating Systems Review,
volume 41, pages 45-58. ACM, 2007.

Barbara Liskov Miguel Castro. Practical byzantine fault toler-
ance. In OSDI, volume 99, pages 173-186, 1999.

Chapter 19

Quorum Systems

What happens if a single server is no longer powerful enough to service all your
customers? The obvious choice is to add more servers and to use the majority
approach (e.g. Paxos, Chapter 15) to guarantee consistency. However, even
if you buy one million servers, a client still has to access more than half of
them per request! While you gain fault-tolerance, your efficiency can at most
be doubled. Do we have to give up on consistency?

Let us take a step back: We used majorities because majority sets always
overlap. But are majority sets the only sets that guarantee overlap? In this
chapter we study the theory behind overlapping sets, known as quorum systems.

Definition 19.1 (quorum, quorum system). Let V = {v1,...,v,} be a set of
nodes. A quorum @QQ C V is a subset of these nodes. A quorum system
S C 2V is a set of quorums s.t. every two quorums intersect, i.e., Q1 N Qa # ()

for all Q1,Q2 € S.

Remarks:

e When a quorum system is being used, a client selects a quorum, ac-
quires a lock (or ticket) on all nodes of the quorum, and when done
releases all locks again. The idea is that no matter which quorum is
chosen, its nodes will intersect with the nodes of every other quorum.

e What can happen if two quorums try to lock their nodes at the same
time?

e A quorum system S is called minimal if VQ1,Q2 € S : Q1 € Q2.

e The simplest quorum system imaginable consists of just one quorum,
which in turn just consists of one server. It is known as Singleton.

e In the Majority quorum system, every quorum has [| 4 1 nodes.

e Can you think of other simple quorum systems?

211

212 CHAPTER 19. QUORUM SYSTEMS

19.1 Load and Work

Definition 19.2 (access strategy). An access strategy Z defines the proba-
bility Pz(Q) of accessing a quorum Q € S s.t. 3 ne 5 P7(Q) = 1.

Definition 19.3 (load).
e The load of access strategy Z on a node v; is Lz(vi) = Y gcs.,eq P2(Q)-

e The load induced by access strateqy Z on a quorum system S is the maz-
imal load induced by Z on any node in S, i.e., Lz(S) = maxy,es Lz (v;).

e The load of a quorum system S is L(S) = miny Lz(S).
Definition 19.4 (work).
e The work of a quorum Q € S is the number of nodes in Q, W(Q) = |Q|.

e The work induced by access strateqy Z on a quorum system S is the
expected number of nodes accessed, i.e., Wz(S) =3 5es P2(Q) - W(Q).

o The work of a quorum system S is W(S) = ming Wz (S).

Remarks:

e Note that you cannot choose different access strategies Z for work and
load, you have to pick a single Z for both.

o We illustrate the above concepts with a small example. Let V =
{v1,v2,v3,v4,05} and & = {Q1,Q2,Q3,Q4}, with Q1 = {v1,v9},
Q2 = {v1,v3,v4}, Q3 = {va,v3,05}, Qs = {v2,v4,v5}. If we choose
the access strategy Z s.t. Pz(Q1) = 1/2 and Pz(Q2) = Pz(Q3) =
Pz(Q4) = 1/6, then the node with the highest load is ve with Lz (vs)
=1/2+1/6+1/6 =5/6,i.e., Lz(S) = 5/6. Regarding work, we have
Wy(S)=1/2-2+41/6-3+1/6-3+1/6-3 =15/6.

e Can you come up with a better access strategy for S7

e If every quorum @ in a quorum system S has the same number of
elements, S is called uniform.

e What is the minimum load a quorum system can have?

Primary Copy vs. Majority Singleton Majority
How many nodes need to be accessed? (Work) 1 >n/2
What is the load of the busiest node? (Load) 1 >1/2

Table 19.5: First comparison of the Singleton and Majority quorum systems.
Note that the Singleton quorum system can be a good choice when the failure
probability of every single node is > 1/2.

19.2. GRID QUORUM SYSTEMS 213

Theorem 19.6. Let S be a quorum system. Then L(S) > 1/+/n holds.

Proof. Let Q = {v1,...,v4} be a quorum of minimal size in S, with sizes |Q| = ¢
and |S| = s. Let Z be an access strategy for S. Every other quorum in §
intersects in at least one element with this quorum). Each time a quorum is
accessed, at least one node in @ is accessed as well, yielding a lower bound of
Lz(v;) > 1/q for some v; € Q.

Furthermore, as) is minimal, at least ¢ nodes need to be accessed, yielding
W(S) > q. Thus, Lz(v;) > q/n for some v; € @, as each time ¢ nodes are
accessed, the load of the most accessed node is at least ¢/n.

Combining both ideas leads to Lz(S) > max(1/q,q/n) = Lz(S) > 1/y/n.
Thus, L(S) > 1/4/n, as Z can be any access strategy. O

Remarks:

e Can we achieve this load?

19.2 Grid Quorum Systems

Definition 19.7 (Basic Grid quorum system). Assume /n € N, and arrange
the n nodes in a square matriz with side length of \/n, i.e., in a grid. The basic
Grid quorum system consists of \/n quorums, with each containing the full row
i and the full column i, for 1 <1i < \/n.

Figure 19.8: The basic version of the Grid quorum system, where each quorum
Q; with 1 < 4 < y/n uses row i and column 4. The size of each quorum is
2y/n — 1 and two quorums overlap in exactly two nodes. Thus, when the access
strategy Z is uniform (i.e., the probability of each quorum is 1/4/n), the work
is 2¢/n — 1, and the load of every node is in ©(1/y/n).

Remarks:

e Consider the right picture in Figure 19.8: The two quorums intersect
in two nodes. If both quorums were to be accessed at the same time,
it is not guaranteed that at least one quorum will lock all of its nodes,
as they could enter a deadlock!

e In the case of just two quorums, one could solve this by letting the
quorums just intersect in one node, see Figure 19.9. However, already
with three quorums the same situation could occur again, progress is
not guaranteed!

214 CHAPTER 19. QUORUM SYSTEMS

Figure 19.9: There are other ways to choose quorums in the grid s.t. pairwise
different quorums only intersect in one node. The size of each quorum is between
vn and 24/n — 1, ie., the work is in ©(y/n). When the access strategy Z is
uniform, the load of every node is in ©(1/4/n).

Algorithm 19.10 Sequential Locking Strategy for a Quorum @

1: Attempt to lock the nodes one by one, ordered by their identifiers
2: Should a node be already locked, release all locks and start over

e However, by deviating from the “access all at once” strategy, we can
guarantee progress if the nodes are totally ordered!

Theorem 19.11. If each quorum is accessed by Algorithm 19.10, at least one
quorum will obtain a lock for all of its nodes.

Proof. We prove the theorem by contradiction. Assume no quorum can make
progress, i.e., for every quorum we have: At least one of its nodes is locked by
another quorum. Let v be the node with the highest identifier that is locked by
some quorum). Observe that @) already locked all of its nodes with a smaller
identifier than v, otherwise Q would have restarted. As all nodes with a higher
identifier than v are not locked, @ either has locked all of its nodes or can
make progress — a contradiction. As the set of nodes is finite, one quorum will
eventually be able to lock all of its nodes. O

Remarks:

e But now we are back to sequential accesses in a distributed system?
Let’s do it concurrently with the same idea, i.e., resolving conflicts by
the ordering of the nodes. Then, a quorum that locked the highest
identifier so far can always make progress!

Theorem 19.13. If the nodes and quorums use Algorithm 19.12, at least one
quorum will obtain a lock for all of its nodes.

19.3. FAULT TOLERANCE 215

Algorithm 19.12 Concurrent Locking Strategy for a Quorum @

Invariant: Let vg € Q be the highest identifier of a node locked by @ s.t. all
nodes v; € Q with v; < vg are locked by @ as well. Should @ not have any
lock, then vg is set to 0.

1: repeat

2 Attempt to lock all nodes of the quorum @

3 for each node v € @ that was not able to be locked by @ do
4 exchange vg and vg with the quorum @’ that locked v

5 if vQ > v’ then

6: Q' releases lock on v and @ acquires lock on v

7 end if

8 end for

9: until all nodes of the quorum @ are locked

Proof. The proof is analogous to the proof of Theorem 19.11: Assume for con-
tradiction that no quorum can make progress. However, at least the quorum
with the highest vg can always make progress — a contradiction! As the set of
nodes is finite, at least one quorum will eventually be able to acquire a lock on
all of its nodes. O

Remarks:

e What if a quorum locks all of its nodes and then crashes? Is the
quorum system dead now? This issue can be prevented by, e.g., using
leases instead of locks: leases have a timeout, i.e., a lock is released
eventually.

19.3 Fault Tolerance

Definition 19.14 (resilience). If any f nodes from a quorum system S can fail
s.t. there is still a quorum @ € S without failed nodes, then S is f-resilient.
The largest such f is the resilience R(S).

Theorem 19.15. Let S be a Grid quorum system where each of the n quorums
consists of a full row and a full column. S has a resilience of \/n — 1.

Proof. If all \/n nodes on the diagonal of the grid fail, then every quorum will
have at least one failed node. Should less than y/n nodes fail, then there is a
row and a column without failed nodes. O

Definition 19.16 (failure probability). Assume that every node works with a
fized probability p (in the following we assume concrete values, e.g. p > 1/2).
The failure probability F,(S) of a quorum system S is the probability that at
least one node of every quorum fails.

Remarks:

e The asymptotic failure probability is F,(S) for n — oo.

216 CHAPTER 19. QUORUM SYSTEMS

Facts 19.17. A version of a Chernoff bound states the following:

Let x1,...,x, be independent Bernoulli-distributed random wvariables with
Priz; = 1] = p; and Prlz; = 0] = 1 — p; = q;, then for X := >0 | x; and
p=E[X] =" p; the following holds:

forall0<d<1: PriX <(1-96)u] < o2/

Theorem 19.18. The asymptotic failure probability of the Majority quorum
system is 0.

Proof. In a Majority quorum system each quorum contains exactly |5 + 1
nodes and each subset of nodes with cardinality | %] + 1 forms a quorum. The
Majority quorum system fails, if only || nodes work. Otherwise there is at
least one quorum available. In order to calculate the failure probability we
define the following random variables:
B if node ¢ works, happens with probability p

i 0, if node i fails, happens with probability ¢ =1 —p

and X := Y"1 | x;, with p = np,

whereas X corresponds to the number of working nodes. To estimate the
probability that the number of working nodes is less than [5 | +1 we will make
use of the Chernoff inequality from above. By setting 6 = 1 — ﬁ we obtain
Fp(8) = PrlX < [2]] < Pr{X < %] = PrX < (1 - d)ul.

With§=1- % we have 0 < § < 1/2 due to 1/2 < p < 1. Thus, we can use

the Chernoff bound and get Fp(S) < e #9°/2 ¢ ¢=2(n) 0

Theorem 19.19. The asymptotic failure probability of the Grid quorum system
15 1.

Proof. Consider the n = d - d nodes to be arranged in a d x d grid. A quorum
always contains one full row. In this estimation we will make use of the Bernoulli
inequality which states that for alln e Nyjz > —1: (1 +)" > 1 + nx.

The system fails, if in each row at least one node fails (which happens with
probability 1 — p? for a particular row, as all nodes work with probability p?).
Therefore we can bound the failure probability from below with:

F,(8) > Prlat least one failure per row] = (1 — p?)4 > 1 — dp? fvd 1. O

Remarks:

e Now we have a quorum system with optimal load (the Grid) and one
with fault-tolerance (Majority), but what if we want both?

Definition 19.20 (B-Grid quorum system). Consider n = dhr nodes, arranged
in a rectangular grid with h - r rows and d columns. Each group of r rows is a
band, and r elements in a column restricted to a band are called a mini-column.
A quorum consists of one mini-column in every band and one element from
each mini-column of one band; thus every quorum has d+ hr — 1 elements. The
B-Grid quorum system consists of all such quorums.

Theorem 19.22. The asymptotic failure probability of the B-Grid quorum sys-
tem s 0.

19.3. FAULT TOLERANCE 217

mini-column

}7;32‘1/

Figure 19.21: A B-Grid quorum system with n = 100 nodes, d = 10 columns,
h-r =10 rows, h = 5 bands, and r = 2. The depicted quorum has a d+hr—1 =
104+ 5-2—1 = 19 nodes. If the access strategy Z is chosen uniformly, then
we have a work of d + hr — 1 and a load of %. By setting d = /n and
r = logn, we obtain a work of © (y/n) and a load of © (1//n).

Proof. Suppose n = dhr and the elements are arranged in a grid with d columns
and h - r rows. The B-Grid quorum system does fail if in each band a complete
mini-column fails, because then it is not possible to choose a band where in each
mini-column an element is still working. It also fails if in a band an element in
each mini-column fails. Those events may not be independent of each other, but
with the help of the union bound, we can upper bound the failure probability
with the following equation:

F,(8) < Prlin every band a complete mini-column fails]

+ Prlin a band at least one element of every m.-col. fails]

< (d(1=p)")" + A1 —p")?

We use d = v/n,7 = Ind, and 0 < (1—p) < 1/3. Using n'"% = 2'*" we have
d(1—p)" <d-d™'/3 =~ d=9' and hence for large enough d the whole first term
is bounded from above by d=%" < 1/d? = 1/n.

Regarding the second term, we have p > 2/3, and h = d/Ind < d. Hence
we can bound the term from above by d(1 — d™2?/%)¢ ~ d(1 — d=°*)%. Using
(14+t/n)™ < e, we get (again, for large enough d) an upper bound of d(1 —
d=04)d = (1 —d*6/d)d < d-e=4"° = q(-4"*/md+1 « 4=2 = 1 /. In total, we
have F,,(S) € O(1/n). O

Singleton Majority Grid B-Grid*

Work 1 >n/2 O (v/n) O (v/n)
Load 1 >1/2 o(1/ym) ©(1/yn)
Resilience 0 <n/2 © (v/n) © (v/n)
F. Prob.** 1—p —0 —1 —0

Table 19.23: Overview of the different quorum systems regarding resilience,
work, load, and their asymptotic failure probability. The best entries in each
row are set in bold. * Setting d = \/n and r = logn ** Assuming prob. ¢ = (1 — p)
is constant but significantly less than 1/2

218 CHAPTER 19. QUORUM SYSTEMS

19.4 Byzantine Quorum Systems

While failed nodes are bad, they are still easy to deal with: just access another
quorum where all nodes can respond! Byzantine nodes make life more difficult
however, as they can pretend to be a regular node, i.e., one needs more sophis-
ticated methods to deal with them. We need to ensure that the intersection
of two quorums always contains a non-byzantine (correct) node and further-
more, the byzantine nodes should not be allowed to infiltrate every quorum. In
this section we study three counter-measures of increasing strength, and their
implications on the load of quorum systems.

Definition 19.24 (f-disseminating). A quorum system S is f-disseminating
if (1) the intersection of two different quorums always contains f + 1 nodes,
and (2) for any set of f byzantine nodes, there is at least one quorum without
byzantine nodes.

Remarks:

e Thanks to (2), even with f byzantine nodes, the byzantine nodes
cannot stop all quorums by just pretending to have crashed. At least
one quorum will survive. We will also keep this assumption for the
upcoming more advanced byzantine quorum systems.

e Byzantine nodes can also do something worse than crashing - they
could falsify data! Nonetheless, due to (1), there is at least one
non-byzantine node in every quorum intersection. If the data is self-
verifying by, e.g., authentication, then this one node is enough.

e If the data is not self-verifying, then we need another mechanism.

Definition 19.25 (f-masking). A quorum system S is f-masking if (1) the
intersection of two different quorums always contains 2f 4+ 1 nodes, and (2) for
any set of f byzantine nodes, there is at least one quorum without byzantine
nodes.

Remarks:

e Note that except for the second condition, an f-masking quorum sys-
tem is the same as a 2f-disseminating system. The idea is that the
non-byzantine nodes (at least f + 1 can outvote the byzantine ones
(at most f), but only if all non-byzantine nodes are up-to-date!

e This raises an issue not covered yet in this chapter. If we access some
quorum and update its values, this change still has to be disseminated
to the other nodes in the byzantine quorum system. Opaque quorum
systems deal with this issue, which are discussed at the end of this
section.

e f-disseminating quorum systems need more than 3f nodes and f-
masking quorum systems need more than 4f nodes. Essentially, the
quorums may not contain too many nodes, and the different intersec-
tion properties lead to the different bounds.

19.4. BYZANTINE QUORUM SYSTEMS 219

Theorem 19.26. Let S be a f-disseminating quorum system. Then L(S) >

V(f+1)/n holds.

Theorem 19.27. Let S be a f-masking quorum system. Then L(S) > /(2f +1)/n
holds.

Proofs of Theorems 19.26 and 19.27. The proofs follow the proof of Theorem
19.6, by observing that now not just one element is accessed from a minimal
quorum, but f + 1 or 2f + 1, respectively. O

Definition 19.28 (f-masking Grid quorum system). A f-masking Grid quorum
system is constructed as the grid quorum system, but each quorum contains one
full column and f + 1 rows of nodes, with 2f +1 < \/n.

Figure 19.29: An example how to choose a quorum in the f-masking Grid with
f=2,ie,2+1=23rows. The load is in ©(f/+/n) when the access strategy is
chosen to be uniform. Two quorums overlap by their columns intersecting each
other’s rows, i.e., they overlap in at least 2f 4+ 2 nodes.

Remarks:

e The f-masking Grid nearly hits the lower bound for the load of f-
masking quorum systems, but not quite. A small change and we will
be optimal asymptotically.

Definition 19.30 (M-Grid quorum system). The M-Grid quorum system is
constructed as the grid quorum as well, but each quorum contains v/f + 1 rows

~ V=1
and \/f +1 columns of nodes, with f < ¥5—.

Figure 19.31: An example how to choose a quorum in the M-Grid with f = 3,
i.e., 2 rows and 2 columns. The load is in ©(4/f/n) when the access strategy
is chosen to be uniform. Two quorums overlap with each row intersecting each

other’s column, i.e., 24/f + T° = 2f 4+ 2 nodes.

220 CHAPTER 19. QUORUM SYSTEMS

Corollary 19.32. The f-masking Grid quorum system and the M -Grid quorum
system are f-masking quorum systems.

Remarks:

e We achieved nearly the same load as without byzantine nodes! How-
ever, as mentioned earlier, what happens if we access a quorum that is
not up-to-date, except for the intersection with an up-to-date quorum?
Surely we can fix that as well without too much loss?

e This property will be handled in the last part of this chapter by opaque
quorum systems. It will ensure that the number of correct up-to-date
nodes accessed will be larger than the number of out-of-date nodes
combined with the byzantine nodes in the quorum (cf. (19.33.1)).

Definition 19.33 (f-opaque quorum system). A quorum system S is f-opaque
if the following two properties hold for any set of f byzantine nodes F' and any
two different quorums Q1,Q2:

(@1 Q) \ F| > [(QNF)U(Q2\ Q1) (19.33.1)
(FNQ)=10 for some Q€S (19.33.2)

Figure 19.34: Intersection properties of an opaque quorum system. Equation
(19.33.1) ensures that the set of non-byzantine nodes in the intersection of
@1, Q2 is larger than the set of out of date nodes, even if the byzantine nodes
“team up” with those nodes. Thus, the correct up to date value can always be
recognized by a majority voting.

Theorem 19.35. Let S be a f-opaque quorum system. Then, n > 5f.

Proof. Due to (19.33.2), there exists a quorum)7 with size at most n— f. With
(19.33.1), |Q1] > f holds. Let Fy be a set of f (byzantine) nodes F} C ()1, and
with (19.33.2), there exists a Q2 C V' \ F1. Thus, |Q1 N Q2| < n —2f. With
(19.33.1), |@Q1 N Q2] > f holds. Thus, one could choose f (byzantine) nodes
Fy with F» C (Q1 N Q2). Using (19.33.1) one can bound n — 3f from below:
n—=3f>[(Q:NQ1) = [F2| 2 [(Q2N Q1) U (Q1 N F2)| = [Fi| + [=2f. O

BIBLIOGRAPHY 221

Remarks:

e One can extend the Majority quorum system to be f-opaque by setting
the size of each quorum to contain [(2n + 2f)/3] nodes. Then its load
is 1/n[(2n+2f)/3] =~ 2/3+2f/3n > 2/3.

e Can we do much better? Sadly, no...
Theorem 19.36. Let S be a f-opaque quorum system. Then L(S) > 1/2 holds.

Proof. Equation (19.33.1) implies that for @1, Q2 € S, the intersection of both
Q1,Q2 is at least half their size, i.e., |(Q1 N Q2)| > |Q1]/2. Let S consist of
quorums @1, Qs,... . The load induced by an access strategy Z on @ is:

Z Z Lz(Q:) = Z Z Lz(Qi) = Z(|Q1|/2) Lz(Qi) =1@ul/2.
Qi

vEQT vEQ; Qi ve(Q1NQ;)

Using the pigeonhole principle, there must be at least one node in ()1 with load
of at least 1/2. O

Chapter Notes

Historically, a quorum is the minimum number of members of a deliberative
body necessary to conduct the business of that group. Their use has inspired the
introduction of quorum systems in computer science since the late 1970s/early
1980s. Early work focused on Majority quorum systems [Lam78, Gif79, Tho79],
with the notion of minimality introduced shortly after [GB85]. The Grid quo-
rum system was first considered in [Mae85], with the B-Grid being introduced
in [NW94]. The latter article and [PW95] also initiated the study of load and
resilience.

The f-masking Grid quorum system and opaque quorum systems are from
[MR98], and the M-Grid quorum system was introduced in [MRW97]. Both
papers also mark the start of the formal study of Byzantine quorum systems.
The f-masking and the M-Grid have asymptotic failure probabilities of 1, more
complex systems with better values can be found in these papers as well.

Quorum systems have also been extended to cope with nodes dynamically
leaving and joining, see, e.g., the dynamic paths quorum system in [NWO05].

For a further overview on quorum systems, we refer to the book by Vukoli¢
[Vuk12] and the article by Merideth and Reiter [MR10].

This chapter was written in collaboration with Klaus-Tycho Forster.

Bibliography

[GB85] Hector Garcia-Molina and Daniel Barbard. How to assign votes in a
distributed system. J. ACM, 32(4):841-860, 1985.

[Gif79] David K. Gifford. Weighted voting for replicated data. In Michael D.
Schroeder and Anita K. Jones, editors, Proceedings of the Seventh
Symposium on Operating System Principles, SOSP 1979, Asilomar
Conference Grounds, Pacific Grove, California, USA, 10-12, Decem-
ber 1979, pages 150-162. ACM, 1979.

222

[Lam78|

[Mae85]

[MRYS]

[MR10]

[MRW97]

[NW4]

[NWO05]

[PW95]

[Tho79]

[Vuk12]

CHAPTER 19. QUORUM SYSTEMS

Leslie Lamport. The implementation of reliable distributed multipro-
cess systems. Computer Networks, 2:95-114, 1978.

Mamoru Maekawa. A square root N algorithm for mutual exclusion
in decentralized systems. ACM Trans. Comput. Syst., 3(2):145-159,
1985.

Dahlia Malkhi and Michael K. Reiter. Byzantine quorum systems.
Distributed Computing, 11(4):203-213, 1998.

Michael G. Merideth and Michael K. Reiter. Selected results from the
latest decade of quorum systems research. In Bernadette Charron-
Bost, Fernando Pedone, and André Schiper, editors, Replication:
Theory and Practice, volume 5959 of Lecture Notes in Computer Sci-
ence, pages 185-206. Springer, 2010.

Dahlia Malkhi, Michael K. Reiter, and Avishai Wool. The load and
availability of byzantine quorum systems. In James E. Burns and
Hagit Attiya, editors, Proceedings of the Sixteenth Annual ACM Sym-
posium on Principles of Distributed Computing, Santa Barbara, Cal-
ifornia, USA, August 21-24, 1997, pages 249-257. ACM, 1997.

Moni Naor and Avishai Wool. The load, capacity and availability
of quorum systems. In 35th Annual Symposium on Foundations of
Computer Science, Santa Fe, New Mezxico, USA, 20-22 November
1994, pages 214-225. IEEE Computer Society, 1994.

Moni Naor and Udi Wieder. Scalable and dynamic quorum systems.
Distributed Computing, 17(4):311-322, 2005.

David Peleg and Avishai Wool. The availability of quorum systems.
Inf. Comput., 123(2):210-223, 1995.

Robert H. Thomas. A majority consensus approach to concurrency
control for multiple copy databases. ACM Trans. Database Syst.,
4(2):180-209, 1979.

Marko Vukolic. Quorum Systems: With Applications to Storage and
Consensus. Synthesis Lectures on Distributed Computing Theory.
Morgan & Claypool Publishers, 2012.

Chapter 20

Eventual Consistency &
Bitcoin

How would you implement an ATM? Does the following implementation work
satisfactorily?

