
Remote Procedure Call (RPC)

Gustavo Alonso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©Gustavo Alonso, ETH Zürich. 2

IP, TCP, UDP and RPC
The most accepted standard for
network communication is IP
(Internet Protocol) which provides
unreliable delivery of single packets
to one-hop distant hosts
IP was designed to be hidden behind
other software layers:

TCP (Transport Control
Protocol) implements connected,
reliable message exchange
UDP (User Datagram Protocol)
implements unreliable datagram
based message exchanges

TCP/IP and UDP/IP are visible to
applications through sockets. The
purpose of the socket interface was
to provide a UNIX-like abstraction

Yet sockets are quite low level for
many applications, thus, RPC
(Remote Procedure Call) appeared
as a way to

hide communication details
behind a procedural call
bridge heterogeneous
environments

RPC is the standard for distributed
(client-server) computing

IP
TCP, UDP

SOCKETS

RPC

©Gustavo Alonso, ETH Zürich. 3

The basics of client/server
Imagine we have a program (a
server) that implements certain
services. Imagine we have other
programs (clients) that would like to
invoke those services.
To make the problem more
interesting, assume as well that:

client and server can reside on
different computers and run on
different operating systems
the only form of communication
is by sending messages (no
shared memory, no shared disks,
etc.)
some minimal guarantees are to
be provided (handling of
failures, call semantics, etc.)
we want a generic solution and
not a one time hack

Ideally, we want he programs to
behave like this (sounds simple?,
well, this idea is only 20 years old):

Machine A
(client)

Machine B
(server)

Execution Thread

Service request

Service response

Message
©Gustavo Alonso, ETH Zürich. 4

Problems to solve
How to make the service invocation
part of the language in a more or
less transparent manner.

Don’t forget this important
aspect: whatever you design,
others will have to program and
use

How to exchange data between
machines that might use different
representations for different data
types. This involves two aspects:

data type formats (e.g., byte
orders in different architectures)
data structures (need to be
flattened and the reconstructed)

How to find the service one actually
wants among a potentially large
collection of services and servers.

The goal is that the client does
not necessarily need to know
where the server resides or even
which server provides the
service.

How to deal with errors in the
service invocation in a more or less
elegant manner:

server is down,
communication is down,
server busy,
duplicated requests ...

©Gustavo Alonso, ETH Zürich. 5

Programming languages
The notion of distributed service
invocation became a reality at the
beginning of the 80’s when
procedural languages (mainly C)
were dominant.
In procedural languages, the basic
module is the procedure. A
procedure implements a particular
function or service that can be used
anywhere within the program.
It seemed natural to maintain this
same notion when talking about
distribution: the client makes a
procedure call to a procedure that is
implemented by the server. Since
the client and server can be in
different machines, the procedure is
remote.
Client/Server architectures are based
on Remote Procedure Calls (RPC)

Once we are working with remote
procedures in mind, there are several
aspects that are immediately
determined:

data exchange is done as input
and output parameters of the
procedure call
pointers cannot be passed as
parameters in RPC, opaque
references are needed instead so
that the client can use this
reference to refer to the same
data structure or entity at the
server across different calls. The
server is responsible for
providing this opaque
references.

©Gustavo Alonso, ETH Zürich. 6

Interoperability
When exchanging data between
clients and servers residing in
different environments (hardware or
software), care must be taken that
the data is in the appropriate format:

byte order: differences between
little endian and big endian
architectures (high order bytes
first or last in basic data types)
data structures: like trees, hash
tables, multidimensional arrays,
or records need to be flattened
(cast into a string so to speak)
before being sent

This is best done using an
intermediate representation format

The concept of transforming the data
being sent to an intermediate
representation format and back has
different (equivalent) names:

marshalling/un-marshalling
serializing/de-serializing

The intermediate representation
format is typically system
dependent. For instance:

SUN RPC: XDR (External Data
Representation)

Having an intermediate
representation format simplifies the
design, otherwise a node will need
to be able to transform data to any
possible format

©Gustavo Alonso, ETH Zürich. 7

Example (XDR in SUN RPC)
Marshalling or serializing can be
done by hand (although this is not
desirable) using (in C) sprintf and
sscanf:

Message= “Alonso” “ETHZ” “2001”

char *name=“Alonso”, place=“ETHZ”;
int year=2001;

sprintf(message, “%d %s %s %d %d”,
strlen(name), name, strlen(place), place,
year);

Message after marshalling =
“6 Alonso 4 ETHZ 2001”

Remember that the type and number
of parameters is know, we only need
to agree on the syntax ...

SUN XDR follows a similar
approach:

messages are transformed into a
sequence of 4 byte objects, each
byte being in ASCII code
it defines how to pack different
data types into these objects,
which end of an object is the
most significant, and which byte
of an object comes first
the idea is to simplify
computation at the expense of
bandwidth

6
A l o n
s o
4
E T H Z
2 0 0 1

String length

String length

cardinal

©Gustavo Alonso, ETH Zürich. 8

Binding
A service is provided by a server
located at a particular IP address and
listening to a given port
Binding is the process of mapping a
service name to an address and port
that can be used for communication
purposes
Binding can be done:

locally: the client must know the
name (address) of the host of the
server
distributed: there is a separate
service (service location, name
and directory services, etc.) in
charge of mapping names and
addresses. These service must
be reachable to all participants

With a distributed binder, several
general operations are possible:

REGISTER (Exporting an
interface): A server can register
service names and the
corresponding port
WITHDRAW: A server can
withdraw a service
LookUP (Importing an
interface): A client can ask the
binder for the address and port
of a given service

There must also be a way to locate
the binder (predefined location,
environment variables, broadcasting
to all nodes looking for the binder)

©Gustavo Alonso, ETH Zürich. 9

Call semantics
A client makes an RPC to a service
at a given server. After a time-out
expires, the client may decide to re-
send the request. If after several tries
there is no success, what may have
happened depends on the call
semantics:

Maybe: no guarantees. The
procedure may have been executed
(the response message(s) was lost)
or may have not been executed (the
request message(s) was lost). It is
very difficult to write programs
based on this type of semantics since
the programmer has to take care of
all possibilities

At least-once: the procedure will be
executed if the server does not fail,
but it is possible that it is executed
more than once. This may happen,
for instance, if the client re-sends the
request after a time-out. If the server
is designed so that service calls are
idempotent (produce the same
outcome given the same input), this
might be acceptable.
At most-once: the procedure will be
executed either once or not at all.
Re-sending the request will not
result in the procedure executing
several times

©Gustavo Alonso, ETH Zürich. 10

Making it work in practice
One cannot expect the programmer
to implement all these mechanisms
every time a distributed application
is developed. Instead, they are
provided by a so called RPC system
(our first example of low level
middleware)
What does an RPC system do?

Provides an interface definition
language (IDL) to describe the
services
Generates all the additional code
necessary to make a procedure
call remote and to deal with all
the communication aspects
Provides a binder in case it has a
distributed name and directory
service system

CLIENT

call to remote procedure

CLIENT stub procedure
Bind
Marshalling
Send Communication

module

Client process

Communication

module

Dispatcher
(select
stub)

SERVER stub procedure
Unmarshalling
Return

SERVER

remote procedure Server process

©Gustavo Alonso, ETH Zürich. 11

In more detail
Client

code

Client

stub

Comm.

Module

RPC

Binder
Comm.

module

Server

stub

Server

code

Register service request

ACKbind
Look up request

Look up response

send
RPC request

call

RPC response

return

return

©Gustavo Alonso, ETH Zürich. 12

IDL (Interface Definition Language)
All RPC systems have a language
that allows to describe services in an
abstract manner (independent of the
programming language used). This
language has the generic name of
IDL (e.g., the IDL of SUN RPC is
XDR)
The IDL allows to define each
service in terms of their names, and
input and output parameters (plus
maybe other relevant aspects).
An interface compiler is then used to
generate the stubs for clients and
servers (rpcgen in SUN RPC). It
might also generate procedure
headings that the programmer can
then used to fill out the details of the
implementation.

Given an IDL specification, the
interface compiler performs a variety
of tasks:
generates the client stub procedure for
each procedure signature in the
interface. The stub will be then
compiled and linked with the client
code
Generates a server stub. It can also
create a server main, with the stub and
the dispatcher compiled and linked
into it. This code can then be extended
by the designer by writing the
implementation of the procedures
It might generate a *.h file for
importing the interface and all the
necessary constants and types

©Gustavo Alonso, ETH Zürich. 13

Programming RPC
RPC usually provides different
levels of interaction to provide
different degrees of control over the
system:

Each level adds more complexity to
the interface and requires the
programmer to take care of more
aspects of a distributed system

The Simplified Interface (in SUN
RPC) has only three calls:

rpc_reg() registers a procedure
as a remote procedure and
returns a unique, system-wide
identifier for the procedure
rpc_call() given a procedure
identifier and a host, it makes a
call to that procedure
rpc_broadcast() is similar to
rpc_call() but broadcasts the
message instead

Additional levels allow more control
of transport protocols, binding
procedures, etc.

Bottom Level

Expert Level

Intermediate Level

Top Level

Simplified Interface

©Gustavo Alonso, ETH Zürich. 14

RPC Application
SALES POINT CLIENT

IF no_customer_#

THEN New_customer

ELSE Lookup_customer

Check_inventory

IF enough_supplies

THEN Place_order

ELSE ...

Customer

database

INVENTORY CONTROL

CLIENT

Lookup_product

Check_inventory

IF supplies_low

THEN

Place_order

Update_inventory

...

DB
M

S

Products

databaseDB
M

S

Inventory
and order
database

DB
M

S

New_customer

Lookup_customer

Delete_customer

Update_customer

New_product

Lookup_product

Delete_product

Update_product

Place_order

Cancel_order

Update_inventory

Check_inventory

Server 1

Server 3

Server 2

©Gustavo Alonso, ETH Zürich. 15

RPC in perspective
ADVANTAGES

RPC provided a mechanism to
implement distributed applications
in a simple and efficient manner
RPC followed the programming
techniques of the time (procedural
languages) and fitted quite well with
the most typical programming
languages (C), thereby facilitating
its adoption by system designers
RPC allowed the modular and
hierarchical design of large
distributed systems:

client and server are separate
entities
the server encapsulates and
hides the details of the back end
systems (such as databases)

DISADVANTAGES
RPC is not a standard, it is an idea
that has been implemented in many
different ways (not necessarily
compatible)
RPC allows designers to build
distributed systems but does not
solve many of the problems
distribution creates. In that regard, it
is only a low level construct
RPC was designed with only one
type of interaction in mind:
client/server. This reflected the
hardware architectures at the time
when distribution meant small
terminals connected to a mainframe.
As hardware and networks evolve,
more flexibility was needed

©Gustavo Alonso, ETH Zürich. 16

RPC system issues
RPC was one of the first tools that
allowed the modular design of
distributed applications
RPC implementations tend to be
quite efficient in that they do not add
too much overhead. However, a
remote procedure is always slower
than a local procedure:

should a remote procedure be
transparent (identical to a local
procedure)? (yes: easy of use;
no: increase programmer
awareness)
should location be transparent?
(yes: flexibility and fault
tolerance; no: easier design, less
overhead)
should there be a centralized
name server (binder)?

RPC can be used to build systems
with many layers of abstraction.
However, every RPC call implies:

several messages through the
network
at least one context switch (at
the client when it places the call,
but there might be more)

When a distributed application is
complex, deep RPC chains are to be
avoided

©Gustavo Alonso, ETH Zürich. 17

From RPC we go to ...
Stored procedures

Two tier architectures are, in fact,
client/server systems. They need
some sort of interface to allow
clients to invoke the functionality of
the server. RPC is the ideal interface
for client/server interactions on a
LAN
To add flexibility to their servers,
software vendors added to them the
possibility of programming
procedures that will run inside the
server and that could be invoked
through RPC
This turned out to be very useful for
databases where such procedures
could be used to hide the schema
and the SQL programming from the
clients. The result was stored
procedures, a common mechanism
found in all database systems

Distributed environments
When designing distributed
applications, there are a lot of
crucial aspects common to all of
them. RPC does not address any of
these issues
To support the design and
deployment of distributed systems,
programming and run time
environments started to be created.
These environments provide, on top
of RPC, much of the functionality
needed to build and run a distributed
application
The notion of distributed
environment is what gave rise to
middleware. During the course, we
will see many examples of such
environments.

©Gustavo Alonso, ETH Zürich. 18

Transport Service/ OS

Cell Directory

Service

Thread Service

DCE
The Distributed Computing
Environment is a standard
implementation of RPC and a
distributed run-time environment
provided by the Open Software
Foundation (OSF). It provides:

RPC
Cell Directory: A sophisticated
Name and Directory Service
Time: for clock synchronization
across all nodes
Security: secure and
authenticated communication
Distributed File: enables sharing
of files across a DCE
environment
Threads: support for threads and
multiprocessor architectures

RPC

Distributed

File Service

Security

Service

Distributed Applications

Time

Service

DCE

©Gustavo Alonso, ETH Zürich. 19

DCE architecture

DCE runtime environment

RPC
protocols

security
service

cell
service

distributed
file service

thread
service

IDL
sources

interface
headers

IDL compiler

IDLclient
code

client stub

RPC run time
service library

language specific
call interface

RPC API

server
code

server stub

RPC run time
service library

language specific
call interface

RPC API

client process server processDCE
development
environment

©Gustavo Alonso, ETH Zürich. 20

OSF DCE

DCE’s model and goals
Not intended as a final product but
as a basic platform to build more
sophisticated middleware tools
Its services are provided as the most
basic services needed in any
distributed system. Any other
functionality needs to be
implemented on top of it
DCE is not just an specification of a
standard (e.g., CORBA) but an
implementation that acts as the
standard. Since the API is the same
across all platforms, interoperability
is always guaranteed
DCE is packaged in a modular way
so that services that are not used do
not need to be licensed

Encina (a TP-Monitor) is an
example of an extension of DCE:

Encina ToolkitEncina

Structured
File

Service

Peer to
Peer

Comm

Reliable
Queuing
Service

Encina Monitor

Distributed Applications

©Gustavo Alonso, ETH Zürich. 21

Encina’s extensions to DCE
Encina tailors DCE to transactional
environments. It is used very much
like RPC but the range of services
available is much wider:

Encina toolkit: support for
interactions with databases, XA
interface, and distributed
transactions
Structured File Service: record
oriented file server with
transactional properties
Peer to peer communication: for
connectivity with mainframes
Reliable Queuing Service:
transactional queues for
asynchronous interaction

Encina Monitor: execution
support for starting/stopping
services, failure detection,
system management, etc.