Algorithm 20.1 Naive ATM

: ATM makes withdrawal request to bank

ATM waits for response from bank

if balance of customer sufficient then
ATM dispenses cash

else
ATM displays error

end if

Remarks:

e A connection problem between the bank and the ATM may block
Algorithm 20.1 in Line 2.

o A network partition is a failure where a network splits into at least
two parts that cannot communicate with each other. Intuitively any
non-trivial distributed system cannot proceed during a partition and
maintain consistency. In the following we introduce the tradeoff be-
tween consistency, availability and partition tolerance.

e There are numerous causes for partitions to occur, e.g., physical dis-
connections, software errors, or incompatible protocol versions. From
the point of view of a node in the system, a partition is similar to a
period of sustained message loss.

20.1 Consistency, Availability and Partitions

Definition 20.2 (Consistency). All nodes in the system agree on the current
state of the system.

223

224 CHAPTER 20. EVENTUAL CONSISTENCY & BITCOIN

Definition 20.3 (Availability). The system is operational and instantly pro-
cessing imcoming requests.

Definition 20.4 (Partition Tolerance). Partition tolerance is the ability of a
distributed system to continue operating correctly even in the presence of a net-
work partition.

Theorem 20.5 (CAP Theorem). It is impossible for a distributed system to
simultaneously provide Consistency, Availability and Partition Tolerance. A
distributed system can satisfy any two of these but not all three.

Proof. Assume two nodes, sharing some state. The nodes are in different par-
titions, i.e., they cannot communicate. Assume a request wants to update the
state and contacts a node. The node may either: 1) update its local state,
resulting in inconsistent states, or 2) not update its local state, i.e., the system
is no longer available for updates. O

Algorithm 20.6 Partition tolerant and available ATM
if bank reachable then
Synchronize local view of balances between ATM and bank
if balance of customer insufficient then
ATM displays error and aborts user interaction
end if
end if
: ATM dispenses cash
: ATM logs withdrawal for synchronization

P NPT e

Remarks:

e Algorithm 20.6 is partition tolerant and available since it continues to
process requests even when the bank is not reachable.

e The ATM’s local view of the balances may diverge from the balances
as seen by the bank, therefore consistency is no longer guaranteed.

e The algorithm will synchronize any changes it made to the local bal-
ances back to the bank once connectivity is re-established. This is
known as eventual consistency.

Definition 20.7 (Eventual Consistency). If no new updates to the shared state
are issued, then eventually the system is in a quiescent state, i.e., mo more
messages need to be exchanged between nodes, and the shared state is consistent.

Remarks:
e Eventual consistency is a form of weak consistency.

e Eventual consistency guarantees that the state is eventually agreed
upon, but the nodes may disagree temporarily.

e During a partition, different updates may semantically conflict with
each other. A conflict resolution mechanism is required to resolve the
conflicts and allow the nodes to eventually agree on a common state.

20.2. BITCOIN 225

e One example of eventual consistency is the Bitcoin cryptocurrency
system.

20.2 Bitcoin

Definition 20.8 (Bitcoin Network). The Bitcoin network is a randomly con-
nected overlay network of a few thousand nodes, controlled by a variety of own-
ers. All nodes perform the same operations, i.e., it is a homogenous network
and without central control.

Remarks:

e The lack of structure is intentional: it ensures that an attacker cannot
strategically position itself in the network and manipulate the infor-
mation exchange. Information is exchanged via a simple broadcasting
protocol.

Definition 20.9 (Address). Users may generate any number of private keys,
from which a public key is then derived. An address is derived from a public key
and may be used to identify the recipient of funds in Bitcoin. The private/public
key pair is used to uniquely identify the owner of funds of an address.

Remarks:

e The terms public key and address are often used interchangeably, since
both are public information. The advantage of using an address is that
its representation is shorter than the public key.

e It is hard to link addresses to the user that controls them, hence
Bitcoin is often referred to as being pseudonymous.

e Not every user needs to run a fully validating node, and end-users will
likely use a lightweight client that only temporarily connects to the
network.

e The Bitcoin network collaboratively tracks the balance in bitcoins of
each address.

e The address is composed of a network identifier byte, the hash of the
public key and a checksum. It is commonly stored in base 58 encoding,
a custom encoding similar to base 64 with some ambiguous symbols
removed, e.g., lowercase letter “I” since it is similar to the number
“17’ .

e The hashing algorithm produces addresses of size 20 bytes. This
means that there are 260 distinct addresses. It might be tempting
to brute force a target address, however at one billion trials per sec-
ond one still requires approximately 2*° years in expectation to find
a matching private/public key pair. Due to the birthday paradox the
odds improve if instead of brute forcing a single address we attempt to
brute force any address. While the odds of a successful trial increase
with the number of addresses, lookups become more costly.

226 CHAPTER 20. EVENTUAL CONSISTENCY & BITCOIN

Definition 20.10 (Output). An output is a tuple consisting of an amount
of bitcoins and a spending condition. Most commonly the spending condition
requires a valid signature associated with the private key of an address.

Remarks:

e Spending conditions are scripts that offer a variety of options. Apart
from a single signature, they may include conditions that require the
result of a simple computation, or the solution to a cryptographic
puzzle.

e QOutputs exist in two states: unspent and spent. Any output can be
spent at most once. The address balance is the sum of bitcoin amounts
in unspent outputs that are associated with the address.

e The set of unspent transaction outputs (UTXO) and some additional
global parameters is the shared state of Bitcoin. Every node in the
Bitcoin network holds a complete replica of that state. Local replicas
may temporarily diverge, but consistency is eventually re-established.

Definition 20.11 (Input). An input is a tuple consisting of a reference to a
previously created output and arguments (signature) to the spending condition,
proving that the transaction creator has the permission to spend the referenced
output.

Definition 20.12 (Transaction). A transaction is a datastructure that describes
the transfer of bitcoins from spenders to recipients. The transaction consists of
a number of inputs and new outputs. The inputs result in the referenced outputs
spent (removed from the UTXO0), and the new outputs being added to the UTXO.

Remarks:

e Inputs reference the output that is being spent by a (h, i)-tuple, where
h is the hash of the transaction that created the output, and 7 specifies
the index of the output in that transaction.

e Transactions are broadcast in the Bitcoin network and processed by
every node that receives them.

Remarks:

e Note that the effect of a transaction on the state is deterministic. In
other words if all nodes receive the same set of transactions in the
same order (Definition 15.8), then the state across nodes is consistent.

e The outputs of a transaction may assign less than the sum of inputs, in
which case the difference is called the transaction’s fee. The fee is used
to incentivize other participants in the system (see Definition 20.19)

e Notice that so far we only described a local acceptance policy. Nothing
prevents nodes to locally accept different transactions that spend the
same output.

20.2. BITCOIN 227

Algorithm 20.13 Node Receives Transaction

1: Receive transaction ¢

2: for each input (h,4) in ¢t do

3: if output (h,4) is not in local UTXO or signature invalid then
4 Drop t and stop

5. end if

6: end for

7: if sum of values of inputs < sum of values of new outputs then
8 Drop t and stop

9: end if

10: for each input (h,i) in ¢ do

11: Remove (h,4) from local UTXO

12: end for

13: Append t to local history

14: Forward ¢ to neighbors in the Bitcoin network

e Transactions are in one of two states: unconfirmed or confirmed. In-
coming transactions from the broadcast are unconfirmed and added
to a pool of transactions called the memory pool.

Definition 20.14 (Doublespend). A doublespend is a situation in which multi-
ple transactions attempt to spend the same output. Only one transaction can be
valid since outputs can only be spent once. When nodes accept different trans-
actions in a doublespend, the shared state becomes inconsistent.

Remarks:

e Doublespends may occur naturally, e.g., if outputs are co-owned by
multiple users. However, often doublespends are intentional — we call
these doublespend-attacks: In a transaction, an attacker pretends to
transfer an output to a victim, only to doublespend the same output
in another transaction back to itself.

e Doulespends can result in an inconsistent state since the validity of
transactions depends on the order in which they arrive. If two con-
flicting transactions are seen by a node, the node considers the first to
be valid, see Algorithm 20.13. The second transaction is invalid since
it tries to spend an output that is already spent. The order in which
transactions are seen, may not be the same for all nodes, hence the
inconsistent state.

e If doublespends are not resolved, the shared state diverges. Therefore
a conflict resolution mechanism is needed to decide which of the con-
flicting transactions is to be confirmed (accepted by everybody), to
achieve eventual consistency.

Definition 20.15 (Proof-of-Work). Proof-of-Work (PoW) is a mechanism that
allows a party to prove to another party that a certain amount of computa-
tional resources has been utilized for a period of time. A function Fy(c,z) —
{true, false}, where difficulty d is a positive number, while challenge ¢ and

228 CHAPTER 20. EVENTUAL CONSISTENCY & BITCOIN

nonce x are usually bit-strings, is called a Proof-of-Work function if it has fol-
lowing properties:

1. Fy(c,z) is fast to compute if d, ¢, and x are given.

2. For fixed parameters d and c, finding x such that Fy(c,x) = true is com-
putationally difficult but feasible. The difficulty d is used to adjust the time
to find such an x.

Definition 20.16 (Bitcoin PoW function). The Bitcoin PoW function is given

by
224

Falc,x) — SHA256(SHA256(c|x)) < 27

Remarks:

e This function concatenates the challenge ¢ and nonce x, and hashes
them twice using SHA256. The output of SHA256 is a cryptographic
hash with a numeric value in {0,...,22%6 — 1} which is compared to

2224
a target value =,

which gets smaller with increasing difficulty.

e SHA256 is a cryptographic hash function with pseudorandom output.
No better algorithm is known to find a nonce = such that the function
Fa(c,x) returns true than simply iterating over possible inputs. This
is by design to make it difficult to find such an input, but simple to

verify the validity once it has been found.

o If the PoW functions of all nodes had the same challenge, the fastest
node would always win. However, as we will see in Definition 20.19,
each node attempts to find a valid nonce for a node-specific challenge.

Definition 20.17 (Block). A block is a datastructure used to communicate
incremental changes to the local state of a node. A block consists of a list of
transactions, a reference to a previous block and a monce. A block lists some
transactions the block creator (“miner”) has accepted to its memory-pool since
the previous block. A node finds and broadcasts a block when it finds a valid
nonce for its PoW function.

Algorithm 20.18 Node Finds Block

1: Nonce x = 0, challenge ¢, difficulty d, previous block b;_1
2: repeat
3 zrz=x+1
4: until F4(c, x) = true
5: Broadcast block b, = (memory-pool,by_1,x)
Remarks:

e With their reference to a previous block, the blocks build a tree, rooted
in the so called genesis block.

e The primary goal for using the PoW mechanism is to adjust the rate
at which blocks are found in the network, giving the network time
to synchronize on the latest block. Bitcoin sets the difficulty so that
globally a block is created about every 10 minutes in expectation.

20.2. BITCOIN 229

e Finding a block allows the finder to impose the transactions in its local
memory pool to all other nodes. Upon receiving a block, all nodes roll
back any local changes since the previous block and apply the new
block’s transactions.

e Transactions contained in a block are said to be confirmed by that
block.

Definition 20.19 (Reward Transaction). The first transaction in a block is
called the reward transaction. The block’s miner is rewarded for confirming
transactions by allowing it to mint new coins. The reward transaction has a
dummy input, and the sum of outputs is determined by a fixed subsidy plus the
sum of the fees of transactions confirmed in the block.

Remarks:

e A reward transaction is the sole exception to the rule that the sum of
inputs must be at least the sum of outputs.

e The number of bitcoins that are minted by the reward transaction and
assigned to the miner is determined by a subsidy schedule that is part
of the protocol. Initially the subsidy was 50 bitcoins for every block,
and it is being halved every 210,000 blocks, or 4 years in expectation.
Due to the halving of the block reward, the total amount of bitcoins
in circulation never exceeds 21 million bitcoins.

e It is expected that the cost of performing the PoW to find a block, in
terms of energy and infrastructure, is close to the value of the reward
the miner receives from the reward transaction in the block.

Definition 20.20 (Blockchain). The longest path from the genesis block, i.e.,
root of the tree, to a leaf is called the blockchain. The blockchain acts as a
consistent transaction history on which all nodes eventually agree.

Remarks:
e The path length from the genesis block to block b is the height hy.

e Only the longest path from the genesis block to a leaf is a valid trans-
action history, since branches may contradict each other because of
doublespends.

e Since only transactions in the longest path are agreed upon, miners
have an incentive to append their blocks to the longest chain, thus
agreeing on the current state.

e The mining incentives quickly increased the difficulty of the PoW
mechanism: initially miners used CPUs to mine blocks, but CPUs
were quickly replaced by GPUs, FPGAs and even application specific
integrated circuits (AS-ICs) as bitcoins appreciated. This results in
an equilibrium today in which only the most cost efficient miners, in
terms of hardware supply and electricity, make a profit in expectation.

230

CHAPTER 20. EVENTUAL CONSISTENCY & BITCOIN

If multiple blocks are mined more or less concurrently, the system is
said to have forked. Forks happen naturally because mining is a dis-
tributed random process and two new blocks may be found at roughly
the same time.

Algorithm 20.21 Node Receives Block

© P NPTk W

: Receive block b
: For this node the current head is block b,,4, at height A.,qz
: Connect block b in the tree as child of its parent p at height h, = h, +1
if hy > hpaes then
hmaw = hb
brmaz =0
Compute UTXO for the path leading to b,,q,
Cleanup memory pool
end if

Remarks:

Algorithm 20.21 describes how a node updates its local state upon
receiving a block. Notice that, like Algorithm 20.13, this describes
the local policy and may also result in node states diverging, i.e., by
accepting different blocks at the same height as current head.

Unlike extending the current path, switching paths may result in con-
firmed transactions no longer being confirmed, because the blocks in
the new path do not include them. Switching paths is referred to as
a reory.

Cleaning up the memory pool involves 1) removing transactions that
were confirmed in a block in the current path, 2) removing transactions
that conflict with confirmed transactions, and 3) adding transactions
that were confirmed in the previous path, but are no longer confirmed
in the current path.

In order to avoid having to recompute the entire UTXO at every
new block being added to the blockchain, all current implementations
use datastructures that store undo information about the operations
applied by a block. This allows efficient switching of paths and updates
of the head by moving along the path.

Theorem 20.22. Forks are eventually resolved and all nodes eventually agree
on which is the longest blockchain. The system therefore guarantees eventual
consistency.

Proof. In order for the fork to continue to exist, pairs of blocks need to be
found in close succession, extending distinct branches, otherwise the nodes on
the shorter branch would switch to the longer one. The probability of branches
being extended almost simultaneously decreases exponentially with the length
of the fork, hence there will eventually be a time when only one branch is being
extended, becoming the longest branch. O

20.3. SMART CONTRACTS 231

20.3 Smart Contracts

Definition 20.23 (Smart Contract). A smart contract is an agreement between
two or more parties, encoded in such a way that the correct execution is guar-
anteed by the blockchain.

Remarks:

e Contracts allow business logic to be encoded in Bitcoin transactions
which mutually guarantee that an agreed upon action is performed.
The blockchain acts as conflict mediator, should a party fail to honor
an agreement.

e The use of scripts as spending conditions for outputs enables smart
contracts. Scripts, together with some additional features such as
timelocks, allow encoding complex conditions, specifying who may
spend the funds associated with an output and when.

Definition 20.24 (Timelock). Bitcoin provides a mechanism to make trans-
actions invalid until some time in the future: timelocks. A transaction may
specify a locktime: the earliest time, expressed in either a Uniz timestamp or
a blockchain height, at which it may be included in a block and therefore be
confirmed.

Remarks:

e Transactions with a timelock are not released into the network until
the timelock expires. It is the responsibility of the node receiving
the transaction to store it locally until the timelock expires and then
release it into the network.

e Transactions with future timelocks are invalid. Blocks may not in-
clude transactions with timelocks that have not yet expired, i.e., they
are mined before their expiry timestamp or in a lower block than spec-
ified. If a block includes an unexpired transaction it is invalid. Upon
receiving invalid transactions or blocks, nodes discard them immedi-
ately and do not forward them to their peers.

e Timelocks can be used to replace or supersede transactions: a time-
locked transaction t; can be replaced by another transaction ¢, spend-
ing some of the same outputs, if the replacing transaction t; has an
earlier timelock and can be broadcast in the network before the re-
placed transaction t; becomes valid.

Definition 20.25 (Singlesig and Multisig Outputs). When an output can be
claimed by providing a single signature it is called a singlesig output. In contrast
the script of multisig outputs specifies a set of m public keys and requires k-of-
m (with k < m) valid signatures from distinct matching public keys from that
set in order to be valid.

232 CHAPTER 20. EVENTUAL CONSISTENCY & BITCOIN

Remarks:

e Most smart contracts begin with the creation of a 2-of-2 multisig out-
put, requiring a signature from both parties. Once the transaction
creating the multisig output is confirmed in the blockchain, both par-
ties are guaranteed that the funds of that output cannot be spent
unilaterally.

Algorithm 20.26 Parties A and B create a 2-of-2 multisig output o

: B sends a list Ig of inputs with ¢ coins to A

: A selects its own inputs I4 with c4 coins

: A creates transaction ts{[I4,Ig],[0 = ca +c5 — (A, B)]}

. A creates timelocked transaction t.{[0],[ca — A,cp — B]} and signs it
: A sends ts and t, to B

: B signs both ts and ¢, and sends them to A

A signs ts and broadcasts it to the Bitcoin network

O Ot W

Remarks:

e t,is called a setup transaction and is used to lock in funds into a shared
account. If ¢, is signed and broadcast immediately, one of the parties
could not collaborate to spend the multisig output, and the funds
become unspendable. To avoid a situation where the funds cannot
be spent, the protocol also creates a timelocked refund transaction
t, which guarantees that, should the funds not be spent before the
timelock expires, the funds are returned to the respective party. At no
point in time one of the parties holds a fully signed setup transaction
without the other party holding a fully signed refund transaction,
guaranteeing that funds are eventually returned.

e Both transactions require the signature of both parties. In the case of
the setup transaction because it has two inputs from A and B respec-
tively which require individual signatures. In the case of the refund
transaction the single input spending the multisig output requires both
signatures being a 2-of-2 multisig output.

Algorithm 20.27 Simple Micropayment Channel from S to R with capacity ¢
cg=c,cg=0
S and R use Algorithm 20.26 to set up output o with value ¢ from S
Create settlement transaction ¢{[o], [cs = S,cr — R]|}
while channel open and ci < ¢ do
In exchange for good with value &
CR=Cr+9
Cg = Cs — 1)
Update ¢ with outputs [cg — R,cs — 5]
S signs and sends ty to R
end while
: I signs last t; and broadcasts it

— =
= O

20.4. WEAK CONSISTENCY 233

Remarks:

e Algorithm 20.27 implements a Simple Micropayment Channel, a smart
contract that is used for rapidly adjusting micropayments from a
spender to a recipient. Only two transactions are ever broadcast and
inserted into the blockchain: the setup transaction ¢ and the last set-
tlement transaction t¢. There may have been any number of updates
to the settlement transaction, transferring ever more of the shared
output to the recipient.

e The number of bitcoins ¢ used to fund the channel is also the maximum
total that may be transferred over the simple micropayment channel.

e At any time the recipient R is guaranteed to eventually receive the
bitcoins, since she holds a fully signed settlement transaction, while
the spender only has partially signed ones.

e The simple micropayment channel is intrinsically unidirectional. Since
the recipient may choose any of the settlement transactions in the
protocol, she will use the one with maximum payout for her. If we
were to transfer bitcoins back, we would be reducing the amount paid
out to the recipient, hence she would choose not to broadcast that
transaction.

20.4 Weak Consistency

Eventual consistency is only one form of weak consistency. A number of different
tradeoffs between partition tolerance and consistency exist in literature.

Definition 20.28 (Monotonic Read Consistency). If a node u has seen a par-
ticular value of an object, any subsequent accesses of u will never return any
older values.

Remarks:

e Users are annoyed if they receive a notification about a comment on
an online social network, but are unable to reply because the web
interface does not show the same notification yet. In this case the
notification acts as the first read operation, while looking up the com-
ment on the web interface is the second read operation.

Definition 20.29 (Monotonic Write Consistency). A write operation by a node
on a data item is completed before any successive write operation by the same
node (i.e. system guarantees to serialize writes by the same node).

Remarks:

e The ATM must replay all operations in order, otherwise it might hap-
pen that an earlier operation overwrites the result of a later operation,
resulting in an inconsistent final state.

Definition 20.30 (Read-Your-Write Counsistency). After a node u has updated
a data item, any later reads from node u will never see an older value.

234 CHAPTER 20. EVENTUAL CONSISTENCY & BITCOIN

Definition 20.31 (Causal Relation). The following pairs of operations are said
to be causally related:

o Two writes by the same node to different variables.

A read followed by a write of the same node.

A read that returns the value of a write from any node.

e Two operations that are transitively related according to the above condi-
tions.

Remarks:

e The first rule ensures that writes by a single node are seen in the same
order. For example if a node writes a value in one variable and then
signals that it has written the value by writing in another variable.
Another node could then read the signalling variable but still read the
old value from the first variable, if the two writes were not causally
related.

Definition 20.32 (Causal Cousistency). A system provides causal consistency
if operations that potentially are causally related are seen by every node of the
system in the same order. Concurrent writes are not causally related, and may
be seen in different orders by different nodes.

Chapter Notes

The CAP theorem was first introduced by Fox and Brewer [FB99], although it
is commonly attributed to a talk by Eric Brewer [Bre00]. It was later proven
by Gilbert and Lynch [GL02] for the asynchronous model. Gilbert and Lynch
also showed how to relax the consistency requirement in a partially synchronous
system to achieve availability and partition tolerance.

Bitcoin was introduced in 2008 by Satoshi Nakamoto [Nak08]. Nakamoto is
thought to be a pseudonym used by either a single person or a group of people;
it is still unknown who invented Bitcoin, giving rise to speculation and con-
spiracy theories. Among the plausible theories are noted cryptographers Nick
Szabo [Bigl3] and Hal Finney [Grel4]. The first Bitcoin client was published
shortly after the paper and the first block was mined on January 3, 2009. The
genesis block contained the headline of the release date’s The Times issue “The
Times 03/Jan/2009 Chancellor on brink of second bailout for banks”, which
serves as proof that the genesis block has been indeed mined on that date, and
that no one had mined before that date. The quote in the genesis block is also
thought to be an ideological hint: Bitcoin was created in a climate of finan-
cial crisis, induced by rampant manipulation by the banking sector, and Bitcoin
quickly grew in popularity in anarchic and libertarian circles. The original client
is nowadays maintained by a group of independent core developers and remains
the most used client in the Bitcoin network.

Central to Bitcoin is the resolution of conflicts due to doublespends, which
is solved by waiting for transactions to be included in the blockchain. This
however introduces large delays for the confirmation of payments which are

BIBLIOGRAPHY 235

undesirable in some scenarios in which an immediate confirmation is required.
Karame et al. [KAC12] show that accepting unconfirmed transactions leads to
a non-negligible probability of being defrauded as a result of a doublespending
attack. This is facilitated by information eclipsing [DW13], i.e., that nodes
do not forward conflicting transactions, hence the victim does not see both
transactions of the doublespend. Bamert et al. [BDE113] showed that the odds
of detecting a doublespending attack in real-time can be improved by connecting
to a large sample of nodes and tracing the propagation of transactions in the
network.

Bitcoin does not scale very well due to its reliance on confirmations in the
blockchain. A copy of the entire transaction history is stored on every node
in order to bootstrap joining nodes, which have to reconstruct the transaction
history from the genesis block. Simple micropayment channels were introduced
by Hearn and Spilman [HS12] and may be used to bundle multiple transfers be-
tween two parties but they are limited to transferring the funds locked into the
channel once. Recently Duplex Micropayment Channels [DW15] and the Light-
ning Network [PD15] have been proposed to build bidirectional micropayment
channels in which the funds can be transferred back and forth an arbitrary num-
ber of times, greatly increasing the flexibility of Bitcoin transfers and enabling a
number of features, such as micropayments and routing payments between any
two endpoints.

This chapter was written in collaboration with Christian Decker.

Bibliography

[BDE*13] Tobias Bamert, Christian Decker, Lennart Elsen, Samuel Welten,
and Roger Wattenhofer. Have a snack, pay with bitcoin. In IEEE
Internation Conference on Peer-to-Peer Computing (P2P), Trento,
Ttaly, 2013.

[Big13] John Biggs. Who is the real satoshi nakamoto? one researcher may
have found the answer. http://on.tcrn.ch/1/ROvA, 2013.

[Bre00] Eric A. Brewer. Towards robust distributed systems. In Symposium
on Principles of Distributed Computing (PODC). ACM, 2000.

[DW13] Christian Decker and Roger Wattenhofer. Information propagation
in the bitcoin network. In IEEFE International Conference on Peer-
to-Peer Computing (P2P), Trento, Italy, September 2013.

[DW15] Christian Decker and Roger Wattenhofer. A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels. In Sym-
posium on Stabilization, Safety, and Security of Distributed Systems
(55S), 2015.

[FB99] Armando Fox and Eric Brewer. Harvest, yield, and scalable tolerant
systems. In Hot Topics in Operating Systems. IEEE, 1999.

[GL02] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibil-
ity of consistent, available, partition-tolerant web services. SIGACT
News, 2002.