Encina extends IDL with
transactions (TIDL transactional
IDL) and even provides its own
language support in the form of
transactional C and transactional
C++
Why all this is necessary will be
discussed when we cover TP-
Monitors

Extending RPC:
Message Oriented Middleware

Gustavo Alonso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©Gustavo Alonso, ETH Zürich. 23

Synchronous Client/Server
The most straightforward interaction
between components is the
request/response model in which the
client sends a request and waits until
the server provides a response:

closely resembles the way we
program (hence RPC as the
basic mechanism to support this
idea)
the model is simple and intuitive
well supported by RPC and the
systems built around RPC
(TRPC, TP-Monitors and even
Object Monitors)
needs additional infrastructure
when interactions becomes more
complex (e.g., nested) but this
infrastructure is available

INVENTORY CONTROL

IF supplies_low

THEN

BOT
Place_order

Update_inventory

EOT

Products

databaseDB
M

S Inventory
and order
database

DB
M

S

New_product

Lookup_product

Delete_product

Update_product

Place_order

Cancel_order

Update_inventory

Check_inventory

Server 3 (inventory)Server 2 (products)

©Gustavo Alonso, ETH Zürich. 24

Disadvantages of sync C/S
Synchronous interaction requires
both parties to be “on-line”: the
caller makes a request, the receiver
gets the request, processes the
request, sends a response, the caller
receives the response.
The caller must wait until the
response comes back. The receiver
does not need to exist at the time of
the call (TP-Monitors, CORBA or
DCOM create an instance of the
service/server /object when called if
it does not exist already) but the
interaction requires both client and
server to be “alive” at the same time

Call
Receive

Response
Answer

idle time

Because it synchronizes client and
server, this mode of operation has
several disadvantages:

connection overhead
higher probability of failures
difficult to identify and react to
failures
it is a one-to-one system; it is
not really practical for nested
calls and complex interactions
(the problems becomes even
more acute)

©Gustavo Alonso, ETH Zürich. 25

Overhead of synchronism
Synchronous invocations require to
maintain a session between the
caller and the receiver.
Maintaining sessions is expensive
and consumes CPU resources. There
is also a limit on how many sessions
can be active at the same time (thus
limiting the number of concurrent
clients connected to a server)
For this reason, client/server systems
often resort to connection pooling to
optimize resource utilization

have a pool of open connections
associate a thread with each
connection
allocate connections as needed

When the interaction is not one-to-
one, the context (the information
defining a session) needs to be
passed around. The context is
usually volatile

request()

do with answer

receive

process

return

session

duration

request()

do with answer

receive

process

return

receive

process

return

re
pl

ic
at

ed
se

rv
ic

es

Context is lost

Needs to be restarted!!

©Gustavo Alonso, ETH Zürich. 26

Failures in synchronous calls
If the client or the server fail, the
context is lost and resynchronization
might be difficult.

If the failure occurred before 1,
nothing has happened
If the failure occurs after 1 but
before 2 (receiver crashes), then
the request is lost
If the failure happens after 2 but
before 3, side effects may cause
inconsistencies
If the failure occurs after 3 but
before 4, the response is lost but
the action has been performed
(do it again?)

Finding out when the failure took
place may not be easy. Worse still, if
there is a chain of invocations, the
failure can occur anywhere.

request()

do with answer

receive

process

return

1

2

34

request()

do with answer

timeout

try again

do with answer

receive

process

return

1

2

3

receive

process

return

2’

3’

©Gustavo Alonso, ETH Zürich. 27

Failure semantics
A great deal of the functionality
built around RPC tries to address the
problem of failure semantics, i.e.,
determine what has happened after a
failure
Exactly-once semantics solves this
problem but it has hidden costs:

it implies atomicity in all
operations
the server must support some
form of 2PC; if it is a database,
then one can use the XA
interface, otherwise one needs a
TP-Monitor to make the server
transactional
it usually requires a coordinator
to oversee the interaction

The more elements are involved in
an interaction, the higher the
probability that the interaction will
fail (a failure in anyone of the
elements results is enough)
The more elements are required to
be alive for an interaction to
succeed, the more difficult it is to
maintain the system:

even if it is modular, the
components cannot do anything
without the rest of the system
upgrades, corrections, general
maintenance becomes very
difficult because they might
require to shut the system down

©Gustavo Alonso, ETH Zürich. 28

Two solutions
Enhanced Support

Client/Server middleware provides a
number of mechanisms to deal with
the problems created by
synchronous interaction:

Transactional RPC: to enforce
exactly once execution
semantics and enable more
complex interactions with some
execution guarantees
Service replication and load
balancing: to prevent the system
from having to shut down if a
given service is not available;
this also gives a chance to
maintain and upgrade the
system while keeping it online

ASYNCHRONOUS INTERACTION
Using asynchronous interaction, the
caller sends a message that gets
stored somewhere until the receiver
reads it and sends a response. The
response is sent in a similar manner
Asynchronous interaction can take
place in two forms:

non-blocking invocation (RPC
but the call returns immediately
without waiting for a response,
similar to batch jobs)
persistent queues (the call and
the response are actually
persistently stored until they are
accessed by the client and the
server)

©Gustavo Alonso, ETH Zürich. 29

TP-Monitors
The problems of synchronous
interaction are not new. The first
systems to provide alternatives were
TP-Monitors which offered two
choices:

asynchronous RPC: client
makes a call that returns
immediately; the client is
responsible for making a second
call to get the results
Reliable queuing systems (e.g.,
Encina, Tuxedo) where instead
of through procedure calls,
client and server interact by
exchanging messages. Making
the messages persistent by
storing them in queues added
considerable flexibility to the
system

client
service call

get results

server
service

return results

C
lie

nt
 st

ub

Se
rv

er
st

ub

RPC support

external
application

external
application

Input queue

Input
queue

Output
queue

Output queue Reliable
queuing
system

©Gustavo Alonso, ETH Zürich. 30

Reliable queuing
Reliable queuing turned out to be a
very good idea and an excellent
complement to synchronous
interactions:

Suitable to modular design: the
code for making a request can
be in a different module (even a
different machine!) than the
code for dealing with the
response
It is easier to design
sophisticated distribution modes
(multicast, transfers, replication,
coalescing messages) an it also
helps to handle communication
sessions in a more abstract way
More natural way to implement
complex interactions (see next)

do with answer

request()

receive

process

return

queue

queue

©Gustavo Alonso, ETH Zürich. 31

Queuing systems
Queuing systems implement
asynchronous interactions.
Each element in the system
communicates with the rest via
persistent queues. These queues store
messages transactionally, guaranteeing
that messages are there even after
failures occur.
Queuing systems offer significant
advantages over traditional solutions in
terms of fault tolerance and overall
system flexibility: applications do not
need to be there at the time a request is
made!
Queues provide a way to communicate
across heterogeneous networks and
systems while still being able to make
some assumptions about the behavior of
the messages.
They can be used embedded (workflow,
TP-Monitors) or by themselves
(MQSeries, Tuxedo/Q).

external
application

client

Input queue

Input queue Output queue

Output queue

Reliable queuing system
Monitoring
Administration
Persistent storage

©Gustavo Alonso, ETH Zürich. 32

Transactional queues
Persistent queues are closely tied to
transactional interaction:

to send a message, it is written in
the queue using 2PC
messages between queues are
exchanged using 2PC
reading a message from a queue,
processing it and writing the reply
to another queue is all done under
2PC

This introduces a significant overhead
but it also provides considerable
advantages. The overhead is not that
important with local transactions
(writing or reading to a local queue).
Using transactional queues, the
processing of messages and sending and
receiving can be tied together into one
single transactions so that atomicity is
guaranteed. This solves a lot of
problems! external

application

external
application

Input queue

Input queue

Output queue

Output queue

2PC

2PC2PC

2PC2PC

©Gustavo Alonso, ETH Zürich. 33

Problems solved (I)
SENDING RECEIVING

external
application

2PC

external
application

2PC

Message is now persistent. If the node

crashes, the message remains in the

queue. Upon recovery, the application

can look in the queue and see which

messages are there and which are

not. Multiple applications can write to

the same queue, thereby “multiplexing”

the channel.

Arriving messages remain in the queue.

If the node crashes, messages are not

lost. The application can now take its

time to process messages. It is also

possible for several applications to read

from the same queue. This allows to

implement replicated services, do load

balancing, and increase fault tolerance.

©Gustavo Alonso, ETH Zürich. 34

Problems solved (II)
An application can bundle within a
single transaction reading a message
from a queue, interacting with other
systems, and writing the response to a
queue.
If a failure occur, in all scenarios
consistency is ensured:

if the transaction was not
completed, any interaction with
other applications is undone and the
reading operation from the input
queue is not committed: the
message remains in the input queue.
Upon recovery, the message can be
processed again, thereby achieving
exactly once semantics.
If the transaction was completed,
the write to the output queue is
committed, i.e., the response
remains in the queue and can be
sent upon recovery.
If replicated services are used, if
one fails and the message remains
in the input queue, it is safe for
other services to take over this
message.

external
application

Input queue Output queue

2PC

external
application

Input queue Output queue

2PC

Message is either read or written

This is undone if necessary

©Gustavo Alonso, ETH Zürich. 35

Simple implementation
Persistent queues can be
implemented as part of a database
since the functionality needed is
exactly that of a database:

a transactional interface
persistence of committed
transactions
advanced indexing and search
capabilities

Thus, messages in a queue become
simple entries in a table. These
entries can be manipulated like any
other data in a database so that
applications using the queue can
assign priorities, look for messages
with given characteristics, trigger
certain actions when messages of a
particular kind arrive …

external
application

Input queueOutput queue

MSSG QUEUE
m1

m5

m2

m6
m3

m4

q1
q3

q5
q7

q1
q1

©Gustavo Alonso, ETH Zürich. 36

Queues in practice
To access a queue, a client or a
server uses the queuing services,
e.g., :

put (enqueue) to place a
message in a given queue
get (dequeue) to read a message
from a queue
mput to put a message in
multiple queues
transfer a message from a queue
to another

In TP-Monitors, these services are
implemented as RPC calls to an
internal resource manager (the
reliable queuing service)
These calls can be made part of
transaction using the same
mechanisms of TRPC (the queuing
system uses an XA interface and
works like any other resource
manager)

persistent
repository

client
put
…

C
lie

nt
st

ub
(q

ue
ui

ng
se

rv
ic

e)

put

queue
management

get mput

Q
ue

ui
ng

 se
rv

er

server
get
…

C
lie

nt
st

ub
(q

ue
ui

ng
se

rv
ic

e)

©Gustavo Alonso, ETH Zürich. 37

Advanced functionality
Queues allow to implement complex interaction patterns between modules:

1-to-1 interaction with failure resilience
1-to-many (multicast: put in a queue and then send from this queue to many
other queues) this is very helpful for “subscriptions”. The fact that the
queues are implemented in the database even helps with performance since
the logic for distribution can be embedded in the database itself
many-to-1 many modules send their request to a single module that can then
assign priorities, reorder, compare, etc.
many-to-many as in replicated services for large amount of clients

In some cases queues are being used for interactions that are also on-line. If the
queues are fast enough (like in a cluster) one can take advantage of the
properties of queues at the expense of performance. Building computer farms
becomes easier since messages are one more element that can be moved, copied
and stored.
Incorporating queues into databases provides databases with a very powerful
tool for designing distributed applications (TP-light).

©Gustavo Alonso, ETH Zürich. 38

Types and messages
Queues are very useful but they also
have their disadvantages from the
programming point of view:

In RPC, the type of the
parameters exchanged between
client and server is determined
by the IDL definition and
available in the stubs. The RPC
infrastructure takes care of
marshalling, unmarshalling,
serializing, etc.
When queues are used, there is
no IDL determining the
interface. The type and format
of the data in a queue must be
agreed upon before hand but the
system does not have much
control over it
The role of IDL is now taken
over by the message format (it is
not in the stubs)

The way to develop a system is as
follows:

define message formats by
creating complex types (records,
objects)
create the queues and the access
policies for those queues
program the server and clients
according to the type definitions
of the messages

The system uses the types defined
for the messages to set up the RPC
calls needed to do marshalling,
unmarshalling, serialization, etc.

©Gustavo Alonso, ETH Zürich. 39

Beyond client/server
Persistent queues are most useful
when the interactions are not simple
client/server calls

workflow processes can be
easily implemented as a
sequence of services that pass
messages to each other along a
well defined set of queues
information dissemination and
event notification can be
directly and efficiently
implemented on top of queues
publish/subscribe systems are,
in essence, event systems
implemented on top of modified
queuing systems

Because these interactions are also
very common and have increased in
importance, queuing systems are no
longer just one more module in TP-
Monitors but have become products
in their own right (e.g., MQSeries of
IBM)
Once they became products,
queuing systems started to be
subjected to the same evolutionary
forces as other forms of middleware:

integration in larger, more
comprehensive tools
enhancements to the basic
functionality by making the
queues active processing entities
= Information Brokers

©Gustavo Alonso, ETH Zürich. 40

Message brokers
Message brokers add logic to the queues
and at the level of the messaging
infrastructure.
Messaging processing is no longer just
moving messages between locations but
designers can associate rules and
processing steps to be executed when
given messages are moved around
The downside of this approach is that
the logic associated with the queues and
the messaging middleware might be
very difficult to understand since it is
distributed and there is no coherent view
of the whole

message broker core

sender receiver

message broker

with message
brokers, custom
message routing
logic can be
defined at the
message broker
level or at the
queue level

in basic MOM it is
the sender who
specifies the
identity of the
receivers

©Gustavo Alonso, ETH Zürich. 41

Publish/Subscribe
Standard client/server architectures
and queuing systems assume the
client and the server know each
other (through an interface or a
queue)
In many situations, it is more useful
to implement systems where the
interaction is based on announcing
given events:

a service publishes
messages/events of given type
clients subscribe to different
types of messages/events
when a service publishes an
event, the system looks at a
table of subscriptions and
forwards the event to the
interested clients; this is usually
done in the form of a message
put into a queue for that client

publish, subscribe, get, .. are also
RPC calls to a resource manager

server
publish
…

client
subscribe
…
get

Publish
check subscriptions
put in queues

Subscription server
List subscriptions

for a message type
Subscribe to a

message type

subscriptions

subscribe
check subscriptions
put in queues

get
read from queue

Reliable queuing system

RPC support (DCE,
TP-Monitor, …)

©Gustavo Alonso, ETH Zürich. 42

Subscription in message brokers

message broker

SmartQuotation
adapter

SmartQuotation

SmartForecasting
adapter

SmartForecasting

RFQ processing

1A 6

B C 72 4

3

5

8

at systems startup time (can occur in
any order, but all must occur before
RFQs are executed)

A: subscription to message quote
B: subscription to message
quoteRequest
C: subscription to message newQuote

at run time: processing of a request
for quote.

1: publication of a quoteRequest
message

2: delivery of message quoteRequest
3: synchronous invocation of the
getQuote function

4: publication of a quote message

5: delivery of message quote
6: publication of a newQuote message

7: delivery of message newQuote
8: invocation of the
createForecastEntry procedure

RPC for the Internet:
Simple Object Access Protocol (SOAP)

Gustavo Alonso
Computer Science Department
Swiss Federal Institute of Technology (ETHZ)
alonso@inf.ethz.ch
http://www.iks.inf.ethz.ch/

©Gustavo Alonso, ETH Zürich. 44

What is SOAP?
The W3C started working on SOAP in 1999. The current W3C recommendation
is Version 1.2
SOAP covers the following four main areas:

A message format for one-way communication describing how a message
can be packed into an XML document
A description of how a SOAP message (or the XML document that makes
up a SOAP message) should be transported using HTTP (for Web based
interaction) or SMTP(for e-mail based interaction)
A set of rules that must be followed when processing a SOAP message and
a simple classification of the entities involved in processing a SOAP
message. It also specifies what parts of the messages should be read by
whom and how to react in case the content is not understood
A set of conventions on how to turn an RPC call into a SOAP message and
back as well as how to implement the RPC style of interaction (how the
client makes an RPC call, this is translated into a SOAP message,
forwarded, turned into an RPC call at the server, the reply of the server
converted into a SOAP message, sent to the client, and passed on to the
client as the return of the RPC call)

©Gustavo Alonso, ETH Zürich. 45

The background for SOAP
SOAP was originally conceived as the minimal possible infrastructure necessary
to perform RPC through the Internet:

use of XML as intermediate representation between systems
very simple message structure
mapping to HTTP for tunneling through firewalls and using the Web
infrastructure

The idea was to avoid the problems associated with CORBA’s IIOP/GIOP
(which fulfilled a similar role but using a non-standard intermediate
representation and had to be tunneled through HTTP any way)
The goal was to have an extension that could be easily plugged on top of
existing middleware platforms to allow them to interact through the Internet
rather than through a LAN as it is typically the case. Hence the emphasis on
RPC from the very beginning (essentially all forms of middleware use RPC at
one level or another)
Eventually SOAP started to be presented as a generic vehicle for computer
driven message exchanges through the Internet and then it was open to support
interactions other than RPC and protocols other then HTTP. This process,
however, is only in its very early stages.

©Gustavo Alonso, ETH Zürich. 46

SOAP messages
SOAP is based on message
exchanges
Messages are seen as envelops
where the application encloses the
data to be sent
A message has two main parts:

header: which can be divided
into blocks
body: which can be divided into
blocks

SOAP does not say what to do with
the header and the body, it only
states that the header is optional and
the body is mandatory
Use of header and body, however, is
implicit. The body is for application
level data. The header is for
infrastructure level data

SOAP Envelope

SOAP header

Header Block

SOAP Body

Body Block

©Gustavo Alonso, ETH Zürich. 47

For the XML fans (SOAP, body only)

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DIS</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>
From the: Simple Object Access Protocol (SOAP) 1.1. ©W3C Note 08 May 2000

XML name space identifier for SOAP envelope
XML name space identifier for SOAP serialization

©Gustavo Alonso, ETH Zürich. 48

SOAP example, header and body
<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>

<SOAP-ENV:Header>
<t:Transaction

xmlns:t="some-URI"
SOAP-ENV:mustUnderstand="1">

5
</t:Transaction>

</SOAP-ENV:Header>

<SOAP-ENV:Body>
<m:GetLastTradePrice xmlns:m="Some-URI">

<symbol>DEF</symbol>
</m:GetLastTradePrice>

</SOAP-ENV:Body>

</SOAP-ENV:Envelope>Fr
om

th
e :

Si
m

p l
e

O
bj

ec
tA

c c
es

sP
ro

to
co

l(
SO

A
P)

1 .
1.

©
W

3 C
N

ot
e

08
M

ay
20

00

©Gustavo Alonso, ETH Zürich. 49

The SOAP header
The header is intended as a generic place holder for information that is not
necessarily application dependent (the application may not even be aware that a
header was attached to the message).
Typical uses of the header are: coordination information,identifiers (for, e.g.,
transactions), security information (e.g., certificates)
SOAP provides mechanisms to specify who should deal with headers and what
to do with them. For this purpose it includes:

SOAP actor attribute: who should process that particular header entry (or
header block). The actor can be either: none, next, ultimateReceiver. None
is used to propagate information that does not need to be processed. Next
indicates that a node receiving the message can process that block.
ultimateReceiver indicates the header is intended for the final recipient of
the message
mustUnderstand attribute: with values 1 or 0, indicating whether it is
mandatory to process the header. If a node can process the message (as
indicated by the actor attribute), the mustUnderstand attribute determines
whether it is mandatory to do so.
SOAP 1.2 adds a relay attribute (forward header if not processed)

©Gustavo Alonso, ETH Zürich. 50

The SOAP body
The body is intended for the application specific data contained in the message
A body entry (or a body block) is syntactically equivalent to a header entry with
attributes actor= ultimateReceiver and mustUnderstand = 1
Unlike for headers, SOAP does specify the contents of some body entries:

mapping of RPC to a collection of SOAP body entries
the Fault entry (for reporting errors in processing a SOAP message)

The fault entry has four elements (in 1.1):
fault code: indicating the class of error (version, mustUnderstand, client,
server)
fault string: human readable explanation of the fault (not intended for
automated processing)
fault actor: who originated the fault
detail: application specific information about the nature of the fault

©Gustavo Alonso, ETH Zürich. 51

SOAP Fault element (v 1.2)
In version 1.2, the fault element is specified in more detail. It must contain two
mandatory sub-elements:

Code: containing a value (the code for the fault) and possibly a subcode (for
application specific information)
Reason: same as fault string in 1.1

and may contain a few additional elements:
detail: as in 1.1
node: the identification of the node producing the fault (if absent, it defaults
to the intended recipient of the message)
role: the role played by the node that generated the fault

Errors in understanding a mandatory header are responded using a fault element
but also include a special header indicating which one o f the original headers
was not understood.

©Gustavo Alonso, ETH Zürich. 52

Message processing
SOAP specifies in detail how messages must be processed (in particular, how
header entries must be processed)

Each SOAP node along the message path looks at the role associated with
each part of the message
There are three standard roles: none, next, or ultimateReceiver
Applications can define their own roles and use them in the message
The role determines who is responsible for each part of a message

If a block does not have a role associated to it, it defaults to ultimateReceiver
If a mustUnderstand flag is included, a node that matches the role specified must
process that part of the message, otherwise it must generate a fault and do not
forward the message any further
SOAP 1.2 includes a relay attribute. If present, a node that does not process that
part of the message must forward it (i.e., it cannot remove the part)
The use of the relay attribute, combined with the role next, is useful for
establishing persistence information along the message path (like session
information)

©Gustavo Alonso, ETH Zürich. 53

From TRPC to SOAP messages

SOAP Envelope

SOAP header

Transactional
context

SOAP Body

Input param 1

Input param 2

Name of Procedure

RPC Request

SOAP Envelope

SOAP header

SOAP Body

Return parameter

Transactional
context

RPC Response (one of the two)

SOAP Envelope

SOAP header

SOAP Body

Fault entry

Transactional
context

©Gustavo Alonso, ETH Zürich. 54

SOAP and HTTP
A binding of SOAP to a transport
protocol is a description of how a
SOAP message is to be sent using
that transport protocol
The typical binding for SOAP is
HTTP
SOAP can use GET or POST. With
GET, the request is not a SOAP
message but the response is a SOAP
message, with POST both request
and response are SOAP messages
(in version 1.2, version 1.1 mainly
considers the use of POST).
SOAP uses the same error and status
codes as those used in HTTP so that
HTTP responses can be directly
interpreted by a SOAP module

SOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST

©Gustavo Alonso, ETH Zürich. 55

In XML (a request)
POST /StockQuote HTTP/1.1

Host: www.stockquoteserver.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<SOAP-ENV:Body>

<m:GetLastTradePrice xmlns:m="Some-URI">
<symbol>DIS</symbol>

</m:GetLastTradePrice>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>Fr
om

th
e:

Si
m

pl
e

O
bj

ec
tA

cc
es

sP
ro

to
co

l(
SO

A
P)

1.
1.

©
W

3C
N

ot
e

08
M

ay
20

00

©Gustavo Alonso, ETH Zürich. 56

In XML (the response)

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn

<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
<SOAP-ENV:Body>

<m:GetLastTradePriceResponse xmlns:m="Some-URI">
<Price>34.5</Price>

</m:GetLastTradePriceResponse>
</SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Fr
om

th
e:

Si
m

pl
e

O
bj

ec
tA

cc
es

sP
ro

to
co

l(
SO

A
P)

1.
1.

©
W

3C
N

ot
e

08
M

ay
20

00

©Gustavo Alonso, ETH Zürich. 57

SOAP Envelope
SOAP header

Transactional
context

SOAP Body

Input parameter 1

Input parameter 2

Name of Procedure

HTTP POST

SOAP Envelope
SOAP header

Transactional
context

SOAP Body

Return parameter

HTTP Acknowledgement

SERVICE REQUESTER SERVICE PROVIDER

RPC call

H
TT

P
en

gi
ne

SOAP
engine

Procedure

H
TT

P
en

gi
ne

SOAP
engine

All together

©Gustavo Alonso, ETH Zürich. 58

SOAP summary
SOAP, in its current form, provides a basic mechanism for:

encapsulating messages into an XML document
mapping the XML document with the SOAP message into an HTTP request
transforming RPC calls into SOAP messages
simple rules on how to process a SOAP message (rules became more precise
and comprehensive in v1.2 of the specification)

SOAP takes advantage of the standardization of XML to resolve problems of
data representation and serialization (it uses XML Schema to represent data and
data structures, and it also relies on XML for serializing the data for
transmission). As XML becomes more powerful and additional standards
around XML appear, SOAP can take advantage of them by simply indicating
what schema and encoding is used as part of the SOAP message. Current
schema and encoding are generic but soon there will be vertical standards
implementing schemas and encoding tailored to a particular application area
(e.g., the efforts around EDI)
SOAP is a very simple protocol intended for transferring data from one
middleware platform to another. In spite of its claims to be open (which are
true), current specifications are very tied to RPC and HTTP.

©Gustavo Alonso, ETH Zürich. 59

SOAP and the client server model
The close relation between SOAP, RPC and HTTP has two main reasons:

SOAP has been initially designed for client server type of interaction which
is typically implemented as RPC or variations thereof
RPC, SOAP and HTTP follow very similar models of interaction that can be
very easily mapped into each other (and this is what SOAP has done)

The advantages of SOAP arise from its ability to provide a universal vehicle for
conveying information across heterogeneous middleware platforms and
applications. In this regard, SOAP will play a crucial role in enterprise
application integration efforts in the future as it provides the standard that has
been missing all these years
The limitations of SOAP arise from its adherence to the client server model:

data exchanges as parameters in method invocations
rigid interaction patterns that are highly synchronous

and from its simplicity:
SOAP is not enough in a real application, many aspects are missing

©Gustavo Alonso, ETH Zürich. 60

A first use of SOAP
Some of the first systems to
incorporate SOAP as an access
method have been databases. The
process is extremely simple:

a stored procedure is essentially
an RPC interface
Web service = stored procedure
IDL for stored procedure =
translated into WSDL
call to Web service = use SOAP
engine to map to call to stored
procedure

This use demonstrates how well
SOAP fits with conventional
middleware architectures and
interfaces. It is just a natural
extension to them

stored procedure API

Stored procedure interfaces

database

resource manager

external
application

client

da
ta

ba
se

 m
an

ag
em

en
t s

ys
te

m

XML
mapping

HTTP
wrapping

HTTP
engine

SOAP engine

Web services
interfaces

D
at

ab
as

e
st

or
ed

 p
ro

ce
du

re
en

gi
ne

©Gustavo Alonso, ETH Zürich. 61

Automatic conversion RPC - SOAP

stubs,
runtime
adapters

SOAP system

Serialized
XML doc

Wrap doc
in HTTP
POST /
M-POST

SOAP system

Serialized
XML doc

Retrieve
doc from

HTTP
packet

N
ET

W
O

RK

HTTP
support

RPC based middleware

RPC based middleware

HTTP
support

client
call

stubs,
runtime
service
location

server
procedure

©Gustavo Alonso, ETH Zürich. 62

SOAP exchange patterns (v 1.2)
SOAP response message exchange

It involves a request which is not a
SOAP message (implemented as an
HTTP GET request method which
eventually includes the necessary
information as part of the requested
URL) and a response that is a SOAP
message
This pattern excludes the use of any
header information (as the request
has no headers)

SOAP request-response message
exchange

It involves sending a request as a
SOAP message and getting a second
SOAP message with the response to
the request
This is the typical mode of operation
for most Web services and the one
used for mapping RPC to SOAP.
This exchange pattern is also the one
that implicitly takes advantage of the
binding to HTTP and the way HTTP
works

©Gustavo Alonso, ETH Zürich. 63

How to implement this with SOAP?