236

[Grel4]

[HS12]

[KAC12]

[Nak0g]

[PD15]

CHAPTER 20. EVENTUAL CONSISTENCY & BITCOIN

Andy Greenberg. Nakamoto’s neighbor: My hunt for bitcoin’s cre-
ator led to a paralyzed crypto genius. http://onforb.es/1rvyecq,
2014.

Mike Hearn and Jeremy Spilman. Contract: Rapidly adjusting
micro-payments. https://en.bitcoin.it/wiki/Contract, 2012. Last ac-
cessed on November 11, 2015.

G.O. Karame, E. Androulaki, and S. Capkun. Two Bitcoins at
the Price of One? Double-Spending Attacks on Fast Payments in
Bitcoin. In Conference on Computer and Communication Security,
2012.

Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
https://bitcoin.org/bitcoin.pdf, 2008.

Joseph Poon and Thaddeus Dryja. The bitcoin lightning network.
2015.

Chapter 21

Distributed Storage

How do you store 1M movies, each with a size of about 1GB, on 1M nodes, each
equipped with a 1TB disk? Simply store the movies on the nodes, arbitrarily,
and memorize (with a global index) which movie is stored on which node. What
if the set of movies or nodes changes over time, and you do not want to change
your global index too often?

21.1 Consistent Hashing

Several variants of hashing will do the job, e.g. consistent hashing:

Algorithm 21.1 Consistent Hashing
1: Hash the unique file name of each movie m with a known set of hash func-
tions h;(m) — [0,1), fori=1,...,k
2: Hash the unique name (e.g., IP address and port number) of each node with
the same set of hash functions h;, for i =1,...,k
3: Store a copy of a movie z on node u if h;(z) =~ h;(u), for any i. More
formally, store movie x on node u if

i) — hi(w)] = min{|h;(m) — hy(w)]}, for any i

Theorem 21.2 (Counsistent Hashing). In expectation, Algorithm 21.1 stores
each movie kn/m times.

Proof. While it is possible that some movie does not hash closest to a node for
any of its hash functions, this is highly unlikely: For each node (n) and each hash
function (k), each movie has about the same probability (1/m) to be stored.
By linearity of expectation, a movie is stored kn/m times, in expectation. [

237

238

CHAPTER 21. DISTRIBUTED STORAGE

Remarks:

21.2

Let us do a back-of-the-envelope calculation. We have m = 1M
movies, n = 1M nodes, each node has storage for 1”TB/1GB = 1K
movies, i.e., we use k = 1K hash functions. Theorem 21.2 shows that
each movie is stored about 1K times. With a bit more math one can
show that it is highly unlikely that a movie is stored much less often
than its expected value.

Instead of storing movies directly on nodes as in Algorithm 21.1, we
can also store the movies on any nodes we like. The nodes of Algorithm
21.1 then simply store forward pointers to the actual movie locations.

In this chapter we want to push unreliability to the extreme. What if
the nodes are so unreliable that on average a node is only available for
1 hour? In other words, nodes exhibit a high churn, they constantly
join and leave the distributed system.

With such a high churn, hundreds or thousands of nodes will change
every second. No single node can have an accurate picture of what
other nodes are currently in the system. This is remarkably different
to classic distributed systems, where a single unavailable node may
already be a minor disaster: all the other nodes have to get a consistent
view (Definition 18.4) of the system again. In high churn systems it
is impossible to have a consistent view at any time.

Instead, each node will just know about a small subset of 100 or less
other nodes (“neighbors”). This way, nodes can withstand high churn
situations.

On the downside, nodes will not directly know which node is responsi-
ble for what movie. Instead, a node searching for a movie might have
to ask a neighbor node, which in turn will recursively ask another
neighbor node, until the correct node storing the movie (or a forward
pointer to the movie) is found. The nodes of our distributed storage
system form a virtual network, also called an overlay network.

Hypercubic Networks

In this section we present a few overlay topologies of general interest.

Definition 21.3 (Topology Properties). Our virtual network should have the
following properties:

e The network should be (somewhat) homogeneous: no node should play a
dominant role, no node should be a single point of failure.

e The nodes should have 1Ds, and the IDs should span the universe [0,1),
such that we can store data with hashing, as in Algorithm 21.1.

e Fvery node should have a small degree, if possible polylogarithmic in n,
the number of nodes. This will allow every node to maintain a persistent
connection with each neighbor, which will help us to deal with churn.

21.2. HYPERCUBIC NETWORKS 239

e The network should have a small diameter, and routing should be easy.
If a node does not have the information about a data item, then it should
know which neighbor to ask. Within a few (polylogarithmic in n) hops,
one should find the node that has the correct information.

—

Figure 21.4: The structure of a fat tree.

Remarks:

e Some basic network topologies used in practice are trees, rings, grids
or tori. Many other suggested networks are simply combinations or
derivatives of these.

e The advantage of trees is that the routing is very easy: for every
source-destination pair there is only one path. However, since the
root of a tree is a bottleneck, trees are not homogeneous. Instead,
so-called fat trees should be used. Fat trees have the property that
every edge connecting a node v to its parent u has a capacity that is
proportional to the number of leaves of the subtree rooted at v. See
Figure 21.4 for a picture.

e Fat trees belong to a family of networks that require edges of non-
uniform capacity to be efficient. Networks with edges of uniform ca-
pacity are easier to build. This is usually the case for grids and tori.
Unless explicitly mentioned, we will treat all edges in the following to
be of capacity 1.

Definition 21.5 (Torus, Mesh). Let m,d € N. The (m,d)-mesh M(m,d) is a
graph with node set V = [m]? and edge set

d
E = {{(al,...,ad),(bl,...,bd)} | aib; € [m], Y la; — bi| = 1},
i=1

where [m] means the set {0,...,m — 1}. The (m,d)-torus T'(m,d) is a graph
that consists of an (m,d)-mesh and additionally wrap-around edges from nodes
(a1y...yai—1,m — 1 a;41,...,aq) to nodes (a1,...,a;—1,0,a;41,...,aq) for all

240 CHAPTER 21. DISTRIBUTED STORAGE

te{l,...,d} and all a; € [m] with j # i. In other words, we take the expression
a; — b; in the sum modulo m prior to computing the absolute value. M(m,1)
is also called a path, T'(m,1) a cycle, and M(2,d) = T(2,d) a d-dimensional
hypercube. Figure 21.6 presents a linear array, a torus, and a hypercube.

00 1:0— 2:0— 31;) 110 11

oy 02 1;2——2;2——? /010 /011
B3—U3—B3—BD 000 001
M(m,1) T (4.2) M2.3)

Figure 21.6: The structure of M(m, 1), T(4,2), and M (2, 3).

Remarks:

e Routing on a mesh, torus, or hypercube is trivial. On a d-dimensional
hypercube, to get from a source bitstring s to a target bitstring ¢ one
only needs to fix each “wrong” bit, one at a time; in other words, if
the source and the target differ by & bits, there are k! routes with k
hops.

e If you put a dot in front of the d-bit ID of each node, the nodes exactly
span the d-bit IDs [0,1).

e The Chord architecture is a close relative of the hypercube, basically
a less rigid hypercube. The hypercube connects every node with an
ID in [0,1) with every node in ezactly distance 27%, i = 1,2,...,d in
[0,1). Chord instead connect nodes with approzimately distance 27°.

e The hypercube has many derivatives, the so-called hypercubic net-
works. Among these are the butterfly, cube-connected-cycles, shuffle-
exchange, and de Bruijn graph. We start with the butterfly, which is
basically a “rolled out” hypercube.

Definition 21.7 (Butterfly). Let d € N. The d-dimensional butterfly BF(d)
is a graph with node set V = [d + 1] x [2]? and an edge set E = E; U Ey with

By ={{(i,a),(i+1,a)} | i€ [d], a €29}
and
By = {{(i,),(i+1,8)}]i€ld, o,B€ 2%, |a—p| =2}

A node set {(i,a) | a € [2]4} is said to form level i of the butterfly. The
d-dimensional wrap-around butterfly W-BF(d) is defined by taking the BF(d)
and having (d,a) = (0,a) for all o € [2].

21.2. HYPERCUBIC NETWORKS 241

Remarks:

e Figure 21.8 shows the 3-dimensional butterfly BF(3). The BF(d) has
(d+1)2% nodes, 2d - 2¢ edges and degree 4. It is not difficult to check
that combining the node sets {(i,a) | i € [d]} for all @ € [2]? into a
single node results in the hypercube.

e Butterflies have the advantage of a constant node degree over hyper-
cubes, whereas hypercubes feature more fault-tolerant routing.

e You may have seen butterfly-like structures before, e.g. sorting net-
works, communication switches, data center networks, fast fourier
transform (FFT). The Benes network (telecommunication) is noth-
ing but two back-to-back butterflies. The Clos network (data centers)
is a close relative to Butterflies too. Actually, merging the 2¢ nodes on
level ¢ that share the first d — i bits into a single node, the Butterfly
becomes a fat tree. Every year there are new applications for which
hypercubic networks are the perfect solution!

e Next we define the cube-connected-cycles network. It only has a de-
gree of 3 and it results from the hypercube by replacing the corners
by cycles.

000 001 010 011 100 101 110 111

Figure 21.8: The structure of BF(3).

Definition 21.9 (Cube-Connected-Cycles). Let d € N. The cube-connected-
cycles network CCC(d) is a graph with node set V = {(a,p) | a € [2]¢,p € [d]}
and edge set

E = {{(ap),(a(p+1)modd)} |ae [2],p e [d]}
U{{(a,p), (b,p)} | a,b € [2]%,p € [d],a = b except for a,} .

242 CHAPTER 21. DISTRIBUTED STORAGE

(110,0) (111,0)

000 001 010 o011 100 101 110 111

(000,0) (©01.0)

Figure 21.10: The structure of CCC(3).

Remarks:

e Two possible representations of a CCC can be found in Figure 21.10.

e The shuffle-exchange is yet another way of transforming the hypercu-
bic interconnection structure into a constant degree network.

Definition 21.11 (Shuffle-Exchange). Let d € N. The d-dimensional shuffle-
exchange SE(d) is defined as an undirected graph with node set V = [2]¢ and

an edge set E = FE1 U Ey with
E, = {{(a17'"7ad)a(a17"'aad)} | (ala"'aad) € [2]d7 ag =1 70‘(1}
and
By ={{(a1,...,aq), (ag,a1,...,aq-1)} | (ay,...,aq) € [2]%} .
Figure 21.12 shows the 3- and 4-dimensional shuffle-exchange graph.

SE(3) 100 101 1101
0 oo 110 m 1011 1o uu
L G N ALt I e D TTERTER FEN ¢ TR BEEREE GEE TREEERTE .
010 o o111
®-mnnn + E

Figure 21.12: The structure of SE(3) and SE(4).

Definition 21.13 (DeBruijn). The b-ary DeBruijn graph of dimension d
DB(b,d) is an undirected graph G = (V,E) with node set V = {v € [b]9}
and edge set E that contains all edges {v,w} with the property that w €
{(z,v1,...,v4-1) : = € [b]}, where v = (v1,...,vq).

21.2. HYPERCUBIC NETWORKS 243

01 001 011

010 101
00 11 000 111

10 100 110

Figure 21.14: The structure of DB(2,2) and DB(2,3).

Remarks:
e Two examples of a DeBruijn graph can be found in Figure 21.14.

e There are some data structures which also qualify as hypercubic net-
works. An example of a hypercubic network is the skip list, the bal-
anced binary search tree for the lazy programmer:

Definition 21.15 (Skip List). The skip list is an ordinary ordered linked list
of objects, augmented with additional forward links. The ordinary linked list is
the level 0 of the skip list. In addition, every object is promoted to level 1 with
probability 1/2. As for level 0, all level 1 objects are connected by a linked list.
In general, every object on level i is promoted to the next level with probability
1/2. A special start-object points to the smallest/first object on each level.

Remarks:

e Search, insert, and delete can be implemented in O(logn) expected
time in a skip list, simply by jumping from higher levels to lower ones
when overshooting the searched position. Also, the amortized memory
cost of each object is constant, as on average an object only has two
forward links.

e The randomization can easily be discarded, by deterministically pro-
moting a constant fraction of objects of level ¢ to level ¢ + 1, for all
i. When inserting or deleting, object o simply checks whether its left
and right level ¢ neighbors are being promoted to level ¢ + 1. If none
of them is, promote object o itself. Essentially we establish a maximal
independent set (MIS) on each level, hence at least every third and at
most every second object is promoted.

e There are obvious variants of the skip list, e.g., the skip graph. Instead
of promoting only half of the nodes to the next level, we always pro-
mote all the nodes, similarly to a balanced binary tree: All nodes are
part of the root level of the binary tree. Half the nodes are promoted
left, and half the nodes are promoted right, on each level. Hence on
level i we have have 2° lists (or, if we connect the last element again
with the first: rings) of about n/2% objects. The skip graph features
all the properties of Definition 21.3.

e More generally, how are degree and diameter of Definition 21.3 re-
lated? The following theorem gives a general lower bound.

244 CHAPTER 21. DISTRIBUTED STORAGE

Theorem 21.16. Every graph of maximum degree d > 2 and size n must have
a diameter of at least [(logn)/(log(d —1))] — 2.

Proof. Suppose we have a graph G = (V, E) of maximum degree d and size
n. Start from any node v € V. In a first step at most d other nodes can be
reached. In two steps at most d- (d — 1) additional nodes can be reached. Thus,
in general, in at most k steps at most

k—1
i (d—l)k—l d~(d—1)k
. _ = . <
1—|—;:0d d-1)'=1+d d=1) -1 1—2

nodes (including v) can be reached. This has to be at least n to ensure that v
can reach all other nodes in V' within k steps. Hence,

d—2)-n
d

(d—1)*> (& k>logy (((d—2)-n/d).

Since log,;_,((d — 2)/d) > —2 for all d > 2, this is true only if k¥ >
[(logn)/(log(d — 1))] — 2.

O

Remarks:

e In other words, constant-degree hypercubic networks feature an
asymptotically optimal diameter.

e Other hypercubic graphs manage to have a different tradeoff between
node degree and diameter. The pancake graph, for instance, mini-
mizes the maximum of these with d = k = O(logn/loglogn). The
ID of a node u in the pancake graph of dimension d is an arbitrary
permutation of the numbers 1,2, ...,d. Two nodes u, v are connected
by an edge if one can get the ID of node v by taking the ID of node
u, and reversing (flipping) the first ¢ numbers of u’s ID. For example,
in dimension d = 4, nodes u = 2314 and v = 1324 are neighbors.

e There are a few other interesting graph classes which are not hyper-
cubic networks, but nevertheless seem to relate to the properties of
Definition 21.3. Small-world graphs (a popular representations for
social networks) also have small diameter, however, in contrast to hy-
percubic networks, they are not homogeneous and feature nodes with
large degrees.

e Expander graphs (an expander graph is a sparse graph which has
good connectivity properties, that is, from every not too large subset
of nodes you are connected to an even larger set of nodes) are homo-
geneous, have a low degree and small diameter. However, expanders
are often not routable.

21.3 DHT & Churn

Definition 21.17 (Distributed Hash Table (DHT)). A distributed hash table
(DHT) is a distributed data structure that implements a distributed storage. A
DHT should support at least (i) a search (for a key) and (ii) an insert (key,
object) operation, possibly also (iii) a delete (key) operation.

21.3. DHT & CHURN 245

Remarks:

e A DHT has many applications beyond storing movies, e.g., the Inter-
net domain name system (DNS) is essentially a DHT.

e A DHT can be implemented as a hypercubic overlay network with
nodes having identifiers such that they span the ID space [0, 1).

e A hypercube can directly be used for a DHT. Just use a globally
known set of hash functions h;, mapping movies to bit strings with d
bits.

e Other hypercubic structures may be a bit more intricate when using
it as a DHT: The butterfly network, for instance, may directly use the
d+ 1 layers for replication, i.e., all the d + 1 nodes are responsible for
the same ID.

e Other hypercubic networks, e.g. the pancake graph, might need a bit
of twisting to find appropriate IDs.

o We assume that a joining node knows a node which already belongs to
the system. This is known as the bootstrap problem. Typical solutions
are: If a node has been connected with the DHT previously, just try
some of these previous nodes. Or the node may ask some authority
for a list of IP addresses (and ports) of nodes that are regularly part
of the DHT.

e Many DHTs in the literature are analyzed against an adversary that
can crash a fraction of random nodes. After crashing a few nodes the
system is given sufficient time to recover again. However, this seems
unrealistic. The scheme sketched in this section significantly differs
from this in two major aspects.

e First, we assume that joins and leaves occur in a worst-case manner.
We think of an adversary that can remove and add a bounded number
of nodes; the adversary can choose which nodes to crash and how nodes
join.

e Second, the adversary does not have to wait until the system is recov-
ered before it crashes the next batch of nodes. Instead, the adversary
can constantly crash nodes, while the system is trying to stay alive.
Indeed, the system is never fully repaired but always fully functional.
In particular, the system is resilient against an adversary that contin-
uously attacks the “weakest part” of the system. The adversary could
for example insert a crawler into the DHT, learn the topology of the
system, and then repeatedly crash selected nodes, in an attempt to
partition the DHT. The system counters such an adversary by con-
tinuously moving the remaining or newly joining nodes towards the
areas under attack.

e (Clearly, we cannot allow the adversary to have unbounded capabili-
ties. In particular, in any constant time interval, the adversary can
at most add and/or remove O(logn) nodes, n being the total num-
ber of nodes currently in the system. This model covers an adversary

246

CHAPTER 21. DISTRIBUTED STORAGE

which repeatedly takes down nodes by a distributed denial of service
attack, however only a logarithmic number of nodes at each point in
time. The algorithm relies on messages being delivered timely, in at
most constant time between any pair of operational nodes, i.e., the
synchronous model. Using the trivial synchronizer this is not a prob-
lem. We only need bounded message delays in order to have a notion
of time which is needed for the adversarial model. The duration of
a round is then proportional to the propagation delay of the slowest
message.

Algorithm 21.18 DHT

1: Given: a globally known set of hash functions h;, and a hypercube (or any

other hypercubic network)

2: Each hypercube virtual node (“hypernode”) consists of ©(logn) nodes.
3: Nodes have connections to all other nodes of their hypernode and to nodes

of their neighboring hypernodes.

Because of churn, some of the nodes have to change to another hypernode
such that up to constant factors, all hypernodes own the same number of
nodes at all times.

If the total number of nodes n grows or shrinks above or below a certain
threshold, the dimension of the hypercube is increased or decreased by one,
respectively.

Remarks:

e Having a logarithmic number of hypercube neighbors, each with a

logarithmic number of nodes, means that each node has ©(log?n)
neighbors. However, with some additional bells and whistles one can
achieve ©(logn) neighbor nodes.

The balancing of nodes among the hypernodes can be seen as a dy-
namic token distribution problem on the hypercube. Each hypernode
has a certain number of tokens, the goal is to distribute the tokens
along the edges of the graph such that all hypernodes end up with the
same or almost the same number of tokens. While tokens are moved
around, an adversary constantly inserts and deletes tokens. See also
Figure 21.19.

In summary, the storage system builds on two basic components: (i)
an algorithm which performs the described dynamic token distribution
and (ii) an information aggregation algorithm which is used to esti-
mate the number of nodes in the system and to adapt the dimension
of the hypercube accordingly:

Theorem 21.20 (DHT with Churn). We have a fully scalable, efficient distrib-
uted storage system which tolerates O(logn) worst-case joins and/or crashes per
constant time interval. As in other storage systems, nodes have O(logn) overlay
neighbors, and the usual operations (e.g., search, insert) take time O(logn).

21.3. DHT & CHURN 247

Core

Periphery

Figure 21.19: A simulated 2-dimensional hypercube with four hypernodes, each
consisting of several nodes. Also, all the nodes are either in the core or in
the periphery of a node. All nodes within the same hypernode are completely
connected to each other, and additionally, all nodes of a hypernode are connected
to the core nodes of the neighboring nodes. Only the core nodes store data items,
while the peripheral nodes move between the nodes to balance biased adversarial
churn.

Remarks:

e Indeed, handling churn is only a minimal requirement to make a dis-
tributed storage system work. Advanced studies proposed more elab-
orate architectures which can also handle other security issues, e.g.,
privacy or Byzantine attacks.

Chapter Notes

The ideas behind distributed storage were laid during the peer-to-peer (P2P)
file sharing hype around the year 2000, so a lot of the seminal research
in this area is labeled P2P. The paper of Plaxton, Rajaraman, and Richa
[PRRO7] laid out a blueprint for many so-called structured P2P architec-
ture proposals, such as Chord [SMK'01], CAN [RFH"01], Pastry [RDO1],
Viceroy [MNRO02], Kademlia [MM02], Koorde [KK03], SkipGraph [AS03], Skip-
Net [HIJST03], or Tapestry [ZHST04]. Also the paper of Plaxton et. al. was
standing on the shoulders of giants. Some of its eminent precursors are: lin-
ear and consistent hashing [KLL197], locating shared objects [AP90, AP91],
compact routing [SK85, PUS88], and even earlier: hypercubic networks, e.g.
[AJ75, Wit81, GS81, BA84].

Furthermore, the techniques in use for prefix-based overlay structures are
related to a proposal called LAND, a locality-aware distributed hash table pro-
posed by Abraham et al. [AMDO4].

More recently, a lot of P2P research focussed on security aspects, describing
for instance attacks [LMSWO06, SENBO07, Lar07], and provable countermeasures
[KSW05, AS09, BSS09]. Another topic currently garnering interest is using
P2P to help distribute live streams of video content on a large scale [LMSWO07].
There are several recommendable introductory books on P2P computing, e.g.

248

CHAPTER 21. DISTRIBUTED STORAGE

[SW05, SG05, MS07, KW08, BYL08S].
Some of the figures in this chapter have been provided by Christian Schei-

deler.

Bibliography

[AJ75)

[AMDO04]

[AP90]

[APY1]

[AS03]

[AS09]

[BAS4]

[BSS09]

[BYLOS]

[GS81]

[HIS+03]

George A. Anderson and E. Douglas Jensen. Computer Interconnec-
tion Structures: Taxonomy, Characteristics, and Examples. ACM
Comput. Surv., 7(4):197-213, December 1975.

Ittai Abraham, Dahlia Malkhi, and Oren Dobzinski. LAND: stretch
(1 + epsilon) locality-aware networks for DHTSs. In Proceedings of
the fifteenth annual ACM-SIAM symposium on Discrete algorithms,
SODA ’04, pages 550559, Philadelphia, PA, USA, 2004. Society for
Industrial and Applied Mathematics.

Baruch Awerbuch and David Peleg. Efficient Distributed Construc-
tion of Sparse Covers. Technical report, The Weizmann Institute of
Science, 1990.

Baruch Awerbuch and David Peleg. Concurrent Online Tracking of
Mobile Users. In SIGCOMM, pages 221-233, 1991.

James Aspnes and Gauri Shah. Skip Graphs. In SODA, pages 384—
393. ACM/SIAM, 2003.

Baruch Awerbuch and Christian Scheideler. Towards a Scalable and
Robust DHT. Theory Comput. Syst., 45(2):234-260, 2009.

L. N. Bhuyan and D. P. Agrawal. Generalized Hypercube and Hy-
perbus Structures for a Computer Network. IEEFE Trans. Comput.,
33(4):323-333, April 1984.

Matthias Baumgart, Christian Scheideler, and Stefan Schmid. A
DoS-resilient information system for dynamic data management. In
Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures, SPAA ’09, pages 300-309, New York,
NY, USA, 2009. ACM.

John Buford, Heather Yu, and Eng Keong Lua. P2P Networking
and Applications. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2008.

J.R. Goodman and C.H. Sequin. Hypertree: A Multiprocessor
Interconnection Topology. Computers, IEEE Transactions on, C-
30(12):923-933, dec. 1981.

Nicholas J. A. Harvey, Michael B. Jones, Stefan Saroiu, Marvin
Theimer, and Alec Wolman. SkipNet: a scalable overlay network
with practical locality properties. In Proceedings of the 4fth con-
ference on USENIX Symposium on Internet Technologies and Sys-
tems - Volume 4, USITS’03, pages 9-9, Berkeley, CA, USA, 2003.
USENIX Association.

BIBLIOGRAPHY 249

[KKO03)]

[KLL+97]

[KSW05]

[KWO8]

[Lar07]

[LMSWO6]

[LMSW07]

[MMO02]

[MNRO2]

IMS07]

[PRRO7]

M. Frans Kaashoek and David R. Karger. Koorde: A Simple Degree-
Optimal Distributed Hash Table. In M. Frans Kaashoek and Ion
Stoica, editors, IPTPS, volume 2735 of Lecture Notes in Computer
Science, pages 98-107. Springer, 2003.

David R. Karger, Eric Lehman, Frank Thomson Leighton, Rina
Panigrahy, Matthew S. Levine, and Daniel Lewin. Consistent Hash-
ing and Random Trees: Distributed Caching Protocols for Relieving
Hot Spots on the World Wide Web. In Frank Thomson Leighton
and Peter W. Shor, editors, STOC, pages 654-663. ACM, 1997.

Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer. A Self-
Repairing Peer-to-Peer System Resilient to Dynamic Adversarial
Churn. In 4th International Workshop on Peer-To-Peer Systems
(IPTPS), Cornell University, Ithaca, New York, USA, Springer
LNCS 3640, February 2005.

Javed I. Khan and Adam Wierzbicki. Introduction: Guest edi-
tors’ introduction: Foundation of peer-to-peer computing. Comput.
Commun., 31(2):187-189, February 2008.

Erik Larkin. Storm Worm’s virulence may change tac-
tics. http://www.networkworld.com/news,/2007/080207-black-hat-
storm-worms-virulence.html, Agust 2007. Last accessed on June 11,
2012.

Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

Thomas Locher, Remo Meier, Stefan Schmid, and Roger Watten-
hofer. Push-to-Pull Peer-to-Peer Live Streaming. In 21st Inter-
national Symposium on Distributed Computing (DISC), Lemesos,
Cyprus, September 2007.

Petar Maymounkov and David Mazieres. Kademlia: A Peer-to-Peer
Information System Based on the XOR Metric. In Revised Papers
from the First International Workshop on Peer-to-Peer Systems,

IPTPS ’01, pages 53—-65, London, UK, UK, 2002. Springer-Verlag.

Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: a scal-
able and dynamic emulation of the butterfly. In Proceedings of the

twenty-first annual symposium on Principles of distributed comput-
ing, PODC ’02, pages 183-192, New York, NY, USA, 2002. ACM.

Peter Mahlmann and Christian Schindelhauer. Peer-to-Peer Net-
works. Springer, 2007.

C. Greg Plaxton, Rajmohan Rajaraman, and Andréa W. Richa.
Accessing Nearby Copies of Replicated Objects in a Distributed
Environment. In SPAA, pages 311-320, 1997.

250

[PUSS)]

[RDO1]

[RFH*01]

[SENB07]

[SGO5]

[SK85]

[SMK*01]

[SWO5]

[Wit81]

[ZHST04]

CHAPTER 21. DISTRIBUTED STORAGE

David Peleg and Eli Upfal. A tradeoff between space and efficiency
for routing tables. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, STOC ’88, pages 43-52, New
York, NY, USA, 1988. ACM.

Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location and routing for large-scale peer-to-peer sys-
tems. In IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware), pages 329-350, November 2001.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and
Scott Shenker. A scalable content-addressable network. SIGCOMM
Comput. Commun. Rev., 31(4):161-172, August 2001.

Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack. Exploit-
ing KAD: possible uses and misuses. SIGCOMM Comput. Commun.
Rewv., 37(5):65-70, October 2007.

Ramesh Subramanian and Brian D. Goodman. Peer to Peer Com-
puting: The FEvolution of a Disruptive Technology. 1GI Publishing,
Hershey, PA, USA, 2005.

Nicola Santoro and Ramez Khatib. Labelling and Implicit Routing
in Networks. Comput. J., 28(1):5-8, 1985.

Ton Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. SIGCOMM Comput. Commun. Rev.,
31(4):149-160, August 2001.

Ralf Steinmetz and Klaus Wehrle, editors. Peer-to-Peer Systems and
Applications, volume 3485 of Lecture Notes in Computer Science.
Springer, 2005.

L. D. Wittie. Communication Structures for Large Networks of
Microcomputers. IEEE Trans. Comput., 30(4):264—273, April 1981.

Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John Kubiatowicz. Tapestry: a resilient
global-scale overlay for service deployment. IEEE Journal on Se-
lected Areas in Communications, 22(1):41-53, 2004.

Chapter 22

Game Theory

“Game theory is a sort of umbrella or ‘unified field’ theory for the rational side
of social science, where ‘social’ is interpreted broadly, to include human as well
as non-human players (computers, animals, plants).”

— Robert Aumann, 1987

22.1 Introduction

In this chapter we look at a distributed system from a different perspective.
Nodes no longer have a common goal, but are selfish. The nodes are not byzan-
tine (actively malicious), instead they try to benefit from a distributed system
— possibly without contributing.

Game theory attempts to mathematically capture behavior in strategic sit-
uations, in which an individual’s success depends on the choices of others.

Remarks:

e Examples of potentially selfish behavior are file sharing or TCP. If a
packet is dropped, then most TCP implementations interpret this as
a congested network and alleviate the problem by reducing the speed
at which packets are sent. What if a selfish TCP implementation will
not reduce its speed, but instead transmit each packet twice?

o We start with one of the most famous games to introduce some defi-
nitions and concepts of game theory.

22.2 Prisoner’s Dilemma

A team of two prisoners (players v and v) are being questioned by the police.
They are both held in solitary confinement and cannot talk to each other. The
prosecutors offer a bargain to each prisoner: snitch on the other prisoner to
reduce your prison sentence.

251

252 CHAPTER 22. GAME THEORY

U Player u
v Cooperate \ Defect
1 0

Player v Cooperate 1 3
3 2

Defect 0 9

Table 22.1: The prisoner’s dilemma game as a matrix.

o If both of them stay silent (cooperate), both will be sentenced to one year
of prison on a lesser charge.

e If both of them testify against their fellow prisoner (defect), the police has
a stronger case and they will be sentenced to two years each.

e If player u defects and the player v cooperates, then player u will go free
(snitching pays off) and player v will have to go to jail for three years; and
vice versa.

e This two player game can be represented as a matrix, see Table 22.1.

Definition 22.2 (game). A game requires at least two rational players, and
each player can choose from at least two options (strategies). In every possible
outcome (strategy profile) each player gets a certain payoff (or cost). The payoff
of a player depends on the strategies of the other players.

Definition 22.3 (social optimum). A strategy profile is called social optimum
(SO) if and only if it minimizes the sum of all costs (or mazimizes payoff).

Remarks:

e The social optimum for the prisoner’s dilemma is when both players
cooperate — the corresponding cost sum is 2.

Definition 22.4 (dominant). A strategy is dominant if a player is never worse
off by playing this strategy. A dominant strategy profile is a strategy profile in
which each player plays a dominant strategy.

Remarks:

e The dominant strategy profile in the prisoner’s dilemma is when both
players defect — the corresponding cost sum is 4.

Definition 22.5 (Nash Equilibrium). A Nash Equilibrium (NE) is a strategy
profile in which no player can improve by unilaterally (the strategies of the other
players do not change) changing its strategy.

22.3. SELFISH CACHING 253

Remarks:
e A game can have multiple Nash Equilibria.

e In the prisoner’s dilemma both players defecting is the only Nash
Equilibrium.

e If every player plays a dominant strategy, then this is by definition a
Nash Equilibrium.

e Nash Equilibria and dominant strategy profiles are so called solution
concepts. They are used to analyze a game. There are more solution
concepts, e.g. correlated equilibria or best response.

e The best response is the best strategy given a belief about the strategy
of the other players. In this game the best response to both strategies
of the other player is to defect. If one strategy is the best response to
any strategy of the other players, it is a dominant strategy.

e If two players play the prisoner’s dilemma repeatedly, it is called iter-
ated prisoner’s dilemma. It is a dominant strategy to always defect.
To see this, consider the final game. Defecting is a dominant strat-
egy. Thus, it is fixed what both players do in the last game. Now the
penultimate game is the last game and by induction always defecting
is a dominant strategy.

e Game theorists were invited to come up with a strategy for 200 iter-
ations of the prisoner’s dilemma to compete in a tournament. Each
strategy had to play against every other strategy and accumulated
points throughout the tournament. The simple Tit4Tat strategy (co-
operate in the first game, then copy whatever the other player did in
the previous game) won. One year later, after analyzing each strat-
egy, another tournament (with new strategies) was held. Tit4Tat won
again.

e We now look at a distributed system game.

22.3 Selfish Caching

Computers in a network want to access a file regularly. Each node v € V, with
V being the set of nodes and n = |V, has a demand d,, for the file and wants to
minimize the cost for accessing it. In order to access the file, node v can either
cache the file locally which costs 1 or request the file from another node v which
costs ¢y . If a node does not cache the file, the cost it incurs is the minimal
cost to access the file remotely. Note that if no node caches the file, then every
node incurs cost co. There is an example in Figure 22.6.

Remarks:
e We will sometimes depict this game as a graph. The cost ¢y, for

node v to access the file from node u is equivalent to the length of the
shortest path times the demand d,,.

254 CHAPTER 22. GAME THEORY

e Note that in undirected graphs c,¢ , > ¢y if and only if d,, > d,.
We assume that the graphs are undirected for the rest of the chapter.

1/2 3/4

Figure 22.6: In this example we assume d,, = d,, = d, = 1. Either the nodes u
and w cache the file. Then neither of the three nodes has an incentive to change
its behavior. The costs are 1, 1/2, and 1 for the nodes u,v,w, respectively.
Alternatively, only node v caches the file. Again, neither of the three nodes has
an incentive to change its behavior. The costs are 1/2, 1, and 3/4 for the nodes
u, v, w, respectively.

Algorithm 22.7 Nash Equilibrium for Selfish Caching
: S ={} //set of nodes that cache the file
repeat
Let v be a node with maximum demand d, in set V'
S=Su{v},V=V\{v}
Remove every node u from V with ¢, < 1
until V = {}

Theorem 22.8. Algorithm 22.7 computes a Nash FEquilibrium for Selfish
Caching.

Proof. Let u be a node that is not caching the file. Then there exists a node v
for which ¢, , < 1. Hence, node u has no incentive to cache.

Let u be a node that is caching the file. We now consider any other node v
that is also caching the file. First, we consider the case where v cached the file
before uw did. Then it holds that ¢, , > 1 by construction.

It could also be that v started caching the file after u did. Then it holds
that d, > d, and therefore ¢, , > ¢y« . Furthermore, we have c,. , > 1 by
construction. Combining these implies that ¢, > ¢y > 1.

In either case, node u has no incentive to stop caching. O

Definition 22.9 (Price of Anarchy). Let NE_ denote the Nash Equilibrium
with the highest cost (smallest payoff). The Price of Anarchy (PoA) is defined

as
cost(NE_)

cost(S0)
Definition 22.10 (Optimistic Price of Anarchy). Let NE, denote the Nash

Equilibrium with the smallest cost (highest payoff). The Optimistic Price of
Anarchy (OPoA) is defined as

PoA =

cost(NE)

OPod = cost(S0)

22.4. BRAESS’ PARADOX 255

Figure 22.12: A network with a Price of Anarchy of ©(n).

Remarks:

e The Price of Anarchy measures how much a distributed system de-
grades because of selfish nodes.

e We have PoA > OPoA > 1.

Theorem 22.11. The (Optimistic) Price of Anarchy of Selfish Caching can be
O(n).

Proof. Consider a network as depicted in Figure 22.12. Every node v has de-
mand d, = 1. Note that if any node caches the file, no other node has an
incentive to cache the file as well since the cost to access the file is at most 1 —e.
Wlog let us assume that a node v on the left caches the file, then it is cheaper
for every node on the right to access the file remotely. Hence, the total cost of
this solution is 14+ % - (1 —¢). In the social optimum one node from the left and
one node from the right cache the file. This reduces the cost to 2. Hence, the

1+%-(1—¢)

Price of Anarchy is 5 = 142 =0(n). O
e—

22.4 Braess’ Paradox

Consider the graph in Figure 22.13, it models a road network. Let us assume
that there are 1000 drivers (each in their own car) that want to travel from node
s to node t. Traveling along the road from s to u (or v to t) always takes 1
hour. The travel time from s to v (or u to t) depends on the traffic and increases
by 1/1000 of an hour per car, i.e., when there are 500 cars driving, it takes 30
minutes to use this road.

Lemma 22.14. Adding a super fast road (delay is 0) between u and v can
increase the travel time from s to t.

Proof. Since the drivers act rationally, they want to minimize the travel time.
In the Nash Equilibrium, 500 drivers first drive to node v and then to ¢ and 500
drivers first to node v and then to t. The travel time for each driver is 1 + 500
/ 1000 = 1.5.

256 CHAPTER 22. GAME THEORY

/1000 /1000

/1000 /1000

(a) The road network without the shortcut (b) The road network with the shortcut

Figure 22.13: Braess’ Paradox, where d denotes the number of drivers using an
edge.

To reduce congestion, a super fast road (delay is 0) is built between nodes u
and v. This results in the following Nash Equilibrium: every driver now drives
from s to v to u to t. The total cost is now 2 > 1.5. O

Remarks:

e There are physical systems which exhibit similar properties. Some
famous ones employ a spring. YouTube has some fascinating videos
about this. Simply search for “Braess Paradox Spring”.

e We will now look at another famous game that will allow us to deepen
our understanding of game theory.

22.5 Rock-Paper-Scissors

There are two players, u and v. Each player simultaneously chooses one of three
options: rock, paper, or scissors. The rules are simple: paper beats rock, rock
beats scissors, and scissors beat paper. A matrix representation of this game is
in Table 22.15.

U Player u
v Rock \ Paper \ Scissors
0 1 -1
Rock 0 1 1
Player v Paper 1 -1 0 0 1 1
Seissors 1 -1 0
cissors 1 1 0

Table 22.15: Rock-Paper-Scissors as a matrix.

22.6. MECHANISM DESIGN 257

Remarks:

e Nomne of the three strategies is a Nash Equilibrium. Whatever player
u chooses, player v can always switch her strategy such that she wins.

e This is highlighted in the best response concept. The best response
to e.g. scissors is to play rock. The other player switches to paper.
And so on.

e Is this a game without a Nash Equilibrium? John Nash answered this
question in 1950. By choosing each strategy with a certain probability,
we can obtain a so called mixed Nash Equilibrium. Indeed:

Theorem 22.16. FEvery game has a mized Nash Equilibrium.

Remarks:

e The Nash Equilibrium of this game is if both players choose each
strategy with probability 1/3. The expected payoff is 0.

e Any strategy (or mix of them) is a best response to a player choosing
each strategy with probability 1/3.

e In a pure Nash Equilibrium, the strategies are chosen deterministi-
cally. Rock-Paper-Scissors does not have a pure Nash Equilibrium.

e Unfortunately, game theory does not always model problems accu-
rately. Many real world problems are too complex to be captured by
a game. And as you may know, humans (not only politicians) are
often not rational.

e In distributed systems, players can be servers, routers, etc. Game
theory can tell us whether systems and protocols are prone to selfish
behavior.

22.6 Mechanism Design

Whereas game theory analyzes existing systems, there is a related area that
focuses on designing games — mechanism design. The task is to create a game
where nodes have an incentive to behave “nicely”.

Definition 22.17 (auction). One good is sold to a group of bidders in an auc-
tion. Fach bidder v; has a secret value z; for the good and tells his bid b; to the
auctioneer. The auctioneer sells the good to one bidder for a price p.

Remarks:
e For simplicity, we assume that no two bids are the same, and that

by > by >b3> ...

Definition 22.19 (truthful). An auction is truthful if no player v; can gain
anything by not stating the truth, i.e., b; = z;.

258 CHAPTER 22. GAME THEORY

Algorithm 22.18 First Price Auction
1: every bidder v; submits his bid b;
2: the good is allocated to the highest bidder v, for the price p = by

Theorem 22.20. A First Price Auction (Algorithm 22.18) is not truthful.

Proof. Consider an auction with two bidders, with bids b; and bs. By not stating
the truth and decreasing his bid to by — € > by, player one could pay less and
thus gain more. Thus, the first price auction is not truthful. O

Algorithm 22.21 Second Price Auction
1: every bidder v; submits his bid b;
2: the good is allocated to the highest bidder vy for p = bs

Theorem 22.22. Truthful bidding is a dominant strategy in a Second Price
Auction.

Proof. Let z; be the truthful value of node v; and b; his bid. Let by.x =
max;; b; is the largest bid from other nodes but v;. The payoff for node v; is
Zi — bmax if b; > bmax and 0 else. Let us consider overbidding first, i.e., b; > z;:

o If bax < 2z; < b;, then both strategies win and yield the same payoff
(Zi - bmax)~

o If z; < b; < byax, then both strategies lose and yield a payoff of 0.

o If 2; < bpax < b;, then overbidding wins the auction, but the payoff
(z; — bmax) is negative. Truthful bidding loses and yields a payoff of 0.

Likewise underbidding, i.e. b; < z;:

o If bax < b; < z;, then both strategies win and yield the same payoff
(Zi - bmax)~

o If b; < z; < buax, then both strategies lose and yield a payoff of 0.

o If b; < bpax < 2;, then truthful bidding wins and yields a positive payoff
(2; — bmax). Underbidding loses and yields a payoff of 0.

Hence, truthful bidding is a dominant strategy for each node v;. O

Remarks:

e Let us use this for Selfish Caching. We need to choose a node that is
the first to cache the file. But how? By holding an auction. Every
node says for which price it is willing to cache the file. We pay the
node with the lowest offer and pay it the second lowest offer to ensure
truthful offers.

e Since a mechanism designer can manipulate incentives, she can im-
plement a strategy profile by making all the strategies in this profile
dominant.

22.6. MECHANISM DESIGN 259

Theorem 22.23. Any Nash Equilibrium of Selfish Caching can be implemented
for free.

Proof. If the mechanism designer wants the nodes from the caching set S of
the Nash Equilibrium to cache, then she can offer the following deal to every
node not in S: If not every node from set S caches the file, then I will ensure
a positive payoff for you. Thus, all nodes not in S prefer not to cache since
this is a dominant strategy for them. Consider now a node v € S. Since S is a
Nash Equilibrium, node v incurs cost of at least 1 if it does not cache the file.
For nodes that incur cost of exactly 1, the mechanism designer can even issue a
penatly if the node does not cache the file. Thus, every node v € S caches the
file. O

Remarks:

e Mechanism design assumes that the players act rationally and want to
maximize their payoff. In real-world distributed systems some players
may be not selfish, but actively malicious (byzantine).

e What about P2P file sharing? To increase the overall experience,
BitTorrent suggests that peers offer better upload speed to peers who
upload more. This idea can be exploited. By always claiming to have
nothing to trade yet, the BitThief client downloads without uploading.
In addition to that, it connects to more peers than the standard client
to increase its download speed.

e Many techniques have been proposed to limit such free riding behavior,
e.g., tit-for-tat trading: I will only share something with you if you
share something with me. To solve the bootstrap problem (“I don’t
have anything yet”), nodes receive files or pieces of files whose hash
match their own hash for free. One can also imagine indirect trading.
Peer u uploads to peer v, who uploads to peer w, who uploads to peer
u. Finally, one could imagine using virtual currencies or a reputation
system (a history of who uploaded what). Reputation systems suffer
from collusion and Sybil attacks. If one node pretends to be many
nodes who rate each other well, it will have a good reputation.

Chapter Notes

Game theory was started by a proof for mixed-strategy equilibria in two-person
zero-sum games by John von Neumann [Neu28]. Later, von Neumann and Mor-
genstern introduced game theory to a wider audience [NM44]. In 1950 John
Nash proved that every game has a mixed Nash Equilibrium [Nas50]. The Pris-
oner’s Dilemma was first formalized by Flood and Dresher [Flo52]. The iterated
prisoner’s dilemma tournament was organized by Robert Axelrod [AH81]. The
Price of Anarchy definition is from Koutsoupias and Papadimitriou [KP99].
This allowed the creation of the Selfish Caching Game [CCW104], which we
used as a running example in this chapter. Braess’ paradox was discovered by
Dietrich Braess in 1968 [Bra68]. A generalized version of the second-price auc-
tion is the VCG auction, named after three successive papers from first Vickrey,

260 CHAPTER 22. GAME THEORY

then Clarke, and finally Groves [Vic61, Cla7l, Gro73]. One popular exam-
ple of selfishness in practice is BitThief — a BitTorrent client that successfully
downloads without uploading [LMSWO06]. Using game theory economists try to
understand markets and predict crashes. Apart from John Nash, the Sveriges
Riksbank Prize (Nobel Prize) in Economics has been awarded many times to
game theorists. For example in 2007 Hurwicz, Maskin, and Myerson received
the prize for “for having laid the foundations of mechanism design theory”.
This chapter was written in collaboration with Philipp Brandes.

Bibliography

[AH81] Robert Axelrod and William Donald Hamilton. The evolution of
cooperation. Science, 211(4489):1390-1396, 1981.

[Bra68] Dietrich Braess. Uber ein paradoxon aus der verkehrsplanung. Un-
ternehmensforschung, 12(1):258-268, 1968.

[CCW04] Byung-Gon Chun, Kamalika Chaudhuri, Hoeteck Wee, Marco Bar-
reno, Christos H Papadimitriou, and John Kubiatowicz. Selfish
caching in distributed systems: a game-theoretic analysis. In Pro-
ceedings of the twenty-third annual ACM symposium on Principles
of distributed computing, pages 21-30. ACM, 2004.

[Cla71] Edward H Clarke. Multipart pricing of public goods. Public choice,
11(1):17-33, 1971.

[Flo52] Merrill M Flood. Some experimental games. Management Science,
5(1):5-26, 1952.

[Gro73] Theodore Groves. Incentives in teams. Econometrica: Journal of
the Econometric Society, pages 617-631, 1973.

[KP99] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilib-
ria. In STACS 99, pages 404-413. Springer, 1999.

[LMSWO06] Thomas Locher, Patrick Moor, Stefan Schmid, and Roger Watten-
hofer. Free Riding in BitTorrent is Cheap. In 5th Workshop on Hot
Topics in Networks (HotNets), Irvine, California, USA, November
2006.

[Nas50] John F. Nash. Equilibrium points in n-person games. Proc. Nat.
Acad. Sci. USA, 36(1):48-49, 1950.

[Neu28] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathema-
tische Annalen, 100(1):295-320, 1928.

[NM44] John von Neumann and Oskar Morgenstern. Theory of games and
economic behavior. Princeton university press, 1944.

[Vic61] William Vickrey. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of finance, 16(1):8-37, 1961.

Chapter 23

Dynamic Networks

Many large-scale distributed systems and networks are dynamic. In some net-
works, e.g., peer-to-peer, nodes participate only for a short period of time, and
the topology can change at a high rate. In wireless ad-hoc networks, nodes are
mobile and move around. In this chapter, we will study how to solve some basic
tasks if the network is dynamic. Under what conditions is it possible to compute
an accurate estimate of the size or some other property of the system? How
efficiently can information be disseminated reliably in the network? To what
extent does stability in the communication graph help solve these problems?

There are various reasons why networks can change over time and as a con-
sequence, there also is a wide range of possible models for dynamic networks.
Nodes might join or leave a distributed system. Some components or commu-
nication links may fail in different ways. Especially if the network devices are
mobile, the connectivity between them can change. Dynamic changes can occur
constantly or they might be infrequent enough so that the system can adapt to
each change individually.

We will look at a synchronous dynamic network model in which the graph
can change from round to round in a worst-case manner. To simplify things
(and to make the problems we study well-defined), we assume that the set of
nodes in the network is fixed and does not change. However, we will make
almost no assumptions how the set of edges changes over time. We require
some guarantees about the connectivity, apart from this, in each round, the
communication graph is chosen in a worst-case manner by an adversary.

23.1 Synchronous Edge-Dynamic Networks

We model a synchronous dynamic network by a dynamic graph G = (V, E),
where V is a static set of nodes, and F : Ny — (‘2/) is a function mapping a round
number r € Ny to a set of undirected edges E(r). Here (1) := {{u,v} |u,v € V}
is the set of all possible undirected edges over V.

Definition 23.1 (7-Interval Connectivity). A dynamic graph G = (V, E) s

said to be T-interval connected for T € N if for all r € N, the static graph
Grr = (V, Ot E(z)) is connected. If G is 1-interval connected we say

1=T

that G is always connected.

261

262 CHAPTER 23. DYNAMIC NETWORKS

For simplicity, we restrict to deterministic algorithms. Nodes communicate
with each other using anonymous broadcast. At the beginning of round r, each
node u decides what message to broadcast based on its internal state; at the
same time (and independently), the adversary chooses a set E(r) of edges for
the round. As in standard synchronous message passing, all nodes v for which
{u,v} € E(r) receive the message broadcast by node u in round r and each node
can perform arbitrary local computations upon receiving the messages from its
neighbors. We assume that all nodes in the network have a unique identifier
(ID). In most cases, we will assume that messages are restricted to O(logn) bits.
In these cases, we assume that node IDs can be represented using O(logn) bits,
so that a constant number of node IDs and some additional information can be
transmitted in a single message. We refer to the special case where all nodes are
woken up at once as synchronous start and to the general case as asynchronous
start.

We assume that each node in the network starts an execution of the protocol
in an initial state which contains its own ID and its input. Additionally, nodes
know nothing about the network, and initially cannot distinguish it from any
other network.

23.2 Problem Definitions

In the context of this chapter, we study the following problems.

Counting. An algorithm is said to solve the counting problem if whenever it is
executed in a dynamic graph comprising n nodes, all nodes eventually terminate
and output n.

k-verification. Closely related to counting, the k-verification problem re-
quires nodes to determine whether or not n < k. All nodes begin with k& as
their input, and must eventually terminate and output “yes” or “no”. Nodes
must output “yes” if and only if there are at most k& nodes in the network.

k-token dissemination. An instance of k-token dissemination is a pair (V, I),
where I : V' — P (T) assigns a set of tokens from some domain 7 to each node,
and |J,cy I(v)] = k. An algorithm solves k-token dissemination if for all
instances (V,I), when the algorithm is executed in any dynamic graph G =
(V,E), all nodes eventually terminate and output (J,cy I(u). We assume that
each token in the nodes’ input is represented using O(logn) bits. Nodes may or
may not know k, depending on the context. Of particular interest is all-to-all
token dissemination, a special case where kK = n and each node initially knows
exactly one token, i.e., |[I(u)| = 1 for all nodes u.

k-committee election. As an useful step towards solving counting and to-
ken dissemination, we consider a problem called k-committee election. In this
problem, nodes must partition themselves into sets, called committees, such that

a) the size of each committee is at most k and

b) if k > n, then there is just one committee containing all nodes.

23.3. BASIC INFORMATION DISSEMINATION 263

Each committee has a unique committee ID, and the goal is for all nodes to
eventually terminate and output a committee ID such that the two conditions
are satisfied.

23.3 Basic Information Dissemination

To start, let us study how a single piece of information is propagated through
a dynamic network. We assume that we have a dynamic network graph G with
n nodes such that G is always connected (G is 1-interval connected as defined
in Definition 23.1). Further assume that there is a single piece of information
(token), which is initially known by a single node.

Theorem 23.2. Assume that there is a single token in the network. Further
assume that at time 0 at least one node knows the token and that once they know
the token, all nodes broadcast it in every round. In a 1-interval connected graph
G = (V,E) with n nodes, after r <n —1 rounds, at least r + 1 nodes know the
token. Hence, in particular after n — 1 rounds, all nodes know the token.

Proof. We can proof the theorem by induction on r. Let T'(r) be the set of
nodes that know the token after » rounds. We need to show that for all » > 0,
|T(r)| > min{r + 1,n}. Because we assume that at time 0 at least one node
knows the token, clearly, |T°(0)| > 1. For the induction step, assume that after
r rounds, |T(r)| > min{r + 1,n}. ¥ T(r) =V, we have |[T(r +1)| > |T(r)| =n
and we are done. Otherwise, we have V' \ T'(r) # (. Therefore, by the 1-interval
connectivity assumption, there must be two nodes v € T'(r) and v € V' \ T'(r)
such that {u,v} € E(r +1). Hence, in round r + 1, node v gets the token an
therefore |T'(r +1)| > |T'(r)| + 1 > min {r + 2, n}. O

Remarks:

e Note that Theorem 23.2 only shows that after n — 1 rounds all nodes
know the token. If the nodes do not know n or an upper bound on n,
they do not know if all nodes know the token.

e We can apply the above techniques also if there is more than one token
in the network, provided that tokens form a totally-ordered set and
nodes forward the smallest (or biggest) token they know. It is then
guaranteed that the smallest (resp. biggest) token in the network will
be known by all nodes after at most n — 1 rounds. Note, however,
that in this case nodes do not know when they know the smallest or
biggest token.

The next theorem shows that essentially, for the general asynchronous start
case, 1-interval connectivity does not suffice to obtain anything better than what
is stated by the above theorem. If nodes do not know n or an upper bound on
n initially, they cannot find n.

Theorem 23.3. Counting is impossible in 1-interval connected graphs with
asynchronous start.

264 CHAPTER 23. DYNAMIC NETWORKS

Proof. Suppose by way of contradiction that A4 is a protocol for counting which
requires at most ¢(n) rounds in 1-interval connected graphs of size n. Let n’ =
max {t(n) + 1,n + 1}. We will show that the protocol cannot distinguish a static
line of length n from a dynamically changing line of length n’.

Given a sequence A = aj o0...0an, let shift(A4, r) denote the cyclic left-shift
of A in which the first r symbols (r > 0) are removed from the beginning of
the sequence and appended to the end. Consider an execution in a dynamic
line of length n’, where the line in round r is composed of two adjacent sections
Ao B,, where A = 0o0...0(n— 1) remains static throughout the execution,
and B(r) = shift(no...o(n' —1),r) is left-shifted by one in every round. The
computation is initiated by node 0 and all other nodes are initially asleep. We
claim that the execution of the protocol in the dynamic graph G = A o B(r)
is indistinguishable in the eyes of nodes 0,...,n — 1 from an execution of the
protocol in the static line of length n (that is, the network comprising section
A alone). This is proven by induction on the round number, using the fact that
throughout rounds 0, ..., t(n) — 1 none of the nodes in section A ever receives a
message from a node in section B: although one node in section B is awakened
in every round, this node is immediately removed and attached at the end of
section B, where it cannot communicate with the nodes in section A. Thus,
the protocol cannot distinguish the dynamic graph A from the dynamic graph
Ao B(r), and it produces the wrong output in one of the two graphs. O

Remark:

e The above impossibility result extends to all problems introduced in
Section 23.2 as long as we do not assume that the nodes know n or
an upper bound on n.

In light of the impossibility result of Theorem 23.3, let us now first consider
the synchronous start case where all nodes start the protocol at time 0 (with
round 1). We first look at the case where there is no bound on the message
size and describe a simple linear-time protocol for counting (and token dissem-
ination). The protocol is extremely simple, but it demonstrates some of the
ideas used in some of the later algorithms, where we eliminate the large mes-
sages using a stability assumption (T-interval connectivity) which allows nodes
to communicate with at least one of their neighbors for at least T rounds.

In the simple protocol, all nodes maintain a set A containing all the IDs they
have collected so far. In every round, each node broadcasts A and adds any IDs
it receives. Nodes terminate when they first reach a round r in which |A] < r.

A« {self};
forr=1,2,...do
broadcast A;
receive By, ..., B, from neighbors;
A+ AUByU...UBy:
if |A| <r then terminate and output |A|;

)

end

Algorithm 1: Counting in linear time using large messages
Before analyzing Algorithm 1, let us fix some notation that will help to argue
about the algorithms we will study. If x is a variable of an algorithm, let z,,(r)

23.3. BASIC INFORMATION DISSEMINATION 265

be the value of the variable = at node w after r rounds (immediately before the
broadcast operation of round r+1). For instance in Algorithm 1, A, (r) denotes
the set of IDs of node u at the end of the r* iteration of the for-loop.

Lemma 23.4. Assume that we are given an 1-interval connected graph G =
(V, E) and that all nodes in V' execute Algorithm 1. If all nodes together start
at time 0, we have |A,(r)] > r+1 for allu €V and r < n.

Proof. We prove the lemma by induction on r. We clearly have |A,(0)| =1 for
all u because initially each node includes its own ID in A. Hence, the lemma is
true for r = 0.

For the induction step, assume that the claim of the lemma is true for some
given r < n— 1 for all dynamic graphs G. Let A/ (r + 1) be the set of identifiers
known by node w if all nodes start the protocol at time 1 (instead of 0) and run
it for r rounds. By the induction hypothesis, we have |A/ (r+1)| > r+1. If the
algorithm is started at time 0 instead of time 1, the set of identifiers in A, (r+1)
is exactly the union of all the identifiers known by the nodes in A/, (r+1) after the
first round (at time 1). This includes all the nodes in A/, (r 4+ 1) as well as their
neighbors in the first round. If |A], (r+1)| > r+2, we also have |A, (r+1)| > r+2
and we are done. Otherwise, by 1l-interval connectivity, there must at least be
one node v € V'\ 4/ (r+ 1) for which there is an edge to a node in A/, (r +1) in
round 1. We therefore have |A,(r+1)| > |AL(r+1)|+1>r+2. O

Theorem 23.5. In an l-interval connected graph G, Algorithm 1 terminates
at all nodes after n rounds and output n.

Proof. Follows directly from Lemma 23.4. For all nodes u, |A,(r)| >r+1>7r
for all r < n and |Ay(n)] = |Au(n —1)| = n. 0

Lemma 23.6. Assume that we are given a 2-interval comnected graph G =
(V, E) and that all nodes in V execute Algorithm 1. If node u is waken up and
starts the algorithm at time t, it holds that have |A,(t + 2r)| > r + 1 for all
0<r<n.

Proof. The proof follows along the same lines as the proof of Lemma 23.4 (see
exercises). O

Remarks:

e Because we did not bound the maximal message size and because
every node receives information (an identifier) from each other node,
Algorithm 1 can be used to solve all the problems defined in Section
23.2. For the token dissemination problem, the nodes also need to
attach a list of all known tokens to all messages

e As a consequence of Theorem 23.3, 1-interval connectivity does not
suffice to compute the number of nodes n in a dynamic network if
nodes start asynchronously. It turns out that in this case, we need a
slightly stronger connectivity assumption. If the network is 2-interval
connected instead of 1-interval connected, up to a constant factor in
the time complexity, the above results can also be obtained in the
asynchronous start case (see exercises).

266 CHAPTER 23. DYNAMIC NETWORKS

e For the remainder of the chapter, we will only consider the simpler
synchronous start case. For T' > 2, all discussed results that hold for
T-interval connected networks with synchronous start also hold for
asynchronous start with the same asymptotic bounds.

23.4 Small Messages

We now switch to the more interesting (and more realistic) case where in each
round, each node can only broadcast a message of O(logn) bits. We will first
show how to use k-committee election to solve counting. We first describe how
to obtain a good upper bound on n. We will then see that the same algorithm
can also be used to find n exactly and to solve token dissemination.

23.4.1 k-Verification

The counting algorithm works by successive doubling: at each point the nodes
have a guess k for the size of the network, and attempt to verify whether or not
k > n. If it is discovered that k < n, the nodes double k and repeat; if k£ > n,
the nodes halt and output the count.

Suppose that nodes start out in a state that represents a solution to k-
committee election: each node has a committee ID, such that no more than k
nodes have the same ID, and if £ > n then all nodes have the same committee ID.
The problem of checking whether & > n is then equivalent to checking whether
there is more than one committee: if k¥ > n there must be one committee only,
and if k¥ < n there must be more than one. Nodes can therefore check if £ > n
by executing a simple k-round protocol that checks if there is more than one
committee in the graph.

The k-verification protocol Each node has a local variable z, which is
initially set to 1. While z,, = 1, node u broadcasts its committee ID. If it hears
from some neighbor a different committee ID from its own, or the special value
L, it sets z,, < 0 and broadcasts L in all subsequent rounds. After k rounds,
all nodes output the value of their z variable.

Lemma 23.7. If the initial state of the execution represents a solution to k-
committee election, at the end of the k-verification protocol each node outputs 1
iff Kk >n.

Proof. First suppose that & > n. In this case there is only one committee in
the graph; no node ever hears a committee ID different from its own. After k
rounds all nodes still have z = 1, and all output 1.

Next, suppose k£ < n. We can show that after the ith round of the protocol,
at least i nodes in each committee have z = 0. In any round of the protocol,
consider a cut between the nodes that belong to a particular committee and
still have z = 1, and the rest of the nodes, which either belong to a different
committee or have z = 0. From 1l-interval connectivity, there is an edge in
the cut, and some node u in the committee that still has z, = 1 hears either
a different committee ID or L. Node w then sets z, < 0, and the number of
nodes in the committee that still have z = 1 decreases by at least one. Since

23.4. SMALL MESSAGES 267

each committee initially contains at most k nodes, after £ rounds all nodes in
all committees have z = 0, and all output 0. O

23.4.2 k-Committee Election

We can solve k-committee in O(k?) rounds as follows. Each node u stores
two local variables, committee,, and leader,. A node that has not yet joined a
committee is called active, and a node that has joined a committee is inactive.
Once nodes have joined a committee they do not change their choice.

Initially all nodes consider themselves leaders, but throughout the protocol,
any node that hears an ID smaller than its own adopts that ID as its leader.
The protocol proceeds in k cycles, each consisting of two phases, polling and
selection.

1. Polling phase: for £ — 1 rounds, all nodes propagate the ID of the smallest
active node of which they are aware.

2. Selection phase: in this phase, each node that considers itself a leader
selects the smallest ID it heard in the previous phase and invites that
node to join its committee. An invitation is represented as a pair (z,y),
where z is the ID of the leader that issued the invitation, and y is the ID
of the invited node. All nodes propagate the smallest invitation of which
they are aware for k — 1 (invitations are sorted in lexicographic order, so
the invitations issued by the smallest node in the network will win out
over other invitations. It turns out, though, that this is not necessary for
correctness; it is sufficient for each node to forward an arbitrary invitation
from among those it received).

At the end of the selection phase, a node that receives an invitation to join
its leader’s committee does so and becomes inactive. (Invitations issued
by nodes that are not the current leader can be accepted or ignored; this,
again, does not affect correctness.)

At the end of the k cycles, any node u that has not been invited to join a
committee outputs committee,, = u. The details are given in Algorithm 2.

Lemma 23.8. Algorithm 2 solves the k-committee problem in O(k?) rounds in
1-interval connected networks.

Proof. The time complexity is immediate. To prove correctness, we show that
after the protocol ends, the values of the local committee, variables constitute
a valid solution to k-committee.

1. In each cycle, each node invites at most one node to join its committee.
After k cycles at most k£ nodes have joined any committee. Note that the
first node invited by a leader u to join w’s committee is always u itself.
Thus, if after k cycles node u has not been invited to join a committee, it
follows that u did not invite any other node to join its committee; when it
forms its own committee in the last line of the algorithm, the committee’s
size is 1.

2. Suppose that £ > n, and let u be the node with the smallest ID in the
network. Following the polling phase of the first cycle, all nodes v have

268 CHAPTER 23. DYNAMIC NETWORKS

leader + self;

committee <— L;

fori=0,...,k do

// Polling phase

if committee = 1 then

‘ min_active < self ; // The node nominates itself for selection

else

‘ min_active < L;

end

for 7=0,...,k—1do
broadcast min_active;

receive x1, ..., xs from neighbors;
min_active < min {min_active, 1, ..., Ts};
end

// Update leader

leader < min {leader, min_active};

// Selection phase

if leader = self then

// Leaders invite the smallest ID they heard
invitation < (self , min_active);

else

// Non-leaders do not invite anybody

mvitation <+ L
nd

or j=0,...,k—1do
broadcast invitation;

¢}

"

receive yi,...,Yys from neighbors;
invitation < min {invitation,y1,...,ys} ; // (in lexicographic
order)

end

// Join the leader’s committee, if invited
if invitation = (leader, self) then

‘ committee = leader;
end

end

if committee = L then
‘ committee < self;

end

Algorithm 2: k-committee in always-connected graphs

23.5. MORE STABLE GRAPHS 269

leader, = wu for the remainder of the protocol. Thus, throughout the
execution, only node wu issues invitations, and all nodes propagate u’s
invitations. Since k > n rounds are sufficient for u to hear the ID of the
minimal active node in the network, in every cycle node u successfully
identifies this node and invites it to join u’s committee. After k cycles, all
nodes will have joined.

O

Remark:

e The protocol can be modified easily to solve all-to-all token dissemi-
nation if k > n. Let t, be the token node u received in its input (or
L if node u did not receive a token). Nodes attach their tokens to
their IDs, and send pairs of the form (u,t,) instead of just u. Like-
wise, invitations now contain the token of the invited node, and have
the structure (leader, (u,t,)). The min operation disregards the token
and applies only to the ID. At the end of each selection phase, nodes
extract the token of the invited node, and add it to their collection.
By the end of the protocol every node has been invited to join the
committee, and thus all nodes have seen all tokens.

23.5 More Stable Graphs

S 0
fori=0,...,[k/T] —1do
forr=0,...,27T—1do
if S # A then
t+ min(A4\ S);
broadcast t;
S+ SuU{t}
end
receive t1,...,ts from neighbors;
A%Au{tl,...,ts}
end

S0
end

return A

Procedure disseminate(A, T, k)

In this section we show that in T-interval connected graphs the computation
can be sped up by a factor of T. To do this we employ a neat pipelining effect,
using the temporarily stable subgraphs that T-interval connectivity guarantees;
this allows us to disseminate information more quickly. Basically, because we
are guaranteed that some edges and paths persist for T' rounds, it suffices to
send a particular ID or token only once in T’ rounds to guarantee progress.
Other rounds can then be used for different tokens. For convenience we assume
that the graph is 2T -interval connected for some T' > 1.

270 CHAPTER 23. DYNAMIC NETWORKS

Procedure disseminate gives an algorithm for exchanging at least T pieces
of information in n rounds when the dynamic graph is 27-interval connected.
The procedure takes three arguments: a set of tokens A, the parameter T', and
a guess k for the size of the graph. If k£ > n, each node is guaranteed to learn
the T smallest tokens that appeared in the input to all the nodes.

The execution of procedure disseminate is divided into [k/T] phases, each
consisting of 27" rounds. During each phase, each node maintains the set A of
tokens it has already learned and a set S of tokens it has already broadcast
in the current phase (initially empty). In each round of the phase, the node
broadcasts the smallest token it has not yet broadcast in the current phase,
then adds that token to S.

We refer to each iteration of the inner loop as a phase. Since a phase lasts
2T rounds and the graph is 27T-interval connected, there is some connected
subgraph that exists throughout the phase. Let G be a connected subgraph
that exists throughout phase i, for i = 0,...,[k/T] — 1. We use dist;(u,v) to
denote the distance between nodes u,v € V in G5.

Let K;(r) denote the set of nodes that know token ¢ by the beginning of
round 7, that is, Ky(r) = {u € V|t € A,(r)}. In addition, let I be the set of
T smallest tokens in (J,cy Au(0). Our goal is to show that when the protocol
terminates we have K;(r) =V for all t € I.

For a node u € V, a token t € P, and a phase i, we define tdist;(u,t) to be
the distance of u from the nearest node in G/ that knows ¢ at the beginning of
phase :

tdist(u, t) := min {dist; (u,v) |v € K, (2T -4)}.

Here and in the sequel, we use the convention that min () := co. For convenience,
we use S%(r) := S, (2T - i + r) to denote the value of S, in round 7 of phase
i. Similarly we denote A% (r) := A, (2T -i +r) and K;(r) := K,(2T i + r).
Correctness hinges on the following property.

Lemma 23.9. For any node uw € V, token t € |J, oy Av(0), and round r such
that tdist;(u,t) < r < 2T, either t € Si(r+ 1) or S,(r + 1) includes at least
(r — tdist; (u, t)) tokens that are smaller than t.

Proof. By induction on r. For r = 0 the claim is immediate.

Suppose the claim holds for round r — 1 of phase i, and consider round
r > tdist;(u,t). If r = tdist;(u,t), then r — tdist;(u,t) = 0 and the claim
holds trivially. Thus, suppose that r > tdist;(u,t). Hence, r — 1 > tdist;(u, t),
and the induction hypothesis applies: either t € S’ (r) or St (r) includes at least
(r — 1 — tdist;(u, t)) tokens that are smaller than ¢. In the first case we are done,
since S%(r) C S (r+1); thus, assume that ¢ & S? (r), and S’ (r) includes at least
(r — 1 — tdist;(u, t)) tokens smaller than ¢t. However, if S?(r) includes at least
(r — tdist;(u,t)) tokens smaller than ¢, then so does S (r + 1), and the claim is
again satisfied; thus we assume that S? (1) includes exactly (r — 1 — tdist;(u, t))
tokens smaller than ¢.

It is sufficient to prove that min (A% (r)\ Si(r)) < t: if this holds, then
in round r node u broadcasts min (A% (r) \ Si(r)), which is either ¢ or a to-
ken smaller than t; thus, either t € S (r + 1) or S} (r + 1) includes at least
(r — tdist;(u, t)) tokens smaller than ¢, and the claim holds.

23.5. MORE STABLE GRAPHS 271

First we handle the case where tdist;(u,t) = 0. In this case, t € A% (0) C
Al (r). Since we assumed that ¢ & Si(r) we have t € A%(r)\ Si(r), which
implies that min (A% (r) \ Si(r)) < t.

Next suppose that tdist;(u,t) > 0. Let x € K;(0) be a node such
that dist;(u,x) = tdist(u,t) (such a node must exist from the definition of
tdist;(u, t)), and let v be a neighbor of u along the path from u to = in G;, such
that dist;(v,z) = dist;(u,2) — 1 < r. From the induction hypothesis, either
t € Si(r) or Si(r) includes at least (r — 1 — tdist;(v,t)) = (r — tdist;(u,t)) to-
kens that are smaller than ¢. Since the edge between u and v exists throughout
phase i, node u receives everything v sends in phase i, and hence S? (r) C A% (r).
Finally, because we assumed that S? (1) contains exactly (r — 1 — tdist;(u, t)) to-
kens smaller than ¢, and does not include ¢ itself, we have min (A% (r) \ Si(r)) <
t, as desired. O

Using Lemma 23.9 we can show: correct.

Lemma 23.10. If k > n, at the end of procedure disseminate the set A, of
each node u contains the T smallest tokens.

Proof. Let NZ(t) := {u € V| tdist;(u,t) < d} denote the set of nodes at dis-
tance at most d from some node that knows ¢ at the beginning of phase i, and
let t be one of the T smallest tokens.

From Lemma 23.9, for each node u € NI (t), either t € S%(2T + 1) or
S¢ (2T + 1) contains at least 27" — T'= T tokens that are smaller than t. But ¢
is one of the T smallest tokens, so the second case is impossible. Therefore all
nodes in N7 (¢) know token ¢ at the end of phase i. Because G; is connected we
have |NI'(t)| > min {n — |K;(t)|,T}; that is, in each phase T new nodes learn ¢,
until all the nodes know ¢. Since there are no more than k& nodes and we have
[k/T] phases, at the end of the last phase all nodes know ¢. O

To solve counting and token dissemination with up to n tokens, we use
Procedure disseminate to speed up the k-committee election protocol from
Algorithm 2. Instead of inviting one node in each cycle, we can use disseminate
to have the leader learn the IDs of the T smallest nodes in the polling phase,
and use procedure disseminate again to extend invitations to all T smallest
nodes in the selection phase. Thus, in O(k+T') rounds we can increase the size
of the committee by T'.

Theorem 23.11. It is possible to solve k-committee election in O(k + k*/T)
rounds in T-interval connected graphs. When used in conjunction with the k-
verification protocol, this approach yields O(n+n?/T)-round protocols for count-
ing all-to-all token dissemination.

Remarks:

e The same result can also be achieved for the asynchronous start case,
as long as T' > 2.

e The described algorithm is based on the assumptions that all nodes
know T (or that they have a common lower bound on T'). At the cost
of a log-factor, it is possible to drop this assumption and adapt to the
actual interval-connectivity 7.

272 CHAPTER 23. DYNAMIC NETWORKS

e It is not known whether the bound of Theorem 23.11 is tight. It can be
shown that it is tight for a restricted class of protocols (see exercises).

e If we make additional assumptions about the stable subgraphs that
are guaranteed for intervals of length 7', the bound in Theorem 23.11
can be improved. E.g., if intervals of length T induce a stable k-

vertex connected subgraph, the complexity can be improved to O(n+
n?/(kT)).

Chapter Notes

See [Sch10, BWO05].

Bibliography

[BWO05] Regina ODell Bischoff and Roger Wattenhofer. Information Dissemi-
nation in Highly Dynamic Graphs. In 3rd ACM Joint Workshop on
Foundations of Mobile Computing (DIALM-POMC), Cologne, Ger-
many, September 2005.

[Sch10] Leonard J. Schulman, editor. Proceedings of the 42nd ACM Symposium
on Theory of Computing, STOC 2010, Cambridge, Massachusetts,
USA, 5-8 June 2010. ACM, 2010.

Chapter 24

All-to-All Communication

In the previous chapters, we have mostly considered communication on a par-
ticular graph G = (V, E), where any two nodes v and v can only communicate
directly if {u,v} € E. This is however not always the best way to model a net-
work. In the Internet, for example, every machine (node) is able to “directly”
communicate with every other machine via a series of routers. If every node in
a network can communicate directly with all other nodes, many problems can
be solved easily. For example, assume we have n servers, each hosting an ar-
bitrary number of (numeric) elements. If all servers are interested in obtaining
the maximum of all elements, all servers can simultaneously, i.e., in one com-
munication round, send their local maximum element to all other servers. Once
these maxima are received, each server knows the global maximum.

Note that we can again use graph theory to model this all-to-all commu-
nication scenario: The communication graph is simply the complete graph
K= (V, (g)) If each node can send its entire local state in a single message,
then all problems could be solved in 1 communication round in this model!
Since allowing unbounded messages is not realistic in most practical scenarios,
we restrict the message size: Assuming that all node identifiers and all other
variables in the system (such as the numeric elements in the example above)
can be described using O(logn) bits, each node can only send a message of size
O(logn) bits to all other nodes (messages to different neighbors can be differ-
ent). In other words, only a constant number of identifiers (and elements) can
be packed into a single message. Thus, in this model, the limiting factor is the
amount of information that can be transmitted in a fixed amount of time. This
is fundamentally different from the model we studied before where nodes are
restricted to local information about the network graph.

In this chapter, we study one particular problem in this model, the com-
putation of a minimum spanning tree (MST), i.e., we will again look at the
construction of a basic network structure. Let us first review the definition of a
minimum spanning tree from Chapter 2. We assume that each edge e is assigned
a weight we.

Definition 24.1 (MST). Given a weighted graph G = (V,E,w). The MST
of G is a spanning tree T minimizing w(T), where w(H) =)y we for any
subgraph H C G.