©Gustavo Alonso, ETH Zürich. 64

Implementing message queues
In principle, it is not impossible to implement asynchronous queues with SOAP:

SOLUTION A:
• use SOAP to encode the messages
• create an HTTP based interface for the queues
• use an RPC/SOAP based engine to transfer data back and forth between

the queues
SOLUTION B:
• use SOAP to encode the messages
• create appropriate e-mail addresses for each queue
• use an e-mail (SMTP) binding for transferring messages

Both options have their advantages and disadvantages but the main problem is
that none is standard. Hence, there is no guarantee that different queuing
systems with a SOAP will be able to talk to each other: many advantages of
SOAP are lost
The fact that SOAP is so simple also makes it difficult to implement these
solutions: a lot additional functionality is needed to implement reliable, practical
queue systems

©Gustavo Alonso, ETH Zürich. 65

The need for attachments
SOAP is based on XML and relies
on XML for representing data types
The original idea in SOAP was to
make all data exchanged explicit in
the form of an XML document
much like what happens with IDLs
in conventional middleware
platforms
This approach reflects the implicit
assumption that what is being
exchanged is similar to input and
output parameters of program
invocations
This approach makes it very difficult
to use SOAP for exchanging
complex data types that cannot be
easily translated to XML (and there
is no reason to do so): images,
binary files, documents, proprietary
representation formats, embedded
SOAP messages, etc.

<env:Body>
<p:itinerary

xmlns:p="http://.../reservation/travel">
<p:departure>
<p:departing>New York</p:departing>
<p:arriving>Los Angeles</p:arriving>
<p:departureDate>2001-12-

14</p:departureDate>
<p:departureTime>late

afternoon</p:departureTime>
<p:seatPreference>aisle</p:seatPreference>
</p:departure>
<p:return>
<p:departing>Los Angeles</p:departing>
<p:arriving>New York</p:arriving>
<p:departureDate>2001-12

20</p:departureDate>
<p:departureTime>mid-

morning</p:departureTime>
<p:seatPreference/>
</p:return>

</p:itinerary>
</env:Body>

From SOAP Version 1.2 Part 0: Primer.
© W3C December 2002

©Gustavo Alonso, ETH Zürich. 66

A possible solution
There is a “SOAP messages with
attachments note” proposed in
11.12.02 that addresses this problem
It uses MIME types (like e-mails)
and it is based in including the
SOAP message into a MIME
element that contains both the
SOAP message and the attachment
(see next page)
The solution is simple and it follows
the same approach as that taken in e-
mail messages: include a reference
and have the actual attachment at the
end of the message
The MIME document can be
embedded into an HTTP request in
the same way as the SOAP message
The Apache SOAP 2.2 toolkit
supports this approach

Problems with this approach:
handling the message implies
dragging the attachment along,
which can have performance
implications for large messages
scalability can be seriously
affected as the attachment is
sent in one go (no streaming)
not all SOAP implementations
support attachments
SOAP engines must be extended
to deal with MIME types (not
too complex but it adds
overhead)

There are alternative proposals like
DIME of Microsoft (Direct Internet
Message Encapsulation) and WS-
attachments

©Gustavo Alonso, ETH Zürich. 67

Attachments in SOAP
MIME-Version: 1.0

Content-Type: Multipart/Related; boundary=MIME_boundary; type=text/xml;
start="<claim061400a.xml@claiming-it.com>"

Content-Description: This is the optional message description.
--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <claim061400a.xml@claiming-it.com>

<?xml version='1.0' ?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body>
..
<theSignedForm href="cid:claim061400a.tiff@claiming-it.com"/>
..
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>
--MIME_boundary
Content-Type: image/tiff
Content-Transfer-Encoding: binary
Content-ID: <claim061400a.tiff@claiming-it.com>

...binary TIFF image...
--MIME_boundary--Fr

om
SO

A
P

M
es

sa
ge

s w
ith

 A
tta

ch
m

en
ts

. ©
W

3C
 N

ot
e

11
 D

ec
em

be
r 2

00
0

SO
A

P
M

E
SS

A
G

E

ATTACHMENT

©Gustavo Alonso, ETH Zürich. 68

The problems with attachments
Attachments are relatively easy to include in a message and all proposals
(MIME or DIME based) are similar in spirit
The differences are in the way data is streamed from the sender to the receiver
and how these differences affect efficiency

MIME is optimized for the sender but the receiver has no idea of how big a
message it is receiving as MIME does not include message length for the
parts it contains
this may create problems with buffers and memory allocation
it also forces the receiver to parse the entire message in search for the
MIME boundaries between the different parts (DIME explicitly specifies the
length of each part which can be use to skip what is not relevant)

All these problems can be solved with MIME as it provides mechanisms for
adding part lengths and it could conceivably be extended to support some basic
form of streaming
Technically, these are not very relevant issues and have more to do with
marketing and control of the standards
The real impact of attachments lies on the specification of Web services
(discussed later on)

©Gustavo Alonso, ETH Zürich. 69

SOAP as simple protocol
SOAP does not include anything about:

reliability
complex message exchanges
transactions
security
…

As such, it is not adequate by itself to implement industrial strength applications
that incorporate typical middleware features such as transactions or reliable
delivery of messages
SOAP does not prevent such features from being implemented but they need to
be standardized to be useful in practice:

WS-security
WS-Coordination
WS-Transactions
…

A wealth of additional standards are being proposed to add the missing
functionality

©Gustavo Alonso, ETH Zürich. 70

Beyond SOAP
Not everybody agrees to the procedure of SOAP + WS-”extensions”, some
organizations insist that a complete protocol specification for Web services
needs to address much more than just getting data across
ebXML, as an example, proposes its own messaging service that incorporates
many of the additional features missing in SOAP. This messaging service can be
built using SOAP as a lower level protocol but it considers the messaging
problem as a whole
The idea is not different from SOAP ...

but extended to incorporate additional features (next page)

Abstract ebXML Messaging Service

Transport service(s)

Messaging service layer
(maps the abstract interface to the

transport service)

©Gustavo Alonso, ETH Zürich. 71

ebXML messaging service
MESSAGING SERVICE INTERFACE

AUTHENTICATION, AUTHORIZATION
AND REPUDIATION SERVICES

HEADER PROCESING

ENCRYPTION,
DIGITAL SIGNATURE

MESSAGE PACKAGING MODULE

DELIVERY MODULE
SEND/RECEIVE

TRANSPORT MAPPING AND BINDING

FTP HTTP IIOP SMTP

TRANSPORT SERVICES ©Gustavo Alonso, ETH Zürich. 72

ebXML and SOAP
The ebXML Messaging specification clarifies in great detail how to use SOAP
and how to add modules implementing additional functionality:

ebXML message = MIME/Multipart message envelope according to “SOAP
with attachments” specification
ebXML specified standard headers:
• MessageHeader: id, version, mustUnderstand flag to 1, from, to,

conversation id, duplicate elimination, etc.
ebXML recommends to use the SOAP body to declare (manifest) the data
being transferred rather than to carry the data (the data would go in pther
parts of the MIME message)
ebXML defines a number of core modules and how information relevant to
these modules is to be exchanged:
• security (for encryption and signature handling)
• error handling (above the SOAP error handling level)
• sync/reply (to maintain connections open across intermediaries)

©Gustavo Alonso, ETH Zürich. 73

Additional features of ebXML messages
Reliable messaging module

a protocol that guarantees reliable delivery between two message handlers.
It includes persistent storage of the messages and can be used to implement
a wide variety of delivery guarantees

Message status service
a service that allows to ask for the status of a message previously sent

Message ping service
to determine if there is anybody listening at the other end of the line

Message order module
to deliver messages to the receiver in a particular order. It is based on
sequence numbers

Multi-hop messaging module
for sending messages through a chain of intermediaries and still achieve
reliability

This are all typical features of a communication protocol that are needed anyway
(including practical SOAP implementations)

Transactions in distributed settings

Prof. Dr. Gustavo Alonso
Institute for Pervasive Computing
Computer Science Department
ETH Zürich
alonso@inf.ethz.ch
http://www.inf.ethz.ch/~alonso

©Gustavo Alonso, ETH Zürich. 75

Basics of transaction processing

©Gustavo Alonso, ETH Zürich. 76

Transaction Processing
Why is transaction processing relevant?

Most of the information systems used in businesses are transaction based
(either databases or TP-Monitors). The market for transaction processing is
many tens billions of dollars per year
Not long ago, transaction processing was used mostly in large companies
(both users and providers). This is no longer the case (CORBA, WWW,
Commodity TP-Monitors, Internet providers, distributed computing)
Transaction processing is not just database technology, it is core distributed
systems technology

Why distributed transaction processing?
It is an accepted, proven, and tested programming model and computing
paradigm for complex applications
The convergence of many technologies (databases, networks, workflow
management, ORB frameworks, clusters of workstations …) is largely based
on distributed transactional processing

©Gustavo Alonso, ETH Zürich. 77

From business to transactions
A business transaction usually involves an exchange between two or more
entities (selling, buying, renting, booking …).
When computers are considered, these business transactions become electronic
transactions:

The ideas behind a business transaction are intuitive. These same ideas are used
in electronic transactions.
Electronic transactions open up many possibilities that are unfeasible with
traditional accounting systems.

BUYER SELLER
TRANSACTION

STATE STATE STATE

book-keeping

©Gustavo Alonso, ETH Zürich. 78

The problems of electronic transactions
Transactions are a great idea:

Hack a small, cute program and that’s it.

Unfortunately, they are also a complex idea:
From a programming point of view, one must be able to encapsulate the
transaction (not everything is a transaction).
One must be able to run high volumes of these transactions (buyers want fast
response, sellers want to run many transactions cheaply).
Transactions must be correct even if many of them are running concurrently (=
at the same time over the same data).
Transactions must be atomic. Partially executed transactions are almost always
incorrect (even in business transactions).
While the business is closed, one makes no money (in most business).
Transactions are “mission critical”.
Legally, most business transactions require a written record. So do electronic
transactions.

©Gustavo Alonso, ETH Zürich. 79

What is a transaction?
Transactions originated as “spheres of control” in which to encapsulate certain

behavior of particular pieces of code.
A transaction is basically a set of service invocations, usually from a program
(although it can also be interactive).
A transaction is a way to help the programmer to indicate when the system
should take over certain tasks (like semaphores in an operating system, but much
more complicated).
Transactions help to automate many tedious and complex operations:

record keeping,
concurrency control,
recovery,
durability,
consistency.

It is in this sense that transactions are considered ACID (Atomic, Consistent,
Isolated, and Durable).

©Gustavo Alonso, ETH Zürich. 80

Transactional properties
These systems would have been very difficult to build without the concept of

transaction. To understand why, one needs to understand the four key properties
of a transaction:

ATOMICITY: necessary in any distributed system (but also in centralized ones).
A transaction is atomic if it is executed in its entirety or not at all.

CONSISTENCY: used in database environments. A transactions must preserve
the data consistency.

ISOLATION: important in multi-programming, multi-user environments. A
transaction must execute as if it were the only one in the system.

DURABILITY: important in all cases. The changes made by a transaction must
be permanent (= they must not be lost in case of failures).

©Gustavo Alonso, ETH Zürich. 81

Transactional properties

consistent
database

consistent
database

Transaction

consistent
database

inconsistent
database

Txn

Failure

inconsistent
database

A

C

I

D
consistent
database

consistent
database

Txn

consistent
database

consistent
database

Txn 1

Txn 2
inconsistent

database

system
crash

recovery

recovery

©Gustavo Alonso, ETH Zürich. 82

Transactional atomicity
Transactional atomicity is an “all or nothing” property: either the entire
transaction takes place or it does not take place at all.
A transaction often involves several operations that are executed at different
times (control flow dependencies). Thus, transactional atomicity requires a
mechanism to eliminate partial, incomplete results (a recovery protocol).

consistent
database

inconsistent
database

Txn

Failure

RECOVERY
MANAGER

database
log

Txn

consistent
database

inconsistent
database

consistent
database

Failure

©Gustavo Alonso, ETH Zürich. 83

Transactional isolation
Isolation addresses the problem of ensuring correct results even when there are
many transactions being executed concurrently over the same data.
The goal is to make transactions believe there is no other transaction in the
system (isolation).
This is enforced by a concurrency control protocol, which aims at guaranteeing
serializability.

consistent
database

consistent
database

Txn 1

Txn 2
inconsistent

database

consistent
database

Txn 1 Txn 2
consistent
database

consistent
database

Txn 1
Txn 2

CONCURRENCY
CONTROL

©Gustavo Alonso, ETH Zürich. 84

Transactional consistency
Concurrency control and recovery protocols are based on a strong assumption:
the transaction is always correct.
In practice, transactions make mistakes (introduce negative salaries, empty
social security numbers, different names for the same person …). These
mistakes violate database consistency.
Transaction consistency is enforced through integrity constraints:

Null constrains: when an attribute can be left empty.
Foreign keys: indicating when an attribute is a key in another table.
Check constraints: to specify general rules (“employees must be either
managers or technicians”).

Thus, integrity constraints acts as filters determining whether a transaction is
acceptable or not.
NOTE: integrity constraints are checked by the system, not by the transaction
programmer.

©Gustavo Alonso, ETH Zürich. 85

Transactional durability
Transactional system often deal with valuable information. There must be a
guarantee that the changes introduced by a transaction will last.
This means that the changes introduced by a transaction must survive failures (if
you deposit money in your bank account, you don’t want the bank to tell you
they have lost all traces of the transaction because there was a disk crash).
In practice, durability is guaranteed by using replication: database backups,
mirrored disks.
Often durability is combined with other desirable properties such as availability:

Availability is the percentage of time the system can be used for its intended
purpose (common requirement: 99.86% or 1 hour a month of down time).
Availability plays an important role in many systems. Consider, for instance,
the name server used in a CORBA implementation.

©Gustavo Alonso, ETH Zürich. 86

A Simple Transaction Manager (I)

TRANSACTION
MANAGER

SCHEDULER
(concurrency

control

RECOVERY
MANAGER

CACHE
MANAGER

LOG

STABLE
DATABASE CACHE

transactions
(r, w, c, a)

restart
(after system
failure)

read, write, commit, abort

read, write,
commit, abort

read, write
fetch, flush

read, write

stable storage main memory

DATA
MANAGER

©Gustavo Alonso, ETH Zürich. 87

A Simple Transaction Manager (II)
Each one of the modules shown is a complex component that can be optimized
by using clever tricks (engineering, not theory).
In practice, these modules tend to be heavily interconnected (if one wants
performance, forget about modularity and nice, clear cut interfaces).
A crucial aspect of a transaction manager is to ensure that operations are
executed in the proper order.
When a module indicates “A should be executed before B”, this should be the
case at all levels, independently of the optimizations performed at each level.
There are two ways to guarantee such property:

FIFO queues between each module: force sequential processing but have
problems with threads and multi-processing.
Handshaking: If A must happen before B, B is not passed to a lower module
until the execution of A has not been confirmed by the lower module.