273

274 CHAPTER 24. ALL-TO-ALL COMMUNICATION

Remarks:

e Since we have a complete communication graph, the graph has (Z)
edges in the beginning.

e As in Chapter 2, we assume that no two edges of the graph have the
same weight. Recall that this assumption ensures that the MST is
unique. Recall also that this simplification is not essential as one can
always break ties by using the IDs of adjacent vertices.

For simplicity, we assume that we have a synchronous model (as we are
only interested in the time complexity, our algorithm can be made asynchro-
nous using synchronizer a at no additional cost (cf. Chapter 10). As usual, in
every round, every node can send a (potentially different) message to each of
its neighbors. In particular, note that the message delay is 1 for every edge e
independent of the weight w.. As mentioned before, every message can contain
a constant number of node IDs and edge weights (and O(logn) additional bits).

Remarks:

e Note that for graphs of arbitrary diameter D, if there are no bounds on
the number of messages sent, on the message size, and on the amount
of local computations, there is a straightforward generic algorithm to
compute an MST in time D: In every round, every node sends its
complete state to all its neighbors. After D rounds, every node knows
the whole graph and can compute any graph structure locally without
any further communication.

e In general, the diameter D is also an obvious lower bound for the time
needed to compute an MST. In a weighted ring, e.g., it takes time D
to find the heaviest edge. In fact, on the ring, time D is required to
compute any spanning tree.

In this chapter, we are not concerned with lower bounds, we want to give an
algorithm that computes the MST as quickly as possible instead! We again use
the following lemma that is proven in Chapter 2.

Lemma 24.2. For a given graph G let T be an MST, and let T' C T be a
subgraph (also known as a fragment) of the MST. Edge e = (u,v) is an outgoing
edge of T" if u € T' and v € T' (or vice versa). Let the minimum weight outgoing
edge of the fragment T' be the so-called blue edge b(T'). Then T' Ub(T') C T.

Lemma 24.2 leads to a straightforward distributed MST algorithm. We start
with an empty graph, i.e., every node is a fragment of the MST. The algorithm
consists of phases. In every phase, we add the blue edge b(T") of every existing
fragment T’ to the MST. Algorithm 24.3 shows how the described simple MST
construction can be carried out in a network of diameter 1.

Theorem 24.4. On a complete graph, Algorithm 24.3 computes an MST in
time O(logn).

Proof. The algorithm is correct because of Lemma 24.2. Every node only needs
to send a single message to all its neighbors in every phase (line 4). All other
computations can be done locally without sending other messages. In particular,

275

Algorithm 24.3 Simple MST Construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: while v has neighbor v in different fragment do

3: find lowest-weight edge e between v and a node v in a different fragment
4: send e to all nodes

5: determine blue edges of all fragments

6

7

add blue edges of all fragments to MST, update fragments
end while

the blue edge of a given fragment is the lightest edge sent by any node of that
fragment. Because every node always knows the current MST (and all current
fragments), lines 5 and 6 can be performed locally.

In every phase, every fragment connects to at least one other fragment. The
minimum fragment size therefore at least doubles in every phase. Thus, the
number of phases is at most log, n. O

Remarks:

e Algorithm 24.3 does essentially the same thing as the GHS algorithm
(Algorithm 2.18) discussed in Chapter 2. Because we now have a
complete graph and thus every node can communicate with every
other node, things get simpler (and also much faster).

e Algorithm 24.3 does not make use of the fact that a node can send
different messages to different nodes. Making use of this possibility
will allow us to significantly reduce the running time of the algorithm.

Our goal is now to improve Algorithm 24.3. We assume that every node
has a unique identifier. By sending its own identifier to all other nodes, every
node knows the identifiers of all other nodes after one round. Let ¢(F) be the
node with the smallest identifier in fragment F. We call ¢(F') the leader of
fragment F'. In order to improve the running time of Algorithm 24.3, we need
to be able to connect every fragment to more than one other fragment in a
single phase. Algorithm 24.5 shows how the nodes can learn about the k = |F|
lightest outgoing edges of each fragment F' (in constant time!).

Given this set E’ of edges, each node can locally decide which edges can
safely be added to the constructed tree by calling the subroutine AddEdges
(Algorithm 24.6). Note that the set of received edges E’ in line 14 is the same
for all nodes. Since all nodes know all current fragments, all nodes add the same
set of edges!

Algorithm 24.6 uses the lightest outgoing edge that connects two fragments
(to a larger super-fragment) as long as it is safe to add this edge, i.e., as long as it
is clear that this edge is a blue edge. A (super-)fragment that has outgoing edges
in £’ that are surely blue edges is called safe. As we will see, a super-fragment
F is safe if all the original fragments that make up F are still incident to at least
one edge in E’ that has not yet been considered. In order to determine whether
all lightest outgoing edges in E’ that are incident to a certain fragment F have
been processed, a counter ¢(F) is maintained (see line 2). If an edge incident
to two (distinct) fragments F; and F; is processed, both ¢(F;) and c(F}) are
decremented by 1 (see Line 8).

276 CHAPTER 24. ALL-TO-ALL COMMUNICATION

Algorithm 24.5 Fast MST construction (at node v)

1: // all nodes always know all current MST edges and thus all MST fragments
2: repeat
F := fragment of v;
VF' # F, compute min-weight edge eps connecting v to F’
VF' # F, send ep: to ¢(F')
if v ={(F) then

VF' # F, determine min-weight edge ep pr between F' and F’

k:=|F]

E(F) := k lightest edges among ep for F' # F
10: send send each edge in E(F) to a different node in F

// for simplicity assume that v also sends an edge to itself

© P NP R W

11: end if

12: send edge received from ¢(F') to all nodes

13: // the following operations are performed locally by each node
14: E':= edges received by other nodes

15: AddEdges(E’)

16: until all nodes are in the same fragment

An edge connecting two distinct super-fragments 7' and F” is added if at
least one of the two super-fragments is safe. In this case, the two super-fragments
are merged into one (new) super-fragment. The new super-fragment is safe if
and only if both original super-fragements are safe and the processed edge e is
not the last edge in E’ incident to any of the two fragments F; and F; that are
incident to e, i.e., both counters ¢(F;) and ¢(F}) are still positive (see line 12).

The considered edge e may not be added for one of two reasons. It is possible
that both F" and F” are not safe. Since a super-fragment cannot become safe
again, nothing has to be done in this case. The second reason is that F' = F”.
In this case, this single fragment may become unsafe if e reduced either ¢(F;)
or ¢(F}) to zero (see line 18).

Lemma 24.7. The algorithm only adds MST edges.

Proof. We have to prove that at the time we add an edge e in line 9 of Al-
gorithm 24.6, e is the blue edge of some (super-)fragment. By definition, e is
the lightest edge that has not been considered and that connects two distinct
super-fragments F' and F”. Since e is added, we know that either safe(F’)
or safe(F") is true. Without loss of generality, assume that F’ is safe. Ac-
cording to the definition of safe, this means that from each fragment F' in the
super-fragment F' we know at least the lightest outgoing edge, which implies
that we also know the lightest outgoing edge, i.e., the blue edge, of F’. Since e
is the lightest edge that connects any two super-fragments, it must hold that e
is exactly the blue edge of ’. Thus, whenever an edge is added, it is an MST
edge. O

Theorem 24.8. Algorithm 24.5 computes an MST in time O(loglogn).

Proof. Let By denote the size of the smallest fragment after phase k of Algo-
rithm 24.5. We first show that every fragment merges with at least Sj other
fragments in each phase. Since the size of each fragment after phase & is at least

277

Algorithm 24.6 AddEdges(E’): Given the set of edges E’, determine which
edges are added to the MST
1: Let Fi,..., F, be the initial fragments

2: VE; € {FY,...,F.},c(F;) := # incident edges in E’

3: Let Fy := Fy,...,F, := F, be the initial super-fragments

4: VF; € {F1,..., Fp}, safe(F;) = true

5. while £’ # () do

6: e := lightest edge in E’ between the original fragments F; and Fj
7. E' :=FE'\{e}

8 o(F;) =c(F;) — 1, c(Fj) :==c(F;) — 1

9: if e connects super-fragments 7 # F" and (safe(F’) or safe(F")) then
10: add e to MST

11: merge F' and F” into one super-fragment Fj, ..,

12: if safe(F’) and safe(F”) and c(F;) > 0 and ¢(F;) > 0 then
13: safe(Fnew) := true

14: else

15: safe(Fpnew) := false

16: end if

17 else if 7/ = F" and (c¢(F;) =0 or ¢(F;) =0) then
18: safe(F') = false

19: end if

20: end while

Bi by definition, we get that the size of each fragment after phase k 4 1 is at
least Sk (Bx + 1). Assume that a fragment F', consisting of at least S nodes,
does not merge with j other fragments in phase k + 1 for any k& > 0. Note
that F' cannot be safe because being safe implies that there is at least one edge
in E’ that has not been considered yet and that is the blue edge of F. Hence,
the phase cannot be completed in this case. On the other hand, if F' is not
safe, then at least one of its sub-fragments has used up all its 5 edges to other
fragments. However, such an edge is either used to merge two fragments or it
must have been dropped because the two fragments already belong to the same
fragment because another edge connected them (in the same phase). In either
case, we get that any fragment, and in particular F', must merge with at least
B other fragments.

Given that the minimum fragment size grows (quickly) in each phase and
that only edges belonging to the MST are added according to Lemma 24.7, we
conclude that the algorithm correctly computes the MST. The fact that

Br+1 > Be(Be + 1)

implies that 8y > 227" for any k > 1. Therefore after 1+log, log, n phases, the
minimum fragment size is n and thus all nodes are in the same fragment. [J

Chapter Notes

There is a considerable amount of work on distributed MST construction. Table
24.9 lists the most important results for various network diameters D. In the
above text we focus only on D = 1.

278 CHAPTER 24. ALL-TO-ALL COMMUNICATION

] Upper Bounds ‘

Graph Class Time Complexity Authors

General Graphs O(D + /n-log" n) Kutten, Peleg [KP95]

Diameter 2 O(logn) Lotker, Patt-Shamir,
Peleg [LPSPO6]

Diameter 1 O(loglogn) Lotker, Patt-Shamir,
Pavlov, Peleg [LPPSP03]

H Lower Bounds H

Graph Class Time Complexity Authors

Diameter 2(logn) Q(D + y/n/logn) Das Sarma, Holzer, Kor,
Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [SHK12]

Diameter 4 Q ((n/ log n)1/3> Das Sarma, Holzer, Kor,

Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [SHK*12]

Diameter 3 Q <(n/ log n)1/4> Das Sarma, Holzer, Kor,

Korman, Nanongkai,
Pandurangan, Peleg,
Wattenhofer [SHK*12]

Table 24.9: Time complexity of distributed MST construction

We want to remark that the above lower bounds remain true for random-
ized algorithms. We can even not hope for a better randomized approximation
algorithm for the MST as long as the approximation factor is bounded polyno-
mially in n. On the other hand it is not known whether the O(loglogn) time
complexity of Algorithm 24.5 is optimal. In fact, no lower bounds are known
for the MST construction on graphs of diameter 1 and 2. Algorithm 24.5 makes
use of the fact that it is possible to send different messages to different nodes.
If we assume that every node always has to send the same message to all other
nodes, Algorithm 24.3 is the best that is known. Also for this simpler case, no
lower bound is known.

Bibliography

[KP95] Shay Kutten and David Peleg. Fast distributed construction of k-
dominating sets and applications. In Proceedings of the fourteenth

annual ACM symposium on Principles of distributed computing,
pages 238-251. ACM, 1995.

[LPPSPO03] Zvi Lotker, Elan Pavlov, Boaz Patt-Shamir, and David Peleg. Mst

BIBLIOGRAPHY 279

[LPSP06)]

[SHK+12]

construction in o (log log n) communication rounds. In Proceedings
of the fifteenth annual ACM symposium on Parallel algorithms and
architectures, pages 94-100. ACM, 2003.

Zvi Lotker, Boaz Patt-Shamir, and David Peleg. Distributed mst for
constant diameter graphs. Distributed Computing, 18(6):453-460,
2006.

Atish Das Sarma, Stephan Holzer, Liah Kor, Amos Korman,
Danupon Nanongkai, Gopal Pandurangan, David Peleg, and Roger
Wattenhofer. Distributed verification and hardness of distributed
approximation. SIAM Journal on Computing, 41(5):1235-1265,
2012.

280 CHAPTER 24. ALL-TO-ALL COMMUNICATION

Chapter 25

Multi-Core Computing

This chapter is based on the article“Distributed Computing and the Multicore
Revolution” by Maurice Herlihy and Victor Luchangco. Thanks!

25.1 Introduction

In the near future, nearly all computers, ranging from supercomputers to cell
phones, will be multiprocessors. It is harder and harder to increase processor
clock speed (the chips overheat), but easier and easier to cram more processor
cores onto a chip (thanks to Moore’s Law). As a result, uniprocessors are giving
way to dual-cores, dual-cores to quad-cores, and so on.

However, there is a problem: Except for “embarrassingly parallel” applica-
tions, no one really knows how to exploit lots of cores.

25.1.1 The Current State of Concurrent Programming

In today’s programming practice, programmers typically rely on combinations
of locks and conditions, such as monitors, to prevent concurrent access by differ-
ent threads to the same shared data. While this approach allows programmers
to treat sections of code as “atomic”, and thus simplifies reasoning about inter-
actions, it suffers from a number of severe shortcomings.

e Programmers must decide between coarse-grained locking, in which a large
data structure is protected by a single lock (usually implemented using
operations such as test-and-set or compare and swap(CAS)), and fine-
grained locking, in which a lock is associated with each component of
the data structure. Coarse-grained locking is simple, but permits little or
no concurrency, thereby preventing the program from exploiting multiple
processing cores. By contrast, fine-grained locking is substantially more
complicated because of the need to ensure that threads acquire all nec-
essary locks (and only those, for good performance), and because of the
need to avoid deadlocks, when acquiring multiple locks. The decision is
further complicated by the fact that the best engineering solution may be

281

282 CHAPTER 25. MULTI-CORE COMPUTING

Algorithm Move(Element e, Table from, Table to)

if from.find(e) then
to.insert(e)
from.delete(e)
end if

platform-dependent, varying with different machine sizes, workloads, and
so on, making it difficult to write code that is both scalable and portable.

e Conventional locking provides poor support for code composition and
reuse. For example, consider a lock-based hash table that provides atomic
insert and delete methods. Ideally, it should be easy to move an ele-
ment atomically from one table to another, but this kind of composition
simply does not work. If the table methods synchronize internally, then
there is no way to acquire and hold both locks simultaneously. If the ta-
bles export their locks, then modularity and safety are compromised. For
a concrete example, assume we have two hash tables T7 and 75 storing
integers and using internal locks only. Every number is only inserted into
a table, if it is not already present, i.e., multiple occurrences are not per-
mitted. We want to atomically move elements using two threads between
the tables using Algorithm Move. If we have external locks, we must pay
attention to avoid deadlocks etc.

Table T1 is contains 1 and T2 is empty

Time Thread 1 Thread 2
Move(1,T1,T2) Move(1,T2,T1)

1 T1.find(1) delayed

2 T2.insert(1)

3 delayed T2.find(1)

4 T1.insert(1)

5 T1.delete(1) T2.delete(1)

both T1 and T2 are empty

e Such basic issues as the mapping from locks to data, that is, which locks
protect which data, and the order in which locks must be acquired and
released, are all based on convention, and violations are notoriously diffi-
cult to detect and debug. For these and other reasons, today’s software
practices make lock-based concurrent programs (too) difficult to develop,
debug, understand, and maintain.

The research community has addressed this issue for more than fifteen
years by developing nonblocking algorithms for stacks, queues and other
data structures. These algorithms are subtle and difficult. For example,
the pseudo code of a delete operation for a (non-blocking) linked list,
recently presented at a conference, contains more than 30 lines of code,
whereas a delete procedure for a (non-concurrent, used only by one thread)
linked list can be written with 5 lines of code.

25.2. TRANSACTIONAL MEMORY 283

25.2 Transactional Memory

Recently the transactional memory programming paradigm has gained mo-
mentum as an alternative to locks in concurrent programming. Rather than
using locks to give the illusion of atomicity by preventing concurrent access
to shared data with transactional memory, programmers designate regions of
code as transactions, and the system guarantees that such code appears to exe-
cute atomically. A transaction that cannot complete is aborted—its effects are
discarded—and may be retried. Transactions have been used to build large,
complex and reliable database systems for over thirty years; with transactional
memory, researchers hope to translate that success to multiprocessor systems.
The underlying system may use locks or nonblocking algorithms to implement
transactions, but the complexity is hidden from the application programmer.
Proposals exist for implementing transactional memory in hardware, in soft-
ware, and in schemes that mix hardware and software. This area is growing at
a fast pace.
More formally, a transaction is defined as follows:

Definition 25.1. A transaction in transactional memory is characterized by
three properties (ACI):

o Atomicity: Fither a transaction finishes all its operations or mo operation
has an effect on the system.

o (Consistency: All objects are in a valid state before and after the transac-
tion.

e Isolation: Other transactions cannot access or see data in an intermediate
(possibly invalid) state of any parallel running transaction.

Remarks:

e For database transactions there exists a fourth property called dura-
bility: If a transaction has completed, its changes are permanent, i.e.,
even if the system crashes, the changes can be recovered. In princi-
ple, it would be feasible to demand the same thing for transactional
memory, however this would mean that we had to use slow hard discs
instead of fast DRAM chips...

e Although transactional memory is a promising approach for concur-
rent programming, it is not a panacea, and in any case, transactional
programs will need to interact with other (legacy) code, which may
use locks or other means to control concurrency.

e One major challenge for the adoption of transactional memory is that
it has no universally accepted specification. It is not clear yet how to
interact with I/O and system calls should be dealt with. For instance,
imagine you print a news article. The printer job is part of a transac-
tion. After printing half the page, the transaction gets aborted. Thus
the work (printing) is lost. Clearly, this behavior is not acceptable.

e From a theory perspective we also face a number of open problems.
For example:

284 CHAPTER 25. MULTI-CORE COMPUTING

— System model: An abstract model for a (shared-memory) multi-
processor is needed that properly accounts for performance. In
the 80s, the PRAM model became a standard model for parallel
computation, and the research community developed many ele-
gant parallel algorithms for this model. Unfortunately, PRAM
assume that processors are synchronous, and that memory can
be accessed only by read and write operations. Modern computer
architectures are asynchronous and they provide additional op-
erations such as test-and-set. Also, PRAM did not model the
effects of contention nor the performance implications of multi-
level caching, assuming instead a flat memory with uniform-cost
access. More realistic models have been proposed to account for
the costs of interprocess communication, but these models still
assume synchronous processors with only read and write access
to memory.

— How to resolve conflicts? Many transactional memory implemen-
tations “optimistically” execute transactions in parallel. Con-
flicts between two transactions intending to modify the same
memory at the same time are resolved by a contention man-
ager. A contention manager decides whether a transaction con-
tinues, waits or is aborted. The contention management policy
of a transactional memory implementation can have a profound
effect on its performance, and even its progress guarantees.

25.3 Contention Management

After the previous introduction of transactional memory, we look at different
aspects of contention management from a theoretical perspective. We start with
a description of the model.

We are given a set of transactions S := {11, ..., T, } sharing up to s resources
(such as memory cells) that are executed on n threads. Each thread runs on a
separate processor/core Py, ..., P,. For simplicity, each transaction T' consists
of a sequence of tr operations. An operation requires one time unit and can
be a write access of a resource R or some arbitrary computation.! To perform
a write, the written resource must be acquired exclusively (i.e., locked) before
the access. Additionally, a transaction must store the original value of a written
resource. Only one transaction can lock a resource at a time. If a transaction
A attempts to acquire a resource, locked by B, then A and B face a conflict.
If multiple transactions concurrently attempt to acquire an unlocked resource,
an arbitrary transaction A will get the resource and the others face a conflict
with A. A contention manager decides how to resolve a conflict. Contention
managers operate in a distributed fashion, that is to say, a separate instance of a
contention manager is available for every thread and they operate independently.
Contention managers can make a transaction wait (arbitrarily long) or abort.
An aborted transaction undoes all its changes to resources and frees all locks
before restarting. Freeing locks and undoing the changes can be done with one
operation. A successful transaction finishes with a commit and simply frees

1Reads are of course also possible, but are not critical because they do not attempt to
modify data.

25.3. CONTENTION MANAGEMENT 285

all locks. A contention manager is unaware of (potential) future conflicts of a
transaction. The required resources might also change at any time.
The quality of a contention manager is characterized by different properties:

e Throughput: How long does it take until all transactions have committed?
How good is our algorithm compared to an optimal?

Definition 25.2. The makespan of the set S of transactions is the time
interval from the start of the first transaction until all transactions have
committed.

Definition 25.3. The competitive ratio is the ratio of the makespans of
the algorithm to analyze and an optimal algorithm.

e Progress guarantees: Is the system deadlock-free? Does every transaction
commit in finite time?

Definition 25.4. We look at three levels of progress guarantees:

— wait freedom (strongest guarantee): all threads make progress in a
finite number of steps

— lock freedom: one thread makes progress in a finite number of steps

— obstruction freedom (weakest): one thread makes progress in a finite
number of steps in absence of contention (no other threads compete
for the same resources)

Remarks:

e For the analysis we assume an oblivious adversary. It knows the algo-
rithm to analyze and chooses/modifies the operations of transactions
arbitrarily. However, the adversary does not know the random choices
(of a randomized algorithm). The optimal algorithm knows all deci-
sions of the adversary, i.e. first the adversary must say how transac-
tions look like and then the optimal algorithm, having full knowledge
of all transaction, computes an (optimal) schedule.

o Wait freedom implies lock freedom. Lock freedom implies obstruction
freedom.

e Here is an example to illustrate how needed resources change over
time: Consider a dynamic data structure such as a balanced tree. If a
transaction attempts to insert an element, it must modify a (parent)
node and maybe it also has to do some rotations to rebalance the
tree. Depending on the elements of the tree, which change over time,
it might modify different objects. For a concrete example, assume that
the root node of a binary tree has value 4 and the root has a (left)
child of value 2. If a transaction A inserts value 5, it must modify the
pointer to the right child of the root node with value 4. Thus it locks
the root node. If A gets aborted by a transaction B, which deletes
the node with value 4 and commits, it will attempt to lock the new
root node with value 2 after its restart.

286 CHAPTER 25. MULTI-CORE COMPUTING

e There are also systems, where resources are not locked exclusively.
All we need is a correct serialization (analogous to transactions in
database systems). Thus a transaction might speculatively use the
current value of a resource, modified by an uncommitted transaction.
However, these systems must track dependencies to ensure the ACI
properties of a transaction (see Definition 25.1). For instance, assume
a transaction 77 increments variable z from 1 to 2. Then transaction
T> might access x and assume its correct value is 2. If 77 commits ev-
erything is fine and the ACI properties are ensured, but if 77 aborts, T5
must abort too, since otherwise the atomicity property was violated.

e In practice, the number of concurrent transactions might be much
larger than the number of processors. However, performance may de-
crease with an increasing number of threads since there is time wasted
to switch between threads. Thus, in practice, load adaption schemes
have been suggested to limit the number of concurrent transactions
close to (or even below) the number of cores.

e In the analysis, we will assume that the number of operations is fixed
for each transaction. However, the execution time of a transaction (in
the absence of contention) might also change, e.g., if data structures
shrink, less elements have to be considered. Nevertheless, often the
changes are not substantial, i.e., only involve a constant factor. Fur-
thermore, if an adversary can modify the duration of a transaction
arbitrarily during the execution of a transaction, then any algorithm
must make the exact same choices as an optimal algorithm: Assume
two transactions Ty and T face a conflict and an algorithm Alg de-
cides to let Ty wait (or abort). The adversary could make the opposite
decision and let Ty proceed such that it commits at time tg. Then it
sets the execution time Tp to infinity, i.e., t7, = oo after ¢y. Thus,
the makespan of the schedule for algorithm Alg is unbounded though
there exists a schedule with bounded makespan. Thus the competitive
ratio is unbounded.

Problem complexity

In graph theory, coloring a graph with as few colors as possible is known to be
hard problem. A (vertex) coloring assigns a color to each vertex of a graph such
that no two adjacent vertices share the same color. It was shown that computing
an optimal coloring given complete knowledge of the graph is NP-hard. Even
worse, computing an approximation within a factor of x(G)°® X(G)/25 where
X(G) is the minimal number of colors needed to color the graph, is NP-hard as
well.

To keep things simple, we assume for the following theorem that resource
acquisition takes no time, i.e., as long as there are no conflicts, transactions get
all locks they wish for at once. In this case, there is an immediate connection to
graph coloring, showing that even an offline version of contention management,
where all potential conflicts are known and do not change over time, is extremely
hard to solve.

25.3. CONTENTION MANAGEMENT 287

Theorem 25.5. If the optimal schedule has makespan k and resource acquisi-
tion takes zero time, it is NP-hard to compute a schedule of makespan less than
klogk/25 even if all conflicts are known and transactions do not change their
resource requirements.

Proof. We will prove the claim by showing that any algorithm finding a schedule
taking k' < k(1°8%)/25 can be utilized to approximate the chromatic number of
any graph better than X(G)%

Given the graph G = (V, E), define that V is the set of transactions and
E is the set of resources. Each transaction (node) v € V needs to acquire a
lock on all its resources (edges) {v,w} € E, and then computes something for
exactly one round. Obviously, this “translation” of a graph into our scheduling
problem does not require any computation at all.

Now, if we knew a x(G)-coloring of G, we could simply use the fact that the
nodes sharing one color form an independent set and execute all transactions
of a single color in parallel and the colors sequentially. Since no two neighbors
are in an independent set and resources are edges, all conflicts are resolved.
Consequently, the makespan k is at most x(G).

On the other hand, the makespan k£ must be at least x(G): Since each trans-
action (i.e., node) locks all required resources (i.e., adjacent edges) for at least
one round, no schedule could do better than serve a (maximum) independent
set in parallel while all other transactions wait. However, by definition of the
chromatic number x(G), V' cannot be split into less than x(G) independent sets,
meaning that k > x(G). Therefore k = x(G).

In other words, if we could compute a schedule using k¥’ < k(°8%)/25 rounds
in polynomial time, we knew that

X(G)=k<FK < L(logk)/25 _ X(g)(logx(G))/%.

Remarks:

e The theorem holds for a central contention manager, knowing all
transactions and all potential conflicts. Clearly, the online problem,
where conflicts remain unknown until they occur, is even harder. Fur-
thermore, the distributed nature of contention managers also makes
the problem even more difficult.

e If resource acquisition does not take zero time, the connection be-
tween the problems is not a direct equivalence. However, the same
proof technique shows that it is NP-hard to compute a polynomial
approximation, i.e., k¥’ < k¢ for some constant ¢ > 1.

Deterministic contention managers

Theorem 25.5 showed that even if all conflicts are known, one cannot produce
schedules which makespan get close to the optimal without a lot of computation.
However, we target to construct contention managers that make their decisions
quickly without knowing conflicts in advance. Let us look at a couple of con-
tention managers and investigate their throughput and progress guarantees.

288 CHAPTER 25. MULTI-CORE COMPUTING

e A first naive contention manger: Be aggressive! Always abort the trans-
action having locked the resource. Analysis: The throughput might be
zero, since a livelock is possible. But the system is still obstruction free.
Consider two transactions consisting of three operations. The first opera-
tion of both is a write to the same resource R. If they start concurrently,
they will abort each other infinitely often.

e A smarter contention manager: Approximate the work done. Assume
before a start (also before a restart after an abort) a transaction gets
a unique timestamp. The older transaction, which is believed to have
already performed more work, should win the conflict.

Analysis: Clearly, the oldest transaction will always run until commit
without interruption. Thus we have lock-freedom, since at least one trans-
action makes progress at any time. In other words, at least one processor
is always busy executing a transaction until its commit. Thus, the bound
says that all transactions are executed sequentially. How about the com-
petitive ratio? We have s resources and n transactions starting at the
same time. For simplicity, assume every transaction 7; needs to lock at
least one resource for a constant fraction c of its execution time ¢7,. Thus,
at most s transactions can run concurrently from start until commit with-
out (possibly) facing a conflict (if s+ 1 transactions run at the same time,

at least two of them lock the same resource). Thus, the makespan of an
C'tTi

optimal contention manager is at least: Z?:o . The makespan of our
timestamping algorithm is at most the duration of a sequential execution,
i.e. the sum of the lengths of all transactions: Y ., tr,. The competitive
ratio is:

il _ 5.

St e
=0 s

Remarks:

— Unfortunately, in most relevant cases the number of resources
is larger than the number of cores, i.e., s > n. Thus, our
timestamping algorithm only guarantees sequential execution,
whereas the optimal might execute all transactions in parallel.

Are there contention managers that guarantee more than sequential execu-
tion, if a lot of parallelism is possible? If we have a powerful adversary, that can
change the required resources after an abort, the analysis is tight. Though we
restrict to deterministic algorithms here, the theorem also holds for randomized
contention managers.

Theorem 25.6. Suppose n transactions start at the same time and the adver-
sary is allowed to alter the resource requirement of any transaction (only) after

an abort, then the competitive ratio of any deterministic contention manager is

Proof. Assume we have n resources. Suppose all transactions consist of two
operations, such that conflicts arise, which force the contention manager to

25.3. CONTENTION MANAGEMENT 289

abort one of the two transactions Th;_1,To; for every i < n/2. More precisely,
transaction T5;_1 writes to resource Rs;_1 and to Rs; afterwards. Transaction
Tb; writes to resource Rs; and to Ro;_1 afterwards. Clearly, any contention
manager has to abort n/2 transactions. Now the adversary tells each transaction
which did not finish to adjust its resource requirements and write to resource
Ry as their first operation. Thus, for any deterministic contention manager the
n/2 aborted transactions must execute sequentially and the makespan of the
algorithm becomes Q(n).

The optimal strategy first schedules all transactions that were aborted and in
turn aborts the others. Since the now aborted transactions do not change their
resource requirements, they can be scheduled in parallel. Hence the optimal
makespan is 4, yielding a competitive ratio of Q(n). O

Remarks:

e The prove can be generalized to show that the ratio is (s) if s re-
sources are present, matching the previous upper bound.

e But what if the adversary is not so powerful, i.e., a transaction has a
fixed set of needed resources?

The analysis of algorithm timestamp is still tight. Consider the din-
ing philosophers problem: Suppose all transactions have length n and
transaction ¢ requires its first resource R; at time 1 and its second
R; 1 (except T, which only needs R,) at time n — i. Thus, each
transaction 7; potentially conflicts with transaction 7T;_; and trans-
action 7. Let transaction ¢ have the ith oldest timestamp. At time
n —1 transaction i+ 1 with 4 > 1 will get aborted by transaction ¢ and
only transaction 1 will commit at time n. After every abort transac-
tion ¢ restarts 1 time unit before transaction ¢ — 1. Since transaction
1—1 acquires its second resource ¢ —1 time units before its termination,
transaction ¢ —1 will abort transaction ¢ at least ¢ —1 times. After i—1
aborts transaction ¢ may commit. The total time until the algorithm
is done is bounded by the time transaction n stays in the system, i.e.,
at least . (n—1i) = Q(n?). An optimal schedule requires only O(n)
time: First schedule all transactions with even indices, then the ones
with odd indices.

e Let us try to approximate the work done differently. The transaction,
which has performed more work should win the conflict. A transaction
counts the number of accessed resources, starting from 0 after every
restart. The transaction which has acquired more resources, wins the
conflict. In case both have accessed the same number of resources,
the transaction having locked the resource may proceed and the other
has to wait.

Analysis: Deadlock possible: Transaction A and B start concurrently.
Transaction A writes to R as its first operation and to Ro as its
second operation. Transaction B writes to the resources in opposite
order.

290 CHAPTER 25. MULTI-CORE COMPUTING

Randomized contention managers

Though the lower bound of the previous section (Theorem 25.6) is valid for both
deterministic and randomized schemes, let us look at a randomized approach:

Each transaction chooses a random priority in [1,n]. In case of a conflict, the
transaction with lower priority gets aborted. (If both conflicting transactions
have the same priority, both abort.)

Additionally, if a transaction A was aborted by transaction B, it waits until
transaction B committed or aborted, then transaction A restarts and draws a
new priority.

Analysis: Assume the adversary cannot change the resource requirements,
otherwise we cannot show more than a competitive ratio of n, see Theorem
25.6. Assume if two transactions A and B (potentially) conflict (i.e., write to
the same resource), then they require the resource for at least a fraction ¢ of their
running time. We assume a transaction T' potentially conflicts with dr other
transactions. Therefore, if a transaction has highest priority among these dr
transactions, it will abort all others and commit successfully. The chance that
for a transaction T a conflicting transaction chooses the same random number
is (1 —1/n)97 > (1 —1/n)" =~ 1/e. The chance that a transaction chooses the
largest random number and no other transaction chose this number is thus at
least 1/dp - 1/e. Thus, for any constant ¢ > 1, after choosing e -dr - c-Inn
random numbers the chance that transaction T has commited successfully is

-dp-cln
1o (1oL) e g L
e-dr net

Assuming that the longest transaction takes time t,,4,, within that time a
transaction either commits or aborts and chooses a new random number. The
time to choose € - t,qq - ¢ - Inm numbers is thus at most e - t,,40 - dr - c-1Inn =
O(tmaz - dr - Inn). Therefore, with high probability each transaction makes
progress within a finite amount of time, i.e., our algorithm ensures wait freedom.
Furthermore, the competitive ratio of our randomized contention manger for the
previously considered dining philosophers problem is w.h.p. only O(Inn), since
any transaction only conflicts with two other transactions.

Chapter Notes

See [GWKO09, Att08, SW09, HSW10].

Bibliography

[Att08] Hagit Attiya. Needed: foundations for transactional memory.
SIGACT News, 39(1):59-61, 2008.

[GWKO09] Vijay K. Garg, Roger Wattenhofer, and Kishore Kothapalli, editors.
Distributed Computing and Networking, 10th International Confer-
ence, ICDCN 2009, Hyderabad, India, January 3-6, 2009. Proceed-
ings, volume 5408 of Lecture Notes in Computer Science. Springer,
2009.

BIBLIOGRAPHY 291

[HSW10]

[SW09]

David Hasenfratz, Johannes Schneider, and Roger Wattenhofer.
Transactional Memory: How to Perform Load Adaption in a Simple
And Distributed Manner. In The 2010 International Conference on
High Performance Computing € Simulation (HPCS), Caen, France,
June 2010.

Johannes Schneider and Roger Wattenhofer. Bounds On Contention
Management Algorithms. In 20th International Symposium on Algo-
rithms and Computation (ISAAC), Honolulu, USA, 2009.

292 CHAPTER 25. MULTI-CORE COMPUTING

Chapter 26

Dominating Set

In this chapter we present another randomized algorithm that demonstrates the
power of randomization to break symmetries. We study the problem of finding
a small dominating set of the network graph. As it is the case for the MIS, an
efficient dominating set algorithm can be used as a basic building block to solve
a number of problems in distributed computing. For example, whenever we need
to partition the network into a small number of local clusters, the computation
of a small dominating set usually occurs in some way. A particularly important
application of dominating sets is the construction of an efficient backbone for
routing.

Definition 26.1 (Dominating Set). Given an undirected graph G = (V, E), a
dominating set is a subset S C V of its nodes such that for all nodes v € V,
either v € S or a neighbor u of v is in S.

Remarks:

e It is well-known that computing a dominating set of minimal size is
NP-hard. We therefore look for approximation algorithms, that is,
algorithms which produce solutions which are optimal up to a certain
factor.

e Note that every MIS (cf. Chapter 7) is a dominating set. In general,
the size of every MIS can however be larger than the size of an optimal
minimum dominating set by a factor of (n). As an example, connect
the centers of two stars by an edge. Every MIS contains all the leaves
of at least one of the two stars whereas there is a dominating set of
size 2.

All the dominating set algorithms that we study throughout this chapter
operate in the following way. We start with S = (§ and add nodes to S until
S is a dominating set. To simplify presentation, we color nodes according to
their state during the execution of an algorithm. We call nodes in S black, nodes
which are covered (neighbors of nodes in S) gray, and all uncovered nodes white.
By W(v), we denote the set of white nodes among the direct neighbors of v,
including v itself. We call w(v) = |W (v)| the span of v.

293

294 CHAPTER 26. DOMINATING SET

26.1 Sequential Greedy Algorithm

Intuitively, to end up with a small dominating set S, nodes in S need to cover
as many neighbors as possible. It is therefore natural to add nodes v with a
large span w(v) to S. This idea leads to a simple greedy algorithm:

Algorithm 26.2 Greedy Algorithm
1: S =0
2: while there are white nodes do
3 v:={v|w) =max,{wu)}};
4
5

S :=SUuv;
: end while

Theorem 26.3. The Greedy Algorithm computes a In A-approzimation, that
is, for the computed dominating set S and an optimal dominating set S*, we

have 5|
< InA.
5%

Proof. Each time, we choose a new node of the dominating set (each greedy
step), we have cost 1. Instead of letting this node pay the whole cost, we
distribute the cost equally among all newly covered nodes. Assume that node
v, chosen in line 3 of the algorithm, is white itself and that its white neighbors
are vy, vz, v3, and v4. In this case each of the 5 nodes v and wvy,...,v4 get
charged 1/5. If v is chosen as a gray node, only the nodes vy, ..., v4 get charged
(they all get 1/4).

Now, assume that we know an optimal dominating set S*. By the definition
of dominating sets, to each node which is not in S*, we can assign a neighbor
from S*. By assigning each node to exactly one neighboring node of S*, the
graph is decomposed into stars, each having a dominator (node in S*) as center
and non-dominators as leaves. Clearly, the cost of an optimal dominating set
is 1 for each such star. In the following, we show that the amortized cost
(distributed costs) of the greedy algorithm is at most In A + 2 for each star.
This suffices to prove the theorem.

Consider a single star with center v* € S* before choosing a new node u
in the greedy algorithm. The number of nodes that become dominated when
adding u to the dominating set is w(u). Thus, if some white node v in the star of
v* becomes gray or black, it gets charged 1/w(u). By the greedy condition, u is a
node with maximal span and therefore w(u) > w(v*). Thus, v is charged at most
1/w(v*). After becoming gray, nodes do not get charged any more. Therefore
first node that is covered in the star of v* gets charged at most 1/(d(v*) + 1).
Because w(v*) > d(v*) when the second node is covered, the second node gets
charged at most 1/d(v*). In general, the i node that is covered in the star of
v* gets charged at most 1/(d(v*) + ¢ — 2). Thus, the total amortized cost in the
star of v* is at most

Lo o]
dlv*)+1 d(v*) 2

+ % = H(d(v") +1) < H(A +1) <In(A) +2

where A is the maximal degree of G and where H(n) = Y. | 1/i is the n*™
number. O

26.2. DISTRIBUTED GREEDY ALGORITHM 295

Remarks:

e One can show that unless NP C DTIME(n©(°glg %)) no polynomial-
time algorithm can approximate the minimum dominating set problem
better than (1 —o(1))-ln A. Thus, unless P ~ NP, the approximation
ratio of the simple greedy algorithm is optimal (up to lower order
terms).

26.2 Distributed Greedy Algorithm

For a distributed algorithm, we use the following observation. The span of a
node can only be reduced if any of the nodes at distance at most 2 is included
in the dominating set. Therefore, if the span of node v is greater than the span
of any other node at distance at most 2 from v, the greedy algorithm chooses
v before any of the nodes at distance at most 2. This leads to a very simple
distributed version of the greedy algorithm. Every node v executes the following
algorithm.

Algorithm 26.4 Distributed Greedy Algorithm (at node v):

1: while v has white neighbors do

2: compute span w(v);

3: send w(v) to nodes at distance at most 2;

4: if w(v) largest within distance 2 (ties are broken by IDs) then
5 join dominating set

6: end if

7: end while

Theorem 26.5. Algorithm 26./ computes a dominating set of size at most
In A + 2 times the size of an optimal dominating set in O(n) rounds.

Proof. The approximation quality follows directly from the above observation
and the analysis of the greedy algorithm. The time complexity is at most linear
because in every iteration of the while loop, at least one node is added to the
dominating set and because one iteration of the while loop can be implemented
in a constant number of rounds. O

The approximation ratio of the above distributed algorithm is best possi-
ble (unless P ~ NP or unless we allow local computations to be exponential).
However, the time complexity is very bad. In fact, there really are graphs on
which in each iteration of the while loop, only one node is added to the dom-
inating set. As an example, consider a graph as in Figure 26.6. An optimal
dominating set consists of all nodes on the center axis. The distributed greedy
algorithm computes an optimal dominating set, however, the nodes are chosen
sequentially from left to right. Hence, the running time of the algorithm on
the graph of Figure 26.6 is Q(y/n). Below, we will see that there are graphs on
which Algorithm 26.4 even needs 2(n) rounds.

The problem of the graph of Figure 26.6 is that there is a long path of
descending degrees (spans). Every node has to wait for the neighbor to the
left. Therefore, we want to change the algorithm in such a way that there

296 CHAPTER 26. DOMINATING SET

SHEAAN

Figure 26.6: Distributed greedy algorithm: Bad example

e

e

Figure 26.7: Distributed greedy algorithm with rounded spans: Bad example

are no long paths of descending spans. Allowing for an additional factor 2 in
the approximation ratio, we can round all spans to the next power of 2 and
let the greedy algorithm take a node with a maximal rounded span. In this
case, a path of strictly descending rounded spans has at most length logn. For
the distributed version, this means that nodes whose rounded span is maximal
within distance 2 are added to the dominating set. Ties are again broken by
unique node IDs. If node IDs are chosen at random, the time complexity for
the graph of Figure 26.6 is reduced from Q(y/n) to O(logn).

Unfortunately, there still is a problem remaining. To see this, we consider
Figure 26.7. The graph of Figure 26.7 consists of a clique with n/3 nodes
and two leaves per node of the clique. An optimal dominating set consists
of all the n/3 nodes of the clique. Because they all have distance 1 from each
other, the described distributed algorithm only selects one in each while iteration
(the one with the largest ID). Note that as soon as one of the nodes is in the
dominating set, the span of all remaining nodes of the clique is 2. They do not
have common neighbors and therefore there is no reason not to choose all of
them in parallel. However, the time complexity of the simple algorithm is 2(n).
In order to improve this example, we need an algorithm that can choose many
nodes simultaneously as long as these nodes do not interfere too much, even
if they are neighbors. In Algorithm 26.8, N(v) denotes the set of neighbors of
v (including v itself) and Na(v) = U,en () N(u) are the nodes at distance at
most 2 of v. As before, W (v) = {u € N(v) : u is white} and w(v) = [W(v)|.

It is clear that if Algorithm 26.8 terminates, it computes a valid dominating
set. We will now show that the computed dominating set is small and that the
algorithm terminates quickly.

Theorem 26.9. Algorithm 26.8 computes a dominating set of size at most

26.2. DISTRIBUTED GREEDY ALGORITHM 297

Algorithm 26.8 Fast Distributed Dominating Set Algorithm (at node v):
1 W(v) := N(v); w(v) := |W(v)|;
2: while W (v) # 0 do

w(v) = 2082w, // round down to next power of 2

W(v) 1= maxye N, (v) W(W);

if @w(v) = w(v) then v.active := true else v.active := false end if;

compute support s(v) := |[{u € N(v) : u.active = true}|;

§(U) = MaXyew (v) S(U),

v.candidate := false;

if v.active then

10: v.candidate := true with probability 1/3(v)

11: end if;

12: compute c¢(v) := [{u € W(v) : u.candidate = true};

13: if v.candidate and }, oy, c(u) < 3w(v) then

14: node v joins dominating set

15: end if

16: W(v) :={u € N(v) : u is white}; w(v) := |W(v)|;

17: end while

(6-InA +12) - |S*|, where S* is an optimal dominating set.

Proof. The proof is a bit more involved but analogous to the analysis of the
approximation ratio of the greedy algorithm. Every time, we add a new node v
to the dominating set, we distribute the cost among v (if it is still white) and its
white neighbors. Consider an optimal dominating set S*. As in the analysis of
the greedy algorithm, we partition the graph into stars by assigning every node
u not in S* to a neighbor v* in S*. We want to show that the total distributed
cost in the star of every v* € S* is at most 6 H(A + 1).

Consider a node v that is added to the dominating set by Algorithm 26.8.
Let W(v) be the set of white nodes in N(v) when v becomes a dominator. For
anode u € W(v) let ¢(u) be the number of candidate nodes in N (u). We define
C(v) = Xy ew(w c(u). Observe that C(v) < 3w(v) because otherwise v would
not join the dominating set in line 15. When adding v to the dominating set,
every newly covered node u € W (v) is charged 3/(c(u)w(v)). This compensates
the cost 1 for adding v to the dominating set because

3 3 3
T = v = > 1.
ue%/:(v) c(u)w(v) w(v) - 3 L ew) c(u)/w(v) C(v)/w(v)

The first inequality follows because it can be shown that for a; > 0, Zle 1/a; >
k/a where a = E?Zl a;/k.

Now consider a node v* € S* and assume that a white node u € W (v*) turns
gray or black in iteration ¢ of the while loop. We have seen that u is charged
3/(c(u)w(v)) for every node v € N(u) that joins the dominating set in iteration
t. Since a node can only join the dominating set if its span is largest up to a
factor of two within two hops, we have w(v) > w(v*)/2 for every node v € N(u)
that joins the dominating set in iteration ¢. Because there are at most ¢(u) such
nodes, the charge of u is at most 6/w(v*). Analogously to the sequential greedy

298 CHAPTER 26. DOMINATING SET

algorithm, we now get that the total cost in the star of a node v* € S* is at
most

IN(")]
> b - 6-H(N@"|) < 6-HA+1) = 6-InA+12.

O

To bound the time complexity of the algorithm, we first need to prove the
following lemma.

Lemma 26.10. Consider an iteration of the while loop. Assume that a node u is
white and that 2s(u) > max,ccy) 5(v) where C(u) = {v € N(u) : v.candidate =
true}. Then, the probability that u becomes dominated (turns gray or black) in
the considered while loop iteration is larger than 1/9.

Proof. Let D(u) be the event that v becomes dominated in the considered while
loop iteration, i.e., D(u) is the event that u changes its color from white to gray
or black. Thus, we need to prove that Pr [D(u)] > 1/9. We can write this
probability as

Pr[D(u)] = Prlc(u) > 0]-Pr[D(u)|c(u) > 0] +Pr[c(u) = 0] Pr[D(u)|c(u) = 0] .

=0

It is therefore sufficient to lower bound the probabilities Pr [c(u) > O] and
Pr[D(u)|c(u) > 0]. We have 2s(u) > max,ec(y) $(v). Therefore, in line 10, each
of the s(u) active nodes v € N(u) becomes a candidate node with probability
1/8(v) > 1/(2s(u)). The probability that at least one of the s(u) active nodes
in N(u) becomes a candidate therefore is

o 11
P 0 1—-({1— ——= 1——> .
rle(u) > 0] > (2s(u)> > 7 >3
We used that for z > 1, (1-1/x)* < 1/e. We next want to bound the probability
Pr[D(u)|c(u) > 0] that at least one of the c(u) candidates in N(u) joins the
dominating set. We have
Pr|D >0] > i
[D@lel) > 0] > min
Consider some node v and let C(v) =3~ /cyy(,) ¢(v'). If v is a candidate, it joins
the dominating set if C'(v) < 3w(v). We are thus interested in the probability
Pr[C(v) < 3w(v)|v.candidate = true]. Assume that v is a candidate. Let
d(v') = ¢(v') — 1 be the number of candidates in N(v') \ {v}. For a node
v' € W(v), ¢(v') is upper bounded by a binomial random variable Bin(s(v') —
1,1/s(v")) with expectation (s(v') — 1)/s(v'). We therefore have

Pr[v joins dominating set|v.candidate = true].

/
-1
E[c(v')|v.candidate = true] = 1+E[d' (V)] =1+ S(Z()v’) < 2.
By linearity of expectation, we hence obtain
E[C(v)|v.candidate = true| = Z E[c(v")|v.candidate = true]

v’ €W (v)
< 2w(v).

26.2. DISTRIBUTED GREEDY ALGORITHM 299

We can now use Markov’s inequality to bound the probability that C(v) becomes
too large:

2
Pr[C(v) > 3w(v)|v.candidate = true] < 3
Combining everything, we get
Pr [v joins dom. set|v.candidate = true}

= Pr[C(v) < 3w(v)|v.candidate = true] > %

and hence
Pr[D(u)] = Pr[c(u) > 0] - Pr[D(u)|c(u) > 0] >
O

Theorem 26.11. In expectation, Algorithm 26.8 terminates in O(long -logn)
rounds.

Proof. First observe that every iteration of the while loop can be executed in
a constant number of rounds. Consider the state after ¢ iterations of the while
loop. Let Wax(t) = max,cy w(v) be the maximal span rounded down to the
next power of 2 after ¢ iterations. Further, let spax(t) be the maximal support
s(v) of any node v for which there is a node u € N(v) with w(u) > Wmax(t)
after ¢ while loop iterations. Observe that all nodes v with w(v) > Wmax(t) are
active in iteration t + 1 and that as long as the maximal rounded span Wmax(t)
does not change, Smax(t) can only get smaller with increasing ¢. Consider the
pair (Wmax, Smax) and define a relation < such that (w’,s") < (w,s) iff W' < w
or w=w' and s’ < s/2. From the above observations, it follows that

(Wmax (t), Smax(t)) < (Wmax(t'), Smax(t')) = t > ¢, (26.11.1)

For a given time ¢, let T'(t) be the first time for which
(Wmax(T(t)), Smax (T(t))) < (Wmax (t), Smax (t))-
We first want to show that for all ¢,
E[T(t)—t] = O(logn). (26.11.2)
Let us look at the state after ¢ while loop iterations. By Lemma 26.10, every
white node u with support s(u) > Smax(t)/2 will be dominated after the fol-
lowing while loop iteration with probability larger than 1/9. Consider a node u
that satisfies the following three conditions:
(1) w is white

(2) there is a node v € N(u) : w(v) > Wmax(t)

(3) s(u) > smax(t)/2.