©Gustavo Alonso, ETH Zürich. 88

Example Application (ATM)
Example 1: Automated Teller Machines (ATM)

Tables:
AccountBalance (Acct#, balance): the accounts and the money in them
HotCard-List (Acct#): card that have been canceled/stolen/suspended.
AccountVelocity (Acct#,SumWithdrawals): stores the latest transactions and
the accumulated amount.
PostingLog (Acct#,ATMid,Amount): a record of each operation.

Typical operation (money withdrawal):
Get input (Acct#, ATM#, type, PIN, Txn-id, Amount).
Write request to PostingLog.
Check PIN
Check Acct# with HotCard-List table.
Check Acct# with AccountVelocity table
Update AccountVelocity table.
Update balance in AccountBalance table.
Write withdrawal record to PostingLog
Commit transaction and dispense money.

©Gustavo Alonso, ETH Zürich. 89

Example Application (ATM)
Size: with several hundred ATMs and about one million customers, the database
takes 25-50 MB.
Load: the system is configured to deal with the peak load: about one transaction
per minute per ATM. Under normal circumstances, one mirrored disk (two disks
doing the same operations) can handle 5 transactions per second (tps). Assuming
5 I/O operations per transaction, one mirrored disk can then handle about 300
ATMs.
The PostingLog can be updated off-line (at night).
Before, these systems were based on snapshot replication. Today, many of these
systems access on-line databases.

©Gustavo Alonso, ETH Zürich. 90

Example Application (Stock Exchange)
Example 2: Stock Exchange.

Tables:
Users: list of traders and market watchers.
Stocks: list of traded stocks.
BuyOrders/SellOrders: all the orders entered during the day
Trades: all trades executed during the day.
Price: buy and sell total volume, and numbers of orders for each stock and
price.
Log: all users’ requests and system replies.
NotificationMssgs: all messages sent to the users (usually, confirmations of
an operation).

Typical operation (Execute Trade):
Read information about the stock from the Stocks table.
Get timestamp.
Read scheduled trading periods for the stock.
Check validity of operation (time, value, prices).
If valid, find a matching trade operation, update Trades, NotificationMssgs,
Orders, Prices, Stocks.

©Gustavo Alonso, ETH Zürich. 91

Example Application (Stock Exchange)
Write the system’s response to the log.
Commit the transaction.
Broadcast the new book situation.

Size: 10 stock exchanges connected, real-time distributed trading, total database
size 2.6 GB.
Load: Peak daily load is 140.000 orders. The peak-per-second load involves 180
disk I/Os and executing 300 million instructions per second.

©Gustavo Alonso, ETH Zürich. 92

Some basic advanced transaction models

©Gustavo Alonso, ETH Zürich. 93

Distributed Transactions
The transaction model described so far is known as “flat model”, i.e.,
transactions have only two levels, the parent transaction and the children
transaction
Distributed transactions are difficult to model with flat transactions (for instance,
a chain of TRPCs), hence more complex models are needed
The most common model for distributed transactions is the nested model in
which operations of a transaction can be transactions themselves
One of the most important aspects of distributed transactions is the problem of
atomic commitment. Nested transactions help with this problem by indicating
when transactions at different systems need to be committed

©Gustavo Alonso, ETH Zürich. 94

Pros and Cons of Atomicity

consistent
database

consistent
database

Transaction

consistent
database

inconsistent
database

Txn

Abort

Recovery

If a program finds there is some error, it suffices to
abort the transaction. The recovery mechanism
ensures the effects of the transaction will be
eliminated. This is both good and bad.

©Gustavo Alonso, ETH Zürich. 95

Pros and Cons of Atomicity
If you are a transaction programmer, every time there is something that goes
wrong (there is not enough funds, for instance), it is enough to execute
ROLLBACK WORK to go back to the beginning of the transaction:

But if transactions are long, or complex, aborting the entire transaction may be a
waste of effort. In many cases, one does not want to go all the way to the
beginning but to some intermediate point where one is sure things were correct,
and then take again from there.

consistent
database

Txn

ROLLBACK
WORK

Recovery

©Gustavo Alonso, ETH Zürich. 96

Savepoints
To avoid this problem, savepoints are used.
A savepoint records the current state of the execution of a transaction.
When invoking ROLLBACK WORK, one indicates to which point one wants to
rollback (to the beginning or to a savepoint).

BEGIN (1)
OP 1
OP 2

SAVEP (2)
OP 3

ROLLB(2)

OP 4
OP 5

SAVEP (3)
OP 6
OP 7
OP 8

ROLLB(3)

OP 9
OP 10
OP 11

COMMIT

©Gustavo Alonso, ETH Zürich. 97

Triggered Commits
How can savepoints be implemented ?
Consider each set of operations between two savepoints as an atomic unit.
A ROLLBACK(x) aborts all atomic units all the way back to savepoint x.
A COMMIT at the end, triggers a chain of commits for each atomic unit.

BEGIN (1)
OP 1
OP 2

SAVEP (2)
OP 3

ABORT(2)
OP 4
OP 5

SAVEP (3)
OP 6
OP 7
OP 8

ABORT(3)

OP 9
OP 10
OP 11

COMMIT

©Gustavo Alonso, ETH Zürich. 98

Persistent Savepoints ?
Savepoints are a great idea:

if something goes wrong, we can rollback to different parts of the execution
and resume from there.
rollback is performed by the system using the standard recovery mechanism.

Can this great idea be generalized?
If savepoints are made persistent, we may be able to resume the execution of a
transaction even after crash failures!
In principle yes, but in practice:

The database can recover to a savepoint, but the application program may
not be able to do the same.

User program

Database
transaction

crash
failure

restart

restart

©Gustavo Alonso, ETH Zürich. 99

Chained Transactions
Note that the atomic units used in savepoints are almost like a transaction.
The important difference is that the transaction context is kept (locks are not
released until commit, not needed ones can be released).
Chained transactions allow to commit one transaction and pass its context to the
next.
If a failure occurs, committed transactions are safe, only the last active
transaction will be aborted.
However, there is no possibility of rollback to a previous transactions (now they
are really committed).

OP 3
OP 4
CHAIN

OP 5
OP 6
OP 7

COMMIT

BEGIN (1)
OP 1
OP 2
CHAIN

©Gustavo Alonso, ETH Zürich. 100

Non-Flat Transaction Models
Savepoints and chained transactions point the need to structure sequences of
interactions with the database.
The transactions we have been discussed so far are known as flat transactions.
A chained transaction can be seen as a first step towards a non-flat transaction
model:

When these ideas are generalized, one arrives at the nested transaction model.

parent

children

©Gustavo Alonso, ETH Zürich. 101

Nested Transactions
A nested transaction is a tree of transactions.
Transactions at the leaves are flat transactions.
Transactions can either commit or rollback. The commit is conditional to the
parent transaction’s commit (hence, transactions commit only if the root
commits).
Rollback of a transaction causes all of its children to also rollback.

root

©Gustavo Alonso, ETH Zürich. 102

Nested Transaction Structure

BEGIN COMMIT

BOT C BOT C

B

BBBB CC

C

RR

©Gustavo Alonso, ETH Zürich. 103

Nested Transaction Rules
Nested Transactions are like a combination of savepoints and chained
transactions.
They follow these three rules (node = txn.):

Commit Rule: When a node wants to commit, it passes its context to the
parent node (like in chained txns.), it will actually commit when the root
node commits (like in savepoints).
Rollback Rule: If a node does a rollback, all of its children must also
rollback.
Visibility Rule: When a node “commits” all of its changes become visible to
the parent (because the child passes its context to the parent). Concurrent
siblings are isolated from each other (they see each other as different
transactions). The parent can make certain objects accessible to the children,
thereby allowing the context of a child to pass to another child.

All other notions (serializability, recoverability …) still apply across different
nested transactions
For distributed transactions, the important aspect is how to commit all
transactions, not so much the isolation aspects

©Gustavo Alonso, ETH Zürich. 104

Atomic commitment in practice (2PC-
3PC)

©Gustavo Alonso, ETH Zürich. 105

Atomic Commitment

The
Consensus
Problem

2 Phase
Commit

3 Phase
Commit

Applications

©Gustavo Alonso, ETH Zürich. 106

The Consensus (agreement) Problem
Distributed consensus is the problem
of reaching an agreement among all
working processes on the value of a
variable
Consensus is not a difficult problem
if the system is reliable (no site
failures, no communication failures)
Asynchronous = no timing
assumptions can be made about the
speed of processes or the network
delay (it is not possible to
distinguish between a failure and a
slow system)

The impossibility result implies that
there is always a chance to remain
uncertain (unable to make a
decision), hence:
If failures may occur, then all
entirely asynchronous commit
protocols may block.
No commit protocol can guarantee
independent recovery (if a site fails
when being uncertain, upon
recovery it will have to find out
from others what the decision was).
This is a very strong result with
important implications in any
distributed system.

In an asynchronous environment where failures can occur
reaching consensus may be impossible

©Gustavo Alonso, ETH Zürich. 107

Generals problem
To succeed the generals must attack
at the same time
The generals can only communicate
through messages
The system is asynchronous:
messages can be lost or delayed
indefinitely

The impossibility in the generals
problem arises from the need to
have complete knowledge: I need to
know my state, the other’s state, that
the other knows my state, that the
other knows that I know her state,
that the other knows that I know that
she knows my state …
If the system is entirely
asynchronous, this problem cannot
be solved by simply exchanging
messages
There are many forms of this
problem and atomic commitment is
one of them:

all sites must decide on whether
to commit or abort a transaction
and all must make the same
decision

Under these circumstances,

the generals will never

be able to agree on a

simultaneous attack,

that is, they can never reach

consensus

©Gustavo Alonso, ETH Zürich. 108

Atomic Commitment
Properties to enforce:

AC1 = All processors that reach a decision reach the same one (agreement,
consensus).
AC2 = A processor cannot reverse its decision.
AC3 = Commit can only be decided if all processors vote YES (no imposed
decisions).
AC4 = If there are no failures and all processors voted YES, the decision will be
to commit (non triviality).
AC5 = Consider an execution with normal failures. If all failures are repaired
and no more failures occur for sufficiently long, then all processors will
eventually reach a decision (liveness).

©Gustavo Alonso, ETH Zürich. 109

Simple 2PC Protocol and its correctness
PROTOCOL:

Coordinator send VOTE-REQ to all
participants.
Upon receiving a VOTE-REQ, a
participant sends a message with
YES or NO (if the vote is NO, the
participant aborts the transaction and
stops).
Coordinator collects all votes:

All YES = Commit and send
COMMIT to all others.
Some NO = Abort and send
ABORT to all which voted
YES.

A participant receiving COMMIT or
ABORT messages from the
coordinator decides accordingly and
stops.

CORRECTNESS:
The protocol meets the 5 AC conditions

(I - V):
ACI = every processor decides what
the coordinator decides (if one
decides to abort, the coordinator will
decide to abort).
AC2 = any processor arriving at a
decision “stops”.
AC3 = the coordinator will decide to
commit if all decide to commit (all
vote YES).
AC4 = if there are no failures and
everybody votes YES, the decision
will be to commit.
AC5 = the protocol needs to be
extended in case of failures (in case
of timeout, a site may need to “ask
around”).

©Gustavo Alonso, ETH Zürich. 110

Timeout Possibilities

COORDINATOR

send
VOTE-REQ

wait
for votes

send
COMMIT

send
ABORT

COMMIT

ABORT

all vote YES

some vote NO

©Gustavo Alonso, ETH Zürich. 111

Timeout Possibilities

PARTICIPANT

wait for
VOTE-REQ

wait for
decision

ABORT

COMMITvote YES

vote NO

ABORT
received

COMMIT
received

©Gustavo Alonso, ETH Zürich. 112

Timeout and termination
In those three waiting periods:

If the coordinator times-out waiting
for votes: it can decide to abort
(nobody has decided anything yet,
or if they have, it has been to abort)
If a participant times-out waiting for
VOTE-REQ: it can decide to abort
(nobody has decided anything yet,
or if they have, it has been to abort)
If a participant times-out waiting for
a decision: it cannot decide anything
unilaterally, it must ask (run a
Cooperative Termination Protocol).
If everybody is in the same situation
no decision can be made: all
processors will block. This state is
called uncertainty period

When in doubt, ask. If anybody has
decided, they will tell us what the
decision was:
There is always at least one
processor that has decided or is able
to decide (the coordinator has no
uncertainty period). Thus, if all
failures are repaired, all processors
will eventually reach a decision
If the coordinator fails after
receiving all YES votes but before
sending any COMMIT message: all
participants are uncertain and will
not be able to decide anything until
the coordinator recovers. This is the
blocking behavior of 2PC (compare
with the impossibility result
discussed previously)

©Gustavo Alonso, ETH Zürich. 113

Recovery and persistence
Processors must know their state to be

able to tell others whether they have
reached a decision. This state must
be persistent:

Persistence is achieved by writing a
log record. This requires flushing
the log buffer to disk (I/O).
This is done for every state change
in the protocol.
This is done for every distributed
transaction.
This is expensive!

When sending VOTE-REQ, the
coordinator writes a START-2PC
log record (to know the
coordinator).
If a participant votes YES, it writes
a YES record in the log BEFORE it
send its vote. If it votes NO, then it
writes a NO record.
If the coordinator decides to commit
or abort, it writes a COMMIT or
ABORT record before sending any
message.
After receiving the coordinator’s
decision, a participant writes its own
decision in the log.

©Gustavo Alonso, ETH Zürich. 114

Linear 2PC
Linear 2PC commit exploits a particular network configuration to minimize the
number of messages:

YES

...

YES

YES

COM

©Gustavo Alonso, ETH Zürich. 115

Linear 2PC
The total number of messages is 2n instead of 3n, but the number of rounds is 2n
instead of 3

YES

YES

NO NO

NO NO

©Gustavo Alonso, ETH Zürich. 116

3 Phase Commit Protocol
2PC may block if the coordinator fails

after having sent a VOTE-REQ to
all processes and all processes vote
YES. It is possible to reduce the
window of vulnerability even further
by using a slightly more complex
protocol (3PC).