300 CHAPTER 26. DOMINATING SET

As long as u satisfies all three conditions, the probability that v becomes domi-
nated is larger than 1/9 in every while loop iteration. Hence, after t+7 iterations
(from the beginning), u is dominated or does not satisfy (2) or (3) with prob-
ability larger than (8/9)7. Choosing 7 = logg 5(2n), this probability becomes
1/(2n). There are at most n nodes u satisfying Conditions (1) — (3). Therefore,
applying union bound, we obtain that with probability more than 1/2; there is
no white node u satisfying Conditions (1) — (3) at time ¢ +logg 5(2n). Equiva-
lently, with probability more than 1/2, T'(t) <t + logg,s(2n). Analogously, we
obtain that with probability more than 1/2%, T'(t) <t + kloggs(2n). We then
have

E[T(t)—t] = Y PrT({t)—t=1]-7
=1
k=1

and thus Equation (26.11.2) holds.

Let to =0 and ¢; = T(t;—1) for i = 1,..., k. where t; = min; Wnax(t) = 0.
Because Wmax(t) = 0 implies that w(v) = 0 for all v € V' and that we therefore
have computed a dominating set, by Equations (26.11.1) and (26.11.2) (and
linearity of expectation), the expected number of rounds until Algorithm 26.8
terminates is O(k - logn). Since Wymax(t) can only have |log A| different values
and because for a fixed value of Wyax(t), the number of times syax(t) can be
decreased by a factor of 2 is at most log A times, we have k < log”A. O

Remarks:

e It is not hard to show that Algorithm 26.8 even terminates in
O(log?A - logn) rounds with probability 1 — 1/n¢ for an arbitrary
constant c.

e Using the median of the supports of the neighbors instead of the
maximum in line 8 results in an algorithm with time complexity
O(log A - logn). With another algorithm, this can even be slightly
improved to O(log”A).

e One can show that Q(log A/loglog A) rounds are necessary to obtain
an O(log A)-approximation.

e It is not known whether there is a fast deterministic approximation al-
gorithm. This is an interesting and important open problem. The best

deterministic algorithm known to achieve an O(log A)-approximation
has time complexity 20(Viegn),

Chapter Notes

See [JRS02, KWO05].

BIBLIOGRAPHY 301

Bibliography

[JRS02] Lujun Jia, Rajmohan Rajaraman, and Torsten Suel. An efficient dis-
tributed algorithm for constructing small dominating sets. Distributed
Computing, 15(4):193-205, 2002.

[KWO05] Fabian Kuhn and Roger Wattenhofer. Constant-Time Distributed

Dominating Set Approximation. In Springer Journal for Distributed
Computing, Volume 17, Number 4, May 2005.

302 CHAPTER 26. DOMINATING SET

Chapter 27

Routing

27.1 Array

(Routing is important for any distributed system. This chapter is only an
introduction into routing; we will see other facets of routing in a next chapter.)

Definition 27.1 (Routing). We are given a graph and a set of routing requests,
each defined by a source and a destination node.

Definition 27.2 (One-to-one, Permutation). In a one-to-one routing problem,
each node is the source of at most one packet and each node is the destination of
at most one packet. In a permutation routing problem, each node is the source
of exactly one packet and each node is the destination of exactly one packet.

Remarks:
e Permutation routing is a special case of one-to-one routing.

Definition 27.3 (Store and Forward Routing). The network is synchronous.
In each step, at most two packets (one in each direction) can be sent over each
link.

Remarks:

e If two packets want to follow the same link, then one is queued (stored)
at the sending node. This is known as contention.

Algorithm 27.4 Greedy on Array
An array is a linked list of n nodes; that is, node 4 is connected with nodes
it—land ¢+ 1, for i = 2,...,n — 1. With the greedy algorithm, each node
injects its packet at time 0. At each step, each packet that still needs to move
rightward or leftward does so.

Theorem 27.5 (Analysis). The greedy algorithm terminates in n — 1 steps.

303

304 CHAPTER 27. ROUTING

Proof. By induction two packets will never contend for the same link. Then
each packet arrives at its destination in d steps, where d is the distance between
source and destination. O

Remarks:

e Unfortunately, only the array (or the ring) allows such a simple
contention-free analysis. Already in a tree (with nodes of degree 3
or more) there might be two packets arriving at the same step at the
same node, both want to leave on the same link, and one needs to be
queued. In a “Mercedes-Benz” graph Q(n) packets might need to be
queued. We will study this problem in the next section.

e There are many strategies for scheduling packets contending for the
same edge (e.g. “farthest goes first”); these queuing strategies have a
substantial impact on the performance of the algorithm.

27.2 Mesh

Algorithm 27.6 Greedy on Mesh
A mesh (a.k.a. grid, matrix) is a two-dimensional array with m columns and
m rows (n = m?). Packets are routed to their correct column (on the row in
greedy array style), and then to their correct row. The farthest packet will
be given priority.

Theorem 27.7 (Analysis). In one-to-one routing, the greedy algorithm termi-
nates 1 2m — 2 steps.

Proof. First note that packets in the first phase of the algorithm do not interfere
with packets in the second phase of the algorithm. With Theorem 27.5 each
packet arrives at its correct column in m — 1 steps. (Some packets may arrive
at their turning node earlier, and already start the second phase; we will not
need this in the analysis.) We need the following Lemma for the second phase
of the algorithm.

Lemma 27.8 (Many-to-One on Array, Lemma 1.5 in Leighton Section 1.7).
We are given an array with n nodes. Fach node is a destination for at most
one packet (but may be the source of many). If edge contention is resolved by
farthest-to-go (FTG), the algorithm terminates in n — 1 steps.

Leighton Section 1.7 Lemma 1.5. Leftward moving packets and rightward mov-
ing packets never interfere; so we can restrict ourselves to rightward moving
packets. We name the packets with their destination node. Since the queu-
ing strategy is FTG, packet i can only be stopped by packets j > i. Note
that a packet ¢ may be contending with the same packet j several times. How-
ever, packet ¢ will either find its destination “among” the higher packets, or
directly after the last of the higher packets. More formally, after k steps, pack-
ets 7,7+ 1,...,n do not need links 1,...,l anymore, with k =n — j + [. Proof
by induction: Packet n has the highest priority: After k& steps it has escaped

27.3. ROUTING IN THE MESH WITH SMALL QUEUES 305

the first k links. Packet n — 1 can therefore use link [in step [+ 1, and so on.
Packet ¢ not needing link 7 in step kK = n means that packet ¢ has arrived at its

destination node ¢ in step n — 1 or earlier. O
Lemma 27.8 completes the proof. O]
Remarks:

e A 2m — 2 time bound is the best we can hope for, since the distance
between the two farthest nodes in the mesh is exactly 2m — 2.

e One thing still bugs us: The greedy algorithm might need queues in
the order of m. And queues are expensive! In the next section, we try
to bring the queue size down!

27.3 Routing in the Mesh with Small Queues

(First we look at a slightly simpler problem.)

Definition 27.9 (Random Destination Routing). In a random destination rout-
ing problem, each mode is the source of at most one packet with destination
chosen uniformly at random.

Remarks:

e Random destination routing is not one-to-one routing. In the worst
case, a node can be destination for all n packets, but this case is very
unlikely (with probability 1/n""1)

e We study algorithm 27.6, but this time in the random destination
model. Studying the random destination model will give us a deeper
understanding of routing... and distributed computing in general!

Theorem 27.10 (Random destination analysis of algorithm 27.6). If desti-
nations are chosen at random the mazimum queue size is O(logn/loglogn)
with high probability. (With high probability means with probability at least
1-0(1/n).)

Proof. We can restrict ourselves to column edges because there will not be any
contention at row edges. Let us consider the queue for a north-bound column
edge. In each step, there might be three packets arriving (from south, east,
west). Since each arriving south packet will be forwarded north (or consumed
when the node is the destination), the queue size can only grow from east or
west packets — packets that are “turning” at the node. Hence the queue size
of a node is always bounded by the number of packets turning at the node. A
packet only turns at a node v when it is originated at a node in the same row as
u (there are only m nodes in the row). Packets have random destinations, so the
probability to turn for each of these packets is 1/m only. Thus the probability
P that r or more packets turn in some particular node wu is at most

= (M)

306

CHAPTER 27. ROUTING

(The factor (1 —1/m)™" is not present because the event “exactly r” includes
the event “more than r” already.) Using

Yy
<:c)<<xe> yfor0<y <z
Y Y

we directly get

P () () = ()

Hence most queues do not grow larger than O(1). Also, when we choose r :=

elogn
loglogn

we can show P = o(1/n?). The probability that any of the 4n queues

ever exceeds 7 is less than 1 — (1 — P)*" = o(1/n). O

Remarks:

e OK. We got a bound on the queue size. Now what about time com-

plexity?!? The same analysis as for one-to-one routing applies. The
probability that a node sees “many” packets in phase 2 is small... it
can be shown that the algorithm terminates in O(m) time with high
probability.

In fact, maximum queue sizes are likely to be a lot less than logarith-
mic. The reason is the following: Though O(logn/loglogn) packets
might turn at some node, these turning packets are likely to be spread
in time. Early arriving packets might use gaps and do not conflict with
late arriving packets. With a much more elaborate method (using the
so-called “wide-channel” model) one can show that there will never be
more than four(!) packets in any queue (with high probability only,
of course).

Unfortunately, the above analysis only works for random destination
problems. Question: Can we devise an algorithm that uses small
queues only but for any one-to-one routing problem? Answer: Yes, we
can! In the simplest form we can use a clever trick invented by Leslie
Valiant: Instead of routing the packets directly on their row-column
path, we route each packet to a randomly chosen intermediate node
(on the row-column path), and from there to the destination (again
on the row-column path). Valiant’s trick routes all packets in O(m)
time (with high probability) and only needs queues of size O(logn).
Instead of choosing a random intermediate node one can choose a
random node that is more or less in the direction of the destination,
solving any one-to-one routing problem in 2m + O(logn) time with
only constant-size queues. You don’t wanna know the details...

e What about no queues at all?!?

27.4 Hot-Potato Routing

Definition 27.11 (Hot-Potato Routing). Like the store-and-forward model the
hot-potato model is synchronous and at most two packets (one in each direction)

27.4. HOT-POTATO ROUTING 307

can be sent over a link. However, contending packets cannot be stored; instead all
but one contending packet must be sent over a “wrong link” (known as deflection)
immediately, since the hot-potato model does not allow queuing.

Remarks:

e Don’t burn your fingers with “hot-potato” packets. If you get one you
better forward it directly!

e A node with degree ¢ receives up to d packets at the beginning of
each step — since the node has ¢ links, it can forward all of them, but
unfortunately not all in the right direction.

e Hot-potato routing is easier to implement, especially on light-based
networks, where you don’t want to convert photons into electrons and
then back again. There are a couple of parallel machines that use the
hot-potato paradigm to simplify and speed up routing.

e How bad does hot-potato routing get (in the random or the one-to-one
model)? How bad can greedy hot-potato routing (greedy: whenever
there is no contention you must send a packet into the right direction)
get in a worst case?

Algorithm 27.12 Greedy Hot-Potato Routing on a Mesh

Packets move greedy towards their destination (any good link is fine if there
is more than one). If a packet gets deflected, it gets excited with probability
p (we set p = ©(1/m)). An excited packet has higher priority. When being
excited, a packet tries to reach the destination on the row-column path. If
two excited packets contend, then the one that wants to exit the opposite link
is given priority. If an excited packet fails to take its desired link it becomes
normal again.

Theorem 27.13 (Analysis). A packet will reach its destination in O(m) ex-
pected time.

Sketch, full proof in Busch et al., SODA 2000. An excited packet can only be
deflected at its start node (after becoming excited), and when trying to turn.
In both cases, the probability to fail is only constant since other excited packets
need to be at the same node at exactly the right instant. Thus the probability
that an excited packets finds to its destination is constant, and therefore a packet
needs to “try” (to become excited) only constantly often. Since a packet tries
every p’th time it gets deflected, in only gets deflected O(1/p) = O(m) times
in expectation. Since each time it does not get deflected, it gets closer to its
destination, it will arrive at the destination in O(m) expected time. O

Remarks:

e It seems that at least in expectation having no memory at all does
not harm the time bounds much.

e It is conjectured that one-to-one routing can be shown to have time
complexity O(m) for this greedy hot-potato routing algorithm. How-
ever, the best known bound needs an additional logarithmic factor.

308 CHAPTER 27. ROUTING

27.5 More Models

Routing comes in many flavors. We mention some of them in this section for
the sake of completeness.

Store-and-forward and hot-potato routing are variants of packet-switching.
In the circuit-switching model, the entire path from source to destination must
be locked such that a stream of packets can be transmitted.

A packet-switching variant where more than one packet needs to be sent
from source to destination in a stream is known as wormhole routing.

Static routing is when all the packets to be routed are injected at time 0.
Instead, in dynamic routing, nodes may inject new packets constantly (at a
certain rate). Not much is known for dynamic routing.

Instead of having a single source and a single destination for each packet
as in one-to-one routing, researchers have studied many-to-one routing, where a
node may be destination for many sources. The problem of many-to-one routing
is that there might be congested areas in the network (areas with nodes that
are destinations of many packets). Packets that can be routed around such a
congested area should do that, or they increase the congestion even more. Such
an algorithm was studied by Busch et al. at STOC 2000.

Also one-to-many routing (multicasting) was considered, where a source
needs to send the same packet to many destinations. In one-to-many routing,
packets can be duplicated whenever needed.

Nobody knows the topology of the Internet (and it is certainly not an array
or a mesh!). The problem is to find short paths without storing huge routing
tables at each node. There are several forms of routing (e.g. compact routing,
interval routing) that study the trade-off between routing table size and quality
of routing.

Also, researchers started studying the effects of mixing various queuing
strategies in one network. This area of research is known as adversarial queuing
theory.

And last not least there are several special networks. A mobile ad-hoc net-
work, for example, consists of mobile nodes equipped with a wireless communi-
cation device. In such a networks nodes can only communicate when they are
within transmission range. Since the network is mobile (dynamic), and since
the nodes are considered to be simple, a variety of new problems arise.

Chapter Notes

See [BHW00a, BHWO00b, RT92, Lei90, VBS1].

Bibliography

[BHWO00a] Costas Busch, Maurice Herlihy, and Roger Wattenhofer. Hard-
Potato Routing. In 32nd Annual ACM Symposium on Theory of
Computing (STOC), Portland, Oregon, May 2000.

[BHWO00b] Costas Busch, Maurice Herlihy, and Roger Wattenhofer. Random-
ized Greedy Hot-Potato Routing. In 11th Annual ACM-SIAM Sym-

BIBLIOGRAPHY 309

[Lei90]

[RT92]

[VBS1]

posium on Discrete Algorithms (SODA), pp. 458-466, San Fran-
cisco, California, USA, January 2000.

Frank Thomson Leighton. Average Case Analysis of Greedy Routing
algorithms on Arrays. In SPAA, pages 2-10, 1990.

Sanguthevar Rajasekaran and Thanasis Tsantilas. Optimal Routing
Algorithms for Mesh-Connected Processor Arrays. Algorithmica,
8(1):21-38, 1992.

Leslie G. Valiant and Gordon J. Brebner. Universal Schemes for
Parallel Communication. In STOC, pages 263-277. ACM, 1981.

310 CHAPTER 27. ROUTING

Chapter 28

Routing Strikes Back

28.1 Butterfly

Let’s first assume that all the sources are on level 0, all destinations are on level
d of a d-dimensional butterfly.

Algorithm 28.1 Greedy Butterfly Routing
The unique path from a source on level 0 to a destination on level d with
d hops is the greedy path. In the greedy butterfly routing algorithm each
packet is constrained to follow its greedy path.

Remarks:

e In the bit-reversal permutation routing problem, the destination of a
packet is the bit-reversed address of the source. With d = 3 you can
see that both source (000,0) and source (001,0) route through edge
(000,1..2). Will the contention grow with higher dimension? Yes!
Choose an odd d, then all the sources (0...0b(g41)/2---bg—1,0) will
route through edge (00..0, (d — 1)/2...(d + 1)/2). You can choose the
bits b; arbitrarily. There are 2(+1)/2 bit combinations, which is y/n,/2
for n = 2% sources.

e On the good side, this contention is also a guaranteed time bound, as
the following theorem shows.

Theorem 28.2 (Analysis). The greedy butterfly algorithm terminates in O(y/n)
steps.

Proof. For simplicity we assume that d is odd. An edge on level [(from a
node on level [to a node on level [+ 1) has at most 2! sources, and at most
2¢=1=1 destinations. Therefore the number of paths through an edge on level
[is bounded by n; = 2min(bd—I=1) = A packet can therefore be delayed at most
n; — 1 times on level [. Summing up over all levels, a packet is delayed at most

(d—1)/2 (d—1)/2 (d—3)/2

d—1
> = Z nl—i- Z n; = Z 2l Z 2! < 3.20=D/2 — O(y/n).
=0

=(d+1)/

311

312 CHAPTER 28. ROUTING STRIKES BACK

steps. O

Remarks:

e The bit-reversed routing is therefore asymptotically a worst-case ex-
ample.

e However, one that requires square-root queues. When being limited
to constant queue sizes the greedy algorithm can be forced to use O(n)
steps for some permutations.

e A routing problem where all the sources are on level 0 and all the
destinations are on level d is called an end-to-end routing problem.
Surprisingly, solving an arbitrary routing problem on a butterfly (or
any hypercubic network) is often not harder.

e In the next section we show that there is general square-root lower
bound for “greedy” algorithms for any constant-degree graph. (In
other words, our optimal greedy mesh routing algorithm of Chapter 4
was only possible because the mesh has such a bad diameter...)

28.2 Oblivious Routing

Definition 28.3 (Oblivious). A routing algorithm is oblivious if the path taken
by each packet depends only on source and destination of the packet (and not
on other packets, or the congestion encountered).

Theorem 28.4 (Lower Bound). Let G be a graph with n nodes and (mazimum,)
degree d. Let A be any oblivious routing algorithm. Then there is a one-to-one
routing problem for which A will need at least \/n/2d steps.

Proof. Since A is oblivious, the path from node u to node v is P, ,; A can be
specified by n? paths. We must find & one-to-one paths that all use the same
edge e. Then we can proof that A takes at least k/2 steps.

Let’s look at the n — 1 paths to destination node v. For any integer k let
Sk(v) be the set of edges in G where k or more of these paths pass through
them. Also, let S;(v) be the nodes incident to Si(v). Since there are two
nodes incident to each edge |Sf(v)| < 2|Sk(v)]. In the following we assume that
k < (n—1)/d; then v € S;(v), hence |S}(v)| > 0.

We have

n— IS5(0)] < (k = 1)(d — 1)|S5 ()

because every node u not in S} (v) is a start of a path P, , that enters S} (v)
from outside. In particular, for any node u ¢ S;(v) there is an edge (w,w’) in
P, ., that enters S};(v). Since the edge (w,w") ¢ Si(v), there are at most (k—1)
starting nodes u for edge (w,w’). Also there are at most (d — 1) edges adjacent
to w’ that are not in Si(v). We get

n < (k= 1)(d = D[Sp ()] +[Sg ()] <21+ (k= 1)(d = D]|Sk(v)| < 2kd| S (v)]

Thus, |Sk(v)| > 575. We set k = /n/d, and sum over all n nodes:

2 n3/2

n
> _—
> 1Sk 2 51 =5

veV

28.3. OFFLINE ROUTING 313

Since there are at most nd/2 edges in G, this means that there is an edge e for

at least
n3/2/2

nd/2

= Vn/d =k

different values of v.

Since edge e is in at least k different paths in each set Sy (v) we can construct
a one-to-one permutation problem where edge e is used \/n/d times (directed:
v/n/2d contention). O

Remarks:

e In fact, as many as (y/n/d)! one-to-one routing problems can be con-
structed with this method.

e The proof can be extended to the case where the one-to-one routing
problem consists of R route requests. The lower bound is then Q(%)
e There is a node that needs to route Q(1/n/d) packets.

e The lower bound can be extended to randomized oblivious algo-
rithms... however, if we are allowed to use randomization, the lower
bound gets much weaker. In fact, one can use Valiant’s trick also in
the butterfly: In a first phase, we route each packet on the greedy
path to a random destination on level d, in the second phase on the
same row back to level 0, and in a third phase on the greedy path
to the destination. This way we can escape the bad one-to-one prob-
lems with high probability. (There are much more good one-to-one
problems than bad one-to-one problems.) One can show that with
this trick one can route any one-to-one end-to-end routing problem in
asymptotically optimal O(logn) time (with high probability).

e If a randomized algorithm fails (takes too long), simply re-run it. It
will be likely to succeed then. On the other hand, if a deterministic
algorithm fails in some rare instance, re-running it will not help!

28.3 Offline Routing

There are a variety of other aspects in routing. In this section we study one of
them to gain further insights.

Definition 28.5 (Offline Routing). We are given a routing problem (graph
and set of routing requests). An offline routing algorithm is a (not distributed)
algorithm that sees the whole input (the routing problem).

Remarks:

e Offline routing is worth being studied because the same communica-
tion pattern might appear whenever you run your (important!) (par-
allel) algorithm.

e In offline routing, path selection and scheduling can be studied inde-
pendently.

314 CHAPTER 28. ROUTING STRIKES BACK

Definition 28.6 (Path Selection). We are given a routing problem (a graph and
a set of routing requests). A path selection algorithm selects a path (a route) for
each request.

Remarks:

e Path selection is efficient if the paths are “short” and do not interfere
if they do not need to. Formally, this can be defined by congestion
and dilation (see below).

e For some routing problems, path selection is easy. If the graph is a
tree, for example, the best path between two nodes is the direct path.
(Every route from a source to a destination includes at least all the
links of the shortest path.)

Definition 28.7 (Dilation, Congestion). The dilation of a path selection is the
length of a mazximum path. The contention of an edge is the number of paths that
use the edge. The congestion of a path selection is the load of a most contended
edge.

Remarks:
e A path selection should minimize congestion and dilation.

e Networking researchers have defined the “flow number” which is de-
fined as the minimum max(congestion, dilation) over all possible path
selections.

e Alternatively, congestion can be defined with directed edges, or nodes.

Definition 28.8 (Scheduling). We are given a set of source-destination paths.
A scheduling algorithm specifies which messages traverse which link at which
time step (for an appropriate model).

Remarks:

e The most popular model is store-and-forward (with small queues).
Other popular models have no queues at all: e.g. hot-potato routing
or direct routing (where the source might delay the injection of a
packet; once a packet is injected however, it will go to the destination
without stop.)

Lemma 28.9 (Lower Bound). Scheduling takes at least Q(C + D) steps, where
C is the congestion and D is the dilation.

Remarks:

e We aim for algorithms that are competitive with the lower bound. (As
opposed to algorithms that finish in O(f(n)) time; C + D and n are
generally not comparable.)

Theorem 28.11 (Analysis). Algorithm 28.10 terminates in 2C + D steps.

BIBLIOGRAPHY 315

Algorithm 28.10 Direct Tree Routing

We are given a tree, and a set of routing requests. (Since the graph is a tree
each route request will take the direct path between source and destination;
in other words, path selection is trivial.) Choose an arbitrary root r. Now
sort all packets using the following order (breaking ties arbitrarily): packet
p comes before packet g if the path of p reaches a node closer to r then the
path of ¢q. Now scan all packets in this order, and for each packet greedily
assign its injection time to be the first that does not cause a conflict with any
previous packet.

Proof. A packet p first goes up, then down the tree; thus turning at node u.
Let e, and e4 be the “up” resp. “down” edge on the path adjacent to u. The
injection time of packet p is only delayed by packets that traverse e, or eq (if it
contends with a packet ¢ on another edge, and packet ¢ has not a lower order,
then it contends also on e, or e;). Since congestion is C, there are at most
2C — 2 many packets q. Thus the algorithm terminates after 2C' + D steps. [

Remarks:

o [Leighton, Maggs, Rao 1988] have shown the existence of an O(C + D)
schedule for any routing problem (on any graph!) using the Lovasz
Local Lemma. Later the result was made more accessible by [Leighton,
Maggs, Richa 1996] and others. Still it is too hard for this course...

Chapter Notes

See [BH85, LMRS88, LM95, KKT91].

Bibliography

[BH85] Allan Borodin and John E. Hopcroft. Routing, Merging, and Sorting
on Parallel Models of Computation. J. Comput. Syst. Sci., 30(1):130—
145, 1985.

[KKT91] Christos Kaklamanis, Danny Krizanc, and Thanasis Tsantilas. Tight
Bounds for Oblivious Routing in the Hypercube. Mathematical Sys-
tems Theory, 24(4):223-232, 1991.

[LM95] T. Leighton and B. Maggs. Fast algorithms for finding
O(congestion+dilation) packet routing schedules. In Proceedings of
the 28th Hawaii International Conference on System Sciences, HICSS
'95, pages 555—, Washington, DC, USA, 1995. IEEE Computer Soci-
ety.

[LMR88] Frank Thomson Leighton, Bruce M. Maggs, and Satish Rao. Universal
Packet Routing Algorithms (Extended Abstract). In FOCS, pages
256-269, 1988.