In practice 3PC is not used. It is too
expensive (more than 2PC) and the
probability of blocking is considered
to be small enough to allow using
2PC instead.

But 3PC is a good way to understand
better the subtleties of atomic
commitment

We will consider two versions of 3PC:
One capable of tolerating only site
failures (no communication
failures). Blocking occurs only
when there is a total failure (every
process is down). This version is
useful if all participants reside in the
same site.
One capable of tolerating both site
and communication failures (based
on quorums). But blocking is still
possible if no quorum can be
formed.

©Gustavo Alonso, ETH Zürich. 117

Blocking in 2PC
Why does a process block in 2PC?

If a process fails and everybody else
is uncertain, there is no way to know
whether this process has committed
or aborted (NOTE: the coordinator
has no uncertainty period. To block
the coordinator must fail).
Note, however, that the fact that
everybody is uncertain implies
everybody voted YES!
Why, then, uncertain processes
cannot reach a decision among
themselves?

The reason why uncertain process
cannot make a decision is that being
uncertain does not mean all other
processes are uncertain. Processes
may have decided and then failed.
To avoid this situation, 3PC
enforces the following rule:

NB rule: No operational process can
decide to commit if there are
operational processes that are
uncertain.

How does the NB rule prevent
blocking?

©Gustavo Alonso, ETH Zürich. 118

Avoiding Blocking in 3PC
The NB rule guarantees that if anybody is uncertain, nobody can have decided to

commit. Thus, when running the cooperative termination protocol, if a process
finds out that everybody else is uncertain, they can all safely decide to abort.
The consequence of the NB rule is that the coordinator cannot make a decision
by itself as in 2PC. Before making a decision, it must be sure that everybody is
out of the uncertainty area. Therefore, the coordinator, must first tell all
processes what is going to happen: (request votes, prepare to commit, commit).
This implies yet another round of messages!

©Gustavo Alonso, ETH Zürich. 119

3PC Coordinator

bcast
vote-req

wait
for votes

ABORT

COMMIT bcast
commit

bcast
abort

bcast
pre-commit

wait
for ACKs
*

Possible time-out actions

all vote YES

some vote NO

all ACKs
received

©Gustavo Alonso, ETH Zürich. 120

3PC Participant

wait for
vote-req

ABORT

COMMIT
wait for

pre-commit
send
ACK

wait for
commit

Possible time-out actions

vote YES

abort
received

vote NO

pre-commit
received

commit
received

©Gustavo Alonso, ETH Zürich. 121

3PC and Knowledge (using the NB rule)
3PC is interesting in that the processes

know what will happen before it
happens:
Once the coordinator reaches the
“bcast pre-commit”, it knows the
decision will be to commit.
Once a participant receives the pre-
commit message from the
coordinator, it knows that the
decision will be to commit.

Why is the extra-round of messages
useful?
The extra round of messages is used
to spread knowledge across the
system. They provide information
about what is going on at other
processes (NB rule).

The NB rule is used when time-outs
occur (remember, however, that
there are no communication
failures):
If coordinator times out waiting for
votes = ABORT.
If participant times out waiting for
vote-req = ABORT.
If coordinator times out waiting for
ACKs = ignore those who did not
sent the ACK! (at this stage
everybody has agreed to commit).
If participant times out waiting for
pre-commit = still in the uncertainty
period, ask around.
If participant times out waiting for
commit message = not uncertain any
more but needs to ask around!

©Gustavo Alonso, ETH Zürich. 122

Persistence and recovery in 3PC
Similarly to 2PC, a process has to

remember its previous actions to be
able to participate in any decision.
This is accomplished by recording
every step in the log:
Coordinator writes “start-3PC”
record before doing anything. It
writes an “abort” or “commit”
record before sending any abort or
commit message.
Participant writes its YES vote to
the log before sending it to the
coordinator. If it votes NO, it writes
it to the log after sending it to the
coordinator. When reaching a
decision, it writes it in the log (abort
or commit).

Processes in 3PC cannot independently
recover unless they had already
reached a decision or they have not
participated at all:
If the coordinator recovers and finds
a “start 3PC” record in its log but no
decision record, it needs to ask
around to find out what the decision
was. If it does not find a “start 3PC”,
it will find no records of the
transaction, then it can decide to
abort.
If a participant has a YES vote in its
log but no decision record, it must
ask around. If it has not voted, it can
decide to abort.

©Gustavo Alonso, ETH Zürich. 123

Termination Protocol
Elect a new coordinator.
New coordinator sends a “state req”
to all processes. participants send
their state (aborted, committed,
uncertain, committable).
TR1 = If some “aborted” received,
then abort.
TR2 = If some “committed”
received, then commit.
TR3 = If all uncertain, then abort.
TR4 = If some “committable” but no
“committed” received, then send
“PRE-COMMIT” to all, wait for
ACKs and send commit message.

TR4 is similar to 3PC, have we actually
solved the problem?
Yes, failures of the participants on
the termination protocol can be
ignored. At this stage, the
coordinator knows that everybody is
uncertain, those who have not sent
an ACK have failed and cannot have
made a decision. Therefore, all
remaining can safely decide to
commit after going over the pre-
commit and commit phases.
The problem is when the new
coordinator fails after asking for the
state but before sending any pre-
commit message. In this case, we
have to start all over again.

©Gustavo Alonso, ETH Zürich. 124

Partition and total failures
This protocol does not tolerate

communication failures:
A site decides to vote NO, but its
message is lost.
All vote YES and then a partition
occurs. Assume the sides of the
partition are A and B and all
processes in A are uncertain and all
processes in B are committable.
When they run the termination
protocol, those in A will decide to
abort and those in B will decide to
commit.
This can be avoided if quorums are
used, that is, no decision can be
made without having a quorum of
processes who agree (this
reintroduces the possibility of
blocking, all processes in A will
block).

Total failures require special treatment,
if after the total failure every process
is still uncertain, it is necessary to
find out which process was the last
on to fail. If the last one to fail is
found and is still uncertain, then all
can decide to abort.
Why? Because of partitions.
Everybody votes YES, then all
processes in A fail. Processes in B
will decide to commit once the
coordinator times out waiting for
ACKs. Then all processes in B fail.
Processes in A recover. They run the
termination protocol and they are all
uncertain. Following the termination
protocol will lead them to abort.

©Gustavo Alonso, ETH Zurich. 125

2PC in Practice
2PC is a protocol used in many applications from distributed systems to Internet
environments
2PC is not only a database protocol, it is used in many systems that are not
necessarily databases but, traditionally, it has been associated with transactional
systems
2PC appears in a variety of forms: distributed transactions, transactional remote
procedure calls, Object Transaction Services, Transaction Internet Protocol …
In any of these systems, it is important to remember the main characteristic of
2PC: if failures occur the protocol may block. In practice, in many systems,
blocking does not happen but the outcome is not deterministic and requires
manual intervention

©Gustavo Alonso, ETH Zürich. 126

2PC

Start Prepare-Log Wait

All Y
ES

Some NO

Commit-Log

Abort-Log

COMMIT

ABORT

EOT-Log

Wait

Vote Yes -Log

Abort-Log

Wait Commit-Log COMMIT

ABORT

COORDINATOR

PARTICIPANT

Vote Abort

Vo
te

Requ
est

Vote Abort
Vote Com

m
it Commit

Abort

Ack

Ack

©Gustavo Alonso, ETH Zurich. 127

ORB

SOFTWARE BUS (ORB)

Application Objects Common Facilities

Common Object Services

naming events security transactions

...

©Gustavo Alonso, ETH Zurich. 128

Object Transaction Service
The OTS provides transactional guarantees to the execution of invocations
between different components of a distributed application built on top of the
ORB
The OTS is fairly similar to a TP-Monitor and provides much of the same
functionality discussed before for RPC and TRPC, but in the context of the
CORBA standard
Regardless of whether it is a TP-monitor or an OTS, the functionality needed to
support transactional interactions is the same:

transactional protocols (like 2PC)
knowing who is participating
knowing the interface supported by each participant

©Gustavo Alonso, ETH Zurich. 129

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Assume App A wants to update its database and also that in B

©Gustavo Alonso, ETH Zurich. 130

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

BEGIN
TXN

©Gustavo Alonso, ETH Zurich. 131

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Register
DB

OTS now knows
that there is database

behind App A

©Gustavo Alonso, ETH Zurich. 132

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

TXN(1)
… but the transaction does not commit

©Gustavo Alonso, ETH Zurich. 133

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B
Call

B txn(1)

©Gustavo Alonso, ETH Zurich. 134

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

Register
DB

OTS now knows
that there is database

behind App B

©Gustavo Alonso, ETH Zurich. 135

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

TXN(1)… but the transaction does not commit

©Gustavo Alonso, ETH Zurich. 136

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

COMMIT

©Gustavo Alonso, ETH Zurich. 137

Object Transaction Service

ORB

Application Application
DB DB

Object
Transaction

Service

A B

2PC 2PC

©Gustavo Alonso, ETH Zurich. 138

OTS Sequence of Messages
DB A APP A OTS APP B DB Bbegin

register
TXN

invoke

register
TXN

commit
prepare prepare

vote yes vote yes
commit commit

©Gustavo Alonso, ETH Zürich. 139

p g
Registration

When a call is made to another
server, somebody has to know that
this call belongs to a given
transaction. There are two ways of
doing this:
Explicit (manual): the invocation
itself contains the transaction
identifier. Then, when the
application registers the resource
manager, it uses this transaction
identifier to say to which transaction
it is “subscribing”
Implicit (automatic): the call is made
through the OTS, which will
forward the transaction identifier
along with the invocation. This
requires to link with the OTS library
and to make all methods involved
transactional

Registration is necessary in order to
tell the OTS who will participate in
the 2PC protocol and what type of
interface is supported. Registration
can be manual or automatic
Manual registration implies the the
user provides an implementation of
the resource. This implementation
acts as an intermediary between the
OTS and the actual resource
manager (useful for legacy
applications that need to be
wrapped)
Automatic registration is used when
the resource manager understands
transactions (i.e., it is a database), in
which case it will support the XA
interface for 2PC directly. A
resource are registered only once,
and implicit propagation is used to
check which transactions go there

©Gustavo Alonso, ETH Zürich. 140

Transaction Processing Monitors (TP-
monitors)

©Gustavo Alonso, ETH Zürich. 141

Outline
Historical perspective:

The problem: synchronization and atomic interaction
The solution: transactional RPC and additional support

TP Monitors
Example and Functionality
Architectures
Structure
Components

TP Monitor functionality in CORBA

©Gustavo Alonso, ETH Zürich. 142

Client, server, and databases
Processing, storing, accessing and
retrieving data has always been one
of the key aspects of enterprise
computing. Most of this data resides
in relational database management
systems, which have well defined
interfaces and provided very clear
guarantees to the operations
performed over the data.
However:

not all the data can reside in the
same database
the application is built on top of
the database. The guarantees
provided by the database need to
be understood by the application
running on top

INVENTORY CONTROL

IF supplies_low

THEN

BOT
Place_order

Update_inventory

EOT

Products

databaseDB
M

S Inventory
and order
database

DB
M

S

New_product

Lookup_product

Delete_product

Update_product

Place_order

Cancel_order

Update_inventory

Check_inventory

Server 3 (inventory)Server 2 (products)

©Gustavo Alonso, ETH Zürich. 143

The nice thing about databases ...
… is that they take care of all
aspects related to data management,
from physical storage to
concurrency control and recovery
Using a database can reduce the
amount of code necessary in a large
application by about 40 %
From a client/server perspective, the
databases help in:

concurrency control: many
servers can be connected in
parallel to the same database
and the database will still have
correct data
recovery: if a server fails in the
middle of an operation, the
database makes sure this does
not affect the data or other
servers

Unfortunately, these properties are
provided only to operations
performed within the database. In
principle, they do not apply when:

An operation spawns several
databases
the operations access data not in
the database (e.g., in the server)

To help with this problem, the
Distributed Transaction processing
Model was created by X/Open (a
standard’s body). The heart of this
model is the XA interface for 2
Phase Commit, which can be used to
ensure that an operation spawning
several databases enjoy the same
atomicity properties as if it were
executed in one database.

©Gustavo Alonso, ETH Zürich. 144

One at a time interaction
Databases follow a single thread
execution model where a client can
only have one outstanding call to
one and only one server at any time.
The basic idea is one call per
process (thread).
Databases provide no mechanism to
bundle together several requests into
a single work unit
The XA interface solves this
problem for databases by providing
an interface that supports a 2 Phase
Commit protocol. However, without
any further support, the client
becomes the one responsible for
running the protocol which is highly
impractical
An intermediate layer is needed to
run the 2PC protocol

Database CLIENT

BOT
...

EOT

database

DB
M

S

DBMS enforces

transactional

brackets

Database CLIENT

BOT
...

EOT

database

DBMS

Additional layer
enforces

transactional
brackets

database

DBMS

2 Phase Commit
coordinator

XA XA

©Gustavo Alonso, ETH Zürich. 145

2 Phase Commit
BASIC 2PC

Coordinator send PREPARE to all
participants.
Upon receiving a PREPARE
message, a participant sends a
message with YES or NO (if the
vote is NO, the participant aborts the
transaction and stops).
Coordinator collects all votes:

All YES = Commit and send
COMMIT to all others.
Some NO = Abort and send
ABORT to all which voted
YES.

A participant receiving COMMIT or
ABORT messages from the
coordinator decides accordingly and
stops.

What is needed to run 2PC?
Control of Participants: A
transaction may involve many
resource managers, somebody has to
keep track of which ones have
participated in the execution
Preserving Transactional Context:
During a transaction, a participant
may be invoked several times on
behalf of the same transaction. The
resource manager must keep track of
calls and be able to identify which
ones belong to the same transaction
by using a transaction identifier in
all invocations
Transactional Protocols: somebody
acting as the coordinator in the 2PC
protocol
Make sure the participants
understand the protocol (this is what
the XA interface is for)

©Gustavo Alonso, ETH Zürich. 146

Interactions through RPC
RPC has the same limitations as a
database: it was designed for one at
a time interactions between two end
points. In practice, this is not
enough:
a) the call is executed but the

response does not arrive or the
client fails. When the client
recovers, it has no way of
knowing what happened

b) c) it is not possible to join two
calls into a single unit (neither
the client nor the server can do
this)

database

DB
M

S

cl
ie

nt

se
rv

er

(a)

database

DB
M

S

cl
ie

nt

se
rv

er

(b)

database

DB
M

S

database

DB
M

S

cl
ie

nt

se
rv

er

(c)
database

DB
M

S

se
rv

er

©Gustavo Alonso, ETH Zürich. 147

Transactional RPC
The limitations of RPC can be resolved
by making RPC calls transactional. In
practice, this means that they are
controlled by a 2PC protocol
As before, an intermediate entity is
needed to run 2PC (the client and server
could do this themselves but it is neither
practical nor generic enough)
This intermediate entity is usually called
a transaction manager (TM) and acts as
intermediary in all interactions between
clients, servers, and resource managers
When all the services needed to support
RPC, transactional RPC, and additional
features are added to the intermediate
layer, the result is a TP-Monitor

database
DBMS

client

server

database

DBMS

server

TM

TMTM
TP

monitor

XA XA

©Gustavo Alonso, ETH Zürich. 148

Basic TRPC (making calls)

Client
BOT
…

Service_call
…

Client stub
Get tid
from TM

Add tid to
call

Server

Service
procedure

Server stub
Get tid
register with

the TM
Invoke service
return

Transaction Manager (TM)
Generate tid
store context for tid

Associate server to tid

1 2

3

4

5

©Gustavo Alonso, ETH Zürich. 149

Basic TRPC (committing calls)

Client
...
Service_call
…
EOT

Client stub

Send to TM
commit(tid)

ServerServer stub
Participant

in 2PC

Transaction Manager (TM)
Look up tid

Run 2PC with all servers
associated with tid

Confirm commit

1

3

2

©Gustavo Alonso, ETH Zürich. 150

Additional
features

One step beyond ...
The previous example assumes the
server is transactional and can run
2PC. This could be, for instance, a
stored procedure interface within a
database. However, this is not the
usual model
Typically, the server invokes a
resource manager (e.g., a database)
that is the one actually running the
transaction
This makes the interaction more
complicated as it adds more
participants but the basic concept is
the same:

the server registers the resource
manager(s) it uses
the TM runs 2PC with those
resources managers instead of
with the server (see OTS at the
end)

client stub

Transaction
manager

RPC
support

server stub server stub

client stub

database database

TP-Monitor

©Gustavo Alonso, ETH Zürich. 151

TP-Monitors = transactional RPC
A TP-Monitor allows building a
common interface to several
applications while maintaining or adding
transactional properties. Examples:
CICS, Tuxedo, Encina.
A TP-Monitor extends the transactional
capabilities of a database beyond the
database domain. It provides the
mechanisms and tools necessary to build
applications in which transactional
guarantees are provided.
TP-Monitors are, perhaps, the best,
oldest, and most complex example of
middleware. Some even try to act as
distributed operating systems providing
file systems, communications, security
controls, etc.
TP-Monitors have traditionally been
associated to the mainframe world.
Their functionality, however, has long
since migrated to other environments
and has been incorporated into most
middleware tools.

TP
-M

on
ito

r

transactional
coordination

client

services

Application 1 Application 3Application 2

©Gustavo Alonso, ETH Zürich. 152

TP-Monitor functionality
TP-Monitors appeared because
operating systems are not suited for
transactional processing. TP-Monitors
are built as operating systems on top of
operating systems.
As a result, TP-Monitor functionality is
not well defined and very much system
dependent.
A TP-Monitor tries to cover the
deficiencies of existing “all purpose”
systems. What it does is determined by
the systems it tries to ”improve”.
A TP-Monitor is basically an integration
tool. It allows system designers to tie
together heterogeneous system
components using a number of utilities
that can be mixed and matched
depending on the particular
characteristics of each case.
Using the tools provided by the TP-
Monitor, the integration effort becomes
more straightforward as most of the
needed functionality is directly
supported by the TP-Monitor.

A TP-Monitor addresses the problems of
sharing data from heterogeneous,
distributed sources, providing clean
interfaces and ensuring ACID
properties.
A TP-Monitor extrapolates the functions
of a transaction manager (locking,
scheduling, logging, recovery) and
controls the distributed execution. As
such, TP-Monitor functionality is at the
core of the integration efforts of many
software producers (databases,
workflow systems, CORBA providers,
…).
A TP-Monitor also controls and
manages distributed computations. It
performs load balancing, monitoring of
components, starting and finishing
components as needed, routing of
requests, recovery of components,
logging of all operations, assignment of
priorities, scheduling, etc. In many cases
it has its own transactional file system,
becoming almost indistinguishable from
a distributed operating system.

©Gustavo Alonso, ETH Zürich. 153

Transactional properties
The TP-monitor tries to encapsulate the
services provided within transactional
brackets. This implies RPC augmented
with:

atomicity: a service that produces
modifications in several
components should be executed
entirely and correctly in each
component or should not be
executed at all (in any of the
components).
isolation: if several clients request
the same service at the same time
and access the same data, the
overall result will be as if they were
alone in the system.
consistency: a service is correct
when executed in its entirety (it
does not introduce false or incorrect
data into the component databases)
durability: the system keeps track
of what has been done and is
capable of redoing and undoing
changes in case of failures.

TP
-M

on
ito

r

transactional
coordination

client

services

Application 1 Application 3Application 2

us
er

pr
og

ra
m

client

server

©Gustavo Alonso, ETH Zürich. 154

TRAN-C (Encina)
include <tc/tc.h>
inModule(“helloWorld”);

void Main () {
int i;
inFunction(“main”);
initTC(); /* initializes transaction manager */

transaction { /* starts a transaction */
printf(“Hello World - transaction %d\n”, getTid());
if (I % 2) abort (“Odd transactions are aborted”);
}

onCommit
printf(“Transaction Comitted”);

onAbort
printf(“Abort in module: %s\n \t %s\n”, abortModuleNAme(), abortReason());

}

©Gustavo Alonso, ETH Zürich. 155

TP-Monitor, generic architecture

Branch 1 Branch 2 Finance Dept.

Yearly balance ? Monthly average revenue ?

ap
p

se
rv

er
 1

ap
p

se
r v

er
 1

’

wrappers

ap
p

se
rv

er
 2

app server 3

recoverable
queue

Front end

us
er

pr
og

ra
m

us
er

pr
og

ra
m

us
er

pr
og

ra
m

us
er

pr
og

ra
m

Control (load balancing,
cc and rec., replication,
distribution, scheduling,
priorities, monitoring …)

TP-Monitor
environment

Interfaces to user defined services

Programs implementing the services

©Gustavo Alonso, ETH Zürich. 156

Tasks of a TP Monitor
Core services

Transactional RPC: Implements
RPC and enforces transactional
semantics, scheduling operations
accordingly
Transaction manager: runs 2PC and
takes care of recovery operations
Log manager: records all changes
done by transactions so that a
consistent version of the system can
be reconstructed in case of failures
Lock manager: a generic mechanism
to regulate access to shared data
outside the resource managers

Additional services
Server monitoring and
administration: starting, stopping
and monitoring servers; load
balancing
Authentication and authorization:
checking that a user can invoke a
given service from a given terminal,
at a given time, on a given object
and with a given set of parameters
(the OS does not do this)
Data storage: in the form of a
transactional file system
Transactional queues: for
asynchronous interaction between
components
Booting, system recovery, and other
administrative chores

©Gustavo Alonso, ETH Zürich. 157

Structure of TP-Monitors (I)
TP-Monitors try in many aspects to
replace the operating system so as to
provide more efficient transactional
properties. Depending what type of
operating system they try to replace,
they have a different structure:

Monolithic: all the functionality of
the TP-Monitor is implemented
within one single process. The
design is simpler (the process can
control everything) but restrictive
(bottleneck, single point of failure,
must support all possible protocols
in one single place).
Layered: the functionality is divided
in two layers. One for terminal
handling and several processes for
interaction with the resource
managers. The design is still simple
but provides better performance and
resilience.
Multiprocessor: the functionality is
divided among many independent,
distributed processes.

Monitor process

Terminal handling (multithreaded)

Application handling (multithreaded)

db db dbdbdb

Monolithic structure

©Gustavo Alonso, ETH Zürich. 158

Structure of TP-Monitors (II)

Terminal handling (multithreaded)

db dbdb

Layered structure

App 1 App 1App 1

db dbdb

Multiprocessor structure

App 1 App 1App 1

Term.
interf.

Term.
interf.

Term.
interf.

M
on

ito
r

pr
oc

es
s

©Gustavo Alonso, ETH Zürich. 159

TP-Monitor components (generic)

persistent
queue

Application
program

Recovery
manager

Log
manager

database

persistent
queue

data

dictionary

context

database

program

library

client

external
resource
manager

client

client

Pr
es

en
ta

tio
n

se
rv

ic
es A

ut
he

nt
ic

at
io

n

Administration and operations interfaces

Monitor services

scheduling load balancing

server classqueues

contextbinding

internal
resource
managers

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993

©Gustavo Alonso, ETH Zürich. 160

Example: BEA Tuxedo
client

process
dll

routine
client

handler

bulletin
board

name server
server
process

named
service

resource
manager

service
call

forward call locate
server

server
location

forward call
queue

read invoke

transaction

queue response

response

©Gustavo Alonso, ETH Zürich. 161

Example: BEA Tuxedo
The client uses DLL (Dynamic Link
Libraries) routines to interact with
the TP-Monitor
The Monitor Process or Tuxedo
server implements all system
services (name services, transaction
management, load balancing, etc)
and acts as the control point for all
interactions
Application services are known as
named services. These named
services interact with the system
through a local server process
Interaction across components is
through message queues rather than
direct calls (although clients and
servers may interact synchronously)

client

dll routine

Monitor process

Named service

DBMS

database

server process

Resource
manager

©Gustavo Alonso, ETH Zürich. 162

TP-Monitor components (Encina)
The current trend is towards a “family of
products” instead of a single system.
Each element can be used by itself
(reduced footprint) and, in some cases,
can be used completely independent of
the TP-Monitor.
Monitor: execution environment
providing integrity, availability,
security, fast response time and high
throughput. It includes tools for
administration and installation of
components and the development
environment.
Communication services: protocols and
mechanisms for persistent messages and
peer to peer communication.
Transactional RPC: basic interaction
mechanism
Transactional services: supporting
concurrency control, recovery, logging
and transactional programming.
Behavior of the system can be tailored
(advances transaction models, selective
logging, ad-hoc recovery …)
Persistent storage

data mgmt.

admin

server mgmt.

scheduling

Monitor Communication

Txn.-RPC Txn. services

Persistent storage

databasetxnal. file system.

queues

peer to peer

concurrency control

T-RPC

RPC

recoverylogging

©Gustavo Alonso, ETH Zürich. 163

External interfaces
With clients

The main interface is through the
presentation services. In old
systems, presentation services
included terminal handling and
format control for presentation on a
screen. Today, the presentation
services are mostly interfaces to
other systems that take care of data
presentation (mainly web servers)
The most important part of the
presentation services still in use
today is the RPC (TRPC) stubs and
libraries used on the client side for
invoking services implemented
within the TP-Monitor

With administrators
The TP-Monitor needs to be
maintained and administered like
any other system. Today there are a
wide variety of tools for doing so.
They include:

node monitoring
service monitoring
load monitoring
configuration tools
programming support
…

Another important part of the
interfaces to the system are the
development environments which
tend to be similar in nature to that of
RPC systems

©Gustavo Alonso, ETH Zürich. 164

Monitor services
Monitor services are those facilities
that provide the basic functionality
of the TP-Monitor. They can be
implemented as part of the TP-
Monitor process or as external
resource managers
Server class: each application
program implementing services has
a server class in the monitor. The
server class starts and stops the
application, creates message queues,
monitors the load, etc. In general, it
manages one application program
Binding: acts as the name and
directory services and offers similar
functionality as the binder in RPC. It
might be coupled with the load
balancing service for better
distribution

Load balancing: tries to optimize the
resources of the system by providing
an accurate picture of the ongoing
and scheduled work
Context management: a key service
in TRPC that is also used in keeping
context across transaction
boundaries or to store and forward
data between different resource
managers and servers
Communication services (queue
management and networking) are
usually implemented as external
resource managers. They take care
of transactional queuing and any
other aspect of message passing

©Gustavo Alonso, ETH Zürich. 165

Resource managers
Internal Resource Managers

These are modules that implement a
particular service in the TP-Monitor.
There are two kinds:
Application programs: programs that
implement a collection of services
that can be invoked by the clients of
the TP-Monitor. They define the
application built upon the TP-
Monitor
Internal services: like logging,
locking, recovery, or queuing.
Implementing these services as
resource managers gives more
modularity to the system and even
allows to use other systems for this
purpose (like queue management
systems)

External Resource Managers
These are the systems the TP-
Monitor has to integrate
The typical resource manager is a
database management system with
an SQL/XA interface. It can also be
a legacy application, in which case
wrappers are needed to bridge the
interface gap. A typical example are
screen scraping modules that
interact with mainframe based
applications by posing as dumb
terminals
The number and type of external
resource managers keeps growing
and a resource manager can be
another TP monitor.
The WWW is slowly also becoming
a resource manager

©Gustavo Alonso, ETH Zürich. 166

Transaction processing components
Client

TP
Monitor

communication
manager

Service

forward request

response

Transaction
manager

Begin Work
Save Work
Commit
Rollback

Savepoint
Prepare
CommitSavepoint

Prepare
Commit

Service Request/Response

Log
Records

UNDO/
REDO
Log
Records

Savepoint
Prepared
Committed
Completed
Checkpoint

Save Work
Checkpoint
Prepare
Commit

transaction

send /
receive

Log
manager

database Resource
managers

register incoming /
outgoing transactions

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993

©Gustavo Alonso, ETH Zürich. 167

TP-Monitors vs. OS

TP Services Admin interface

Configuration tools

Load balancing

Programming tools

Databases

Disaster recovery

Resource managers

Flow of control

Name server

Server invocation

Protected user

interface

TP internal

system services

Txn identifiers

Server class

Scheduling

Authentication

Transaction manager

Logs and context

Durable queues

Transactional files

Transactional RPC

Transactional

Sessions

RPC

OS Process – Threads

Address space

Scheduling

Local naming protection

Repository

File System

Blocks, paging

File security

IPC

Simple sessions

Naming

Authentication

Hardware CPU Memory Wires, switches

processing data communication

TP
Monitor

From “Transaction Processing” Gray&Reuter. Morgan Kaufmann 1993

©Gustavo Alonso, ETH Zürich. 168

Advantages of TP-Monitors
TP-Monitors are a development and run-time platform for distributed
applications
The separation between the monitor and the transaction manager was a practical
consideration but turned out to be a significant advantage as many of the
features provided by the monitor are as valuable as transactions
The move towards more modular architectures prepared TP-Monitors for
changes that had not been foreseen but turned be quite advantageous:

the web as the main interface to applications: the presentation services
included an interface so that requests could be channeled through a web
server
queuing as a form of middleware in itself (Message Oriented Middleware,
MOM): once the queuing service was an internal resource manager, it was
not too difficult to adapt the interface so that the TP-Monitor could talk with
other queuing systems
Distributed object systems (e.g., CORBA) required only a small syntactic
layer in the development tools and the presentation services so that services
will appear as objects and TRPC would be come a method invocation to
those objects.

©Gustavo Alonso, ETH Zürich. 169

TP-Heavy vs. TP-Light = 2 tier vs. 3 tier
A TP-heavy monitor provides:

a full development environment
(programming tools, services,
libraries, etc.),
additional services (persistent
queues, communication tools,
transactional services, priority
scheduling, buffering),
support for authentication (of users
and access rights to different
services),
its own solutions for
communication, replication, load
balancing, storage management ...
(most of the functionality of an
operating system).

Its main purpose is to provide an
execution environment for resource
managers (applications), and do all this
with guaranteed reasonable performance
(e.g., > 1000 txns. per second).
This is the traditional monitor: CICS,
Encina, Tuxedo.

A TP-Light is an extension to a
database:

it is implemented as threads, instead
of processes,
it is based on stored procedures
("methods" stored in the database
that perform an specific set of
operations) and triggers,
it does not provide a development
environment.

Light Monitors are appearing as
databases become more sophisticated
and provide more services, such as
integrating part of the functionality of a
TP-Monitor within the database.
Instead of writing a complex query, the
query is implemented as a stored
procedure. A client, instead of running
the query, invokes the stored procedure.
Stored procedure languages: Sybase's
Transact-SQL, Oracle's PL/SQL.

©Gustavo Alonso, ETH Zürich. 170

TP-light: databases and the 2 tier approach
Databases are traditionally used to
manage data.
However, simply managing data is not
an end in itself. One manages data
because it has some concrete application
logic in mind. This is often forgotten
when considering databases (specially
benchmarking) and has allowed SAP to
take over a significant market share
before any other vendors reacted.
But if the application logic is what
matters, why not move the application
logic into the database? These is what
many vendors are advocating. By doing
this, they propose a 2 tier model with the
database providing the tools necessary to
implement complex application logic.
These tools include triggers, replication,
stored procedures, queuing systems,
standard access interfaces (ODBC,
JDBC) .. which are already in place in
many databases.

user defined
application logic

database

resource manager

external
application

Database
developing

environment

client

database management system

©Gustavo Alonso, ETH Zürich. 171

TP-Heavy: 3-tier middleware
TP-heavy are middleware platforms for
developing 3-tier architectures. They
provide all the functionality necessary
for such an architecture to work.
A system designer only need to program
the services (which will run within the
scope of the TP-Monitor; the services
are linked to a number of TP libraries
providing the needed functionality), the
wrappers (if they are not already
provided), and the clients. The TP-
Monitors takes these components and
embeds them within the overall system
as interconnected components.
The TP-Monitor provides the
infrastructure for the components to
work and the tools necessary to build
services, wrappers and clients. In some
cases, it provides even its own
programming language (e.g.,
Transational-C of Encina).

Clients

connecting logic

Transaction
control

Services

terminal
handling

2
tie

r s
ys

te
m

s

Resource
managers

wrappers

TP
 m

on
ito

r

©Gustavo Alonso, ETH Zurich. 172

Object Transaction Service
An OTS provides transactional
guarantees to the execution of
invocations between different
components of a distributed
application built on top of an ORB.
It is part of the CORBA standard It
is identical to a basic TP-Monitor
There are two ways to trace calls:

Explicit (manual): the invocation
itself contains the transaction
identifier. Then, when the
application registers the resource
manager, it uses this transaction
identifier to say to which
transaction it is “subscribing”
Implicit (automatic): the call is
made through the OTS, which
will forward the transaction
identifier along with the
invocation. This requires to link
with the OTS library and to
make all methods involved
transactional

... and two ways to register
resources (necessary in order to tell
the OTS who will participate in the
2PC protocol and what type of
interface is supported)
Manual registration implies the the
user provides an implementation of
the resource. This implementation
acts as an intermediary between the
OTS and the actual resource
manager (useful for legacy
applications that need to be
wrapped)
Automatic registration is used when
the resource manager understands
transactions (i.e., it is a database), in
which case it will support the XA
interface for 2PC directly. A
resource are registered only once,
and implicit propagation is used to
check which transactions go there

©Gustavo Alonso, ETH Zurich. 173

Running a distributed transaction (1)

ORB

App A App B
DB DB

Object
Transaction

Service

1) Assume App A wants to update databases A and B

ORB

App A App B
DB DB

Object
Transaction

Service

ORB

App A App B
DB DB

Object
Transaction

Service

Begin
txn

2) App A obtains a txn identifier for the operation

ORB

App A App B
DB DB

Object
Transaction

Service

Register
db

3) App A registers the database for that transaction

Txn has part
executed in
database A

txn
4) App A runs the txn but does not
commit at the end

©Gustavo Alonso, ETH Zurich. 174

Running a distributed transaction (2)

ORB

App A App B
DB DB

Object
Transaction

Service

5) App A now calls App B

ORB

App A App B
DB DB

Object
Transaction

Service

ORB

App A App B
DB DB

Object
Transaction

Service

Register
db

6) App B registers the database for that transaction

Txn has part
executed in
database B

txn
7) App B runs the txn but does not
commit at the endCall for

Txn

ORB

App A App B
DB DB

Object
Transaction

Service

Commit
txn

2) App A request commit and the OTS runs 2PC

2PC 2PC

©Gustavo Alonso, ETH Zürich. 175

The future of TP-Monitors
TP-Monitors are the best example of middleware and the most successful
implementation both in terms of performance and functionality.
Together with object brokers, TP-Monitors form the foundation of today’s
distributed data management products. Enterprise Application Integration is still
largely based on TP-Monitor technology.
TP-Monitors are the main reference for implementing middleware:

in terms of performance, TP-Monitors are orders of magnitude ahead of
other middleware systems
in terms of functionality, TP-Monitors offer a quite complete, well
integrated platform that can be extended to provide the functionality needed
in other middleware systems

Unlike other forms of middleware, TP-Monitors have proven to be quite
resilient in time: some product lines are almost 30 years old already. Although
the technology changes, the answer to fundamental design problems is well
understood in TP-Monitors. These expertise will still have a significant impact
on any emerging form of middleware.

©Gustavo Alonso, ETH Zürich. 176

WS-Coordination

©Gustavo Alonso, ETH Zürich. 177

WS-Coordination
WS-Coordination is intended as a
generic infrastructure to implement
coordination protocols between Web
services
Its main goal is to serve as a generic
platform for implementing advanced
transaction models but it can be used
to implement a wide variety of
coordination protocols between
services (including some forms of
conversations)
WS-Coordination encompasses a set
of behaviors and APIs that conform
a module that will extend Web
services with coordination
capabilities
It mirrors the behavior of
transactional services in
conventional middleware platforms

COORDINATOR

Activation
service

Registration
service

Coord.
Protocol

A

Coord.
Protocol

B...

Start a coordination
protocol

Register for a
coordination

protocol

Operations of
coordination

protocol

Operations of
coordination

protocol

©Gustavo Alonso, ETH Zürich. 178

Basics of WS-Coordination (1)

Activation
service

Registration
service A

Coord.
Protocol Ya

COORDINATOR A

Activation
service

Registration
service B

Coord.
Protocol Yb

COORDINATOR B

APPLICATION
A

C
re

at
eC

oo
rd

in
at

io
nC

on
te

xt
fo

r
co

or
di

na
tio

n
ty

pe
 Q

APPLICATION
B

Context (Ca)
activity identifier A1
coordination type Q supporting protocol Y
portReference for the registration service A

©Gustavo Alonso, ETH Zürich. 179

Basics of WS-Coordination (2)

Activation
service

Registration
service A

Coord.
Protocol Ya

COORDINATOR A

Activation
service

Registration
service B

Coord.
Protocol Yb

COORDINATOR B

APPLICATION
A

APPLICATION
B

APPLICATION MESSAGE (e.g., SOAP message)

HTTP POST
SOAP Envelope

Header: Context Ca

Body

©Gustavo Alonso, ETH Zürich. 180

Basics of WS-Coordination (3)

Activation
service

Registration
service A

Coord.
Protocol Ya

COORDINATOR A

Activation
service

Registration
service B

Coord.
Protocol Yb

COORDINATOR B

APPLICATION
A

APPLICATION
B

C
re

at
eC

oo
rd

in
at

io
nC

on
te

xt
C

a

Context (Cb)
activity identifier A1
coordination type Q supporting protocol Y
portReference for the registration service B

©Gustavo Alonso, ETH Zürich. 181

Basics of WS-Coordination (4)

Activation
service

Registration
service A

Coord.
Protocol Ya

COORDINATOR A

Activation
service

Registration
service B

Coord.
Protocol Yb

COORDINATOR B

APPLICATION
A

APPLICATION
B

Application B
registers for coordination protocol Y
and passes portReference to the protocol

©Gustavo Alonso, ETH Zürich. 182

Basics of WS-Coordination (5)

Activation
service

Registration
service A

Coord.
Protocol Ya

COORDINATOR A

Activation
service

Registration
service B

Coord.
Protocol Yb

COORDINATOR B

APPLICATION
A

APPLICATION
B

Registration service B forwards the registration of
application B to the registration service A along

with information about coordination protocol Yb
The registration service A can then link both ends

of the coordination protocol

©Gustavo Alonso, ETH Zürich. 183

Messages and interfaces
The coordinator defined by WS-Coordination is described using WSDL and
offers a number of services to the application.
The application accesses these services by sending, e.g., SOAP messages to the
coordinator which then responds with new SOAP messages. Interactions with
the protocol would then also be in terms of SOAP messages (but other protocols
are possible, one needs only o provide alternative bindings for the coordinator
services)
The example shown considers the case where application B decides to use its
own coordinator. Application B could also decide to use the same coordinator as
application A but in the cases where A and B are independent services provided
by different organizations a coordinator per application makes more sense
WS-Coordination is an attempt at standardizing:

the use of SOAP headers for coordination protocols
the basic operations for most coordination protocols
the functionality a Web service middleware platform must support for
allowing coordination protocols to be implemented

©Gustavo Alonso, ETH Zürich. 184

WS-Coordinator in XML
ACTIVATION SERVICE:

<wsdl:portType name="ActivationCoordinatorPortType">

<wsdl:operation name="CreateCoordinationContext">

<wsdl:input message="wscoor:CreateCoordinationContext"/>

</wsdl:operation>

</wsdl:portType>

RESPONSE ACTIVATION SERVICE

<wsdl:portType name="ActivationRequesterPortType">

<wsdl:operation name="CreateCoordinationContextResponse">

<wsdl:input message="wscoor:CreateCoordinationContextResponse"/>

</wsdl:operation>

<wsdl:operation name="Error">

<wsdl:input message="wscoor:Error"/>

</wsdl:operation>

</wsdl:portType>

From Web Services Coordination (WS-Coordination) 9 August 2002

©Gustavo Alonso, ETH Zürich. 185

WS-Transactions

©Gustavo Alonso, ETH Zürich. 186

WS-Transactions
WS-Transactions builds directly upon WS-Coordination to specify different
coordination protocols related to transaction processing

atomic transactions (governed by 2 Phase Commit)
business activities (transactional but based on compensation activities)
• business agreement
• business agreement with complete

WS-Transactions specifies the coordination protocol to be used as part of WS-
Coordination. The specification deals with the nature of the interaction, the
syntax and semantics of the messages to exchange as part of the coordination
protocol, and the expected responses of all participants involved
Like WS-Coordination, WS-Transactions follows very closely the transactional
model found in conventional middleware platforms

©Gustavo Alonso, ETH Zürich. 187

Coordination protocol for 2PC

From Web Services Transaction (WS-Transaction) 9 August 2002

©Gustavo Alonso, ETH Zürich. 188

Business agreement

From Web Services Transaction (WS-Transaction) 9 August 2002

©Gustavo Alonso, ETH Zürich. 189

Business agreement with completion

From Web Services Transaction (WS-Transaction) 9 August 2002

©Gustavo Alonso, ETH Zürich. 190

WS-Transactions

Activation
service

Registration
service A

Coord.
Protocol Ya

COORDINATOR A

Activation
service

Registration
service B

Coord.
Protocol Yb

COORDINATOR B

APPLICATION
A

APPLICATION
B

WS-TRANSACTION
PROTOCOL

©Gustavo Alonso, ETH Zurich. 191

CORBA transactions (1)

ORB

App A App B
DB DB

Object
Transaction

Service

1) Assume App A wants to update databases A and B

ORB

App A App B
DB DB

Object
Transaction

Service

ORB

App A App B
DB DB

Object
Transaction

Service

Begin
txn

2) App A obtains a txn identifier for the operation

ORB

App A App B
DB DB

Object
Transaction

Service

Register
db

3) App A registers the database for that transaction

Txn has part
executed in
database A

txn
4) App A runs the txn but does not
commit it at the end

©Gustavo Alonso, ETH Zurich. 192

CORBA transactions (2)

ORB

App A App B
DB DB

Object
Transaction

Service

5) App A now calls

App B

ORB

App A App B
DB DB

Object
Transaction

Service

ORB

App A App B
DB DB

Object
Transaction

Service

Register
db

6) App B registers the database for that transaction

Txn has part
executed in
database B

txn
7) App B runs the txn but does not
commit it at the endCall for

Txn

ORB

App A App B
DB DB

Object
Transaction

Service

Commit
txn

8) App A request commit and the OTS runs 2PC

2PC 2PC

