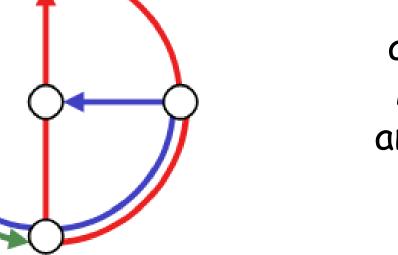
The Consensus Problem

Roger Wattenhofer

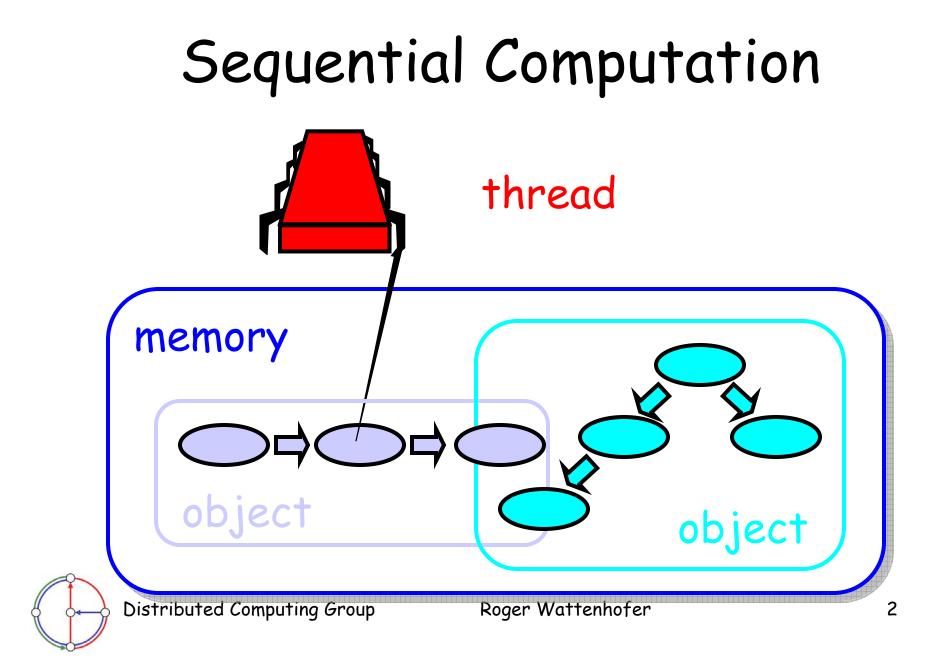


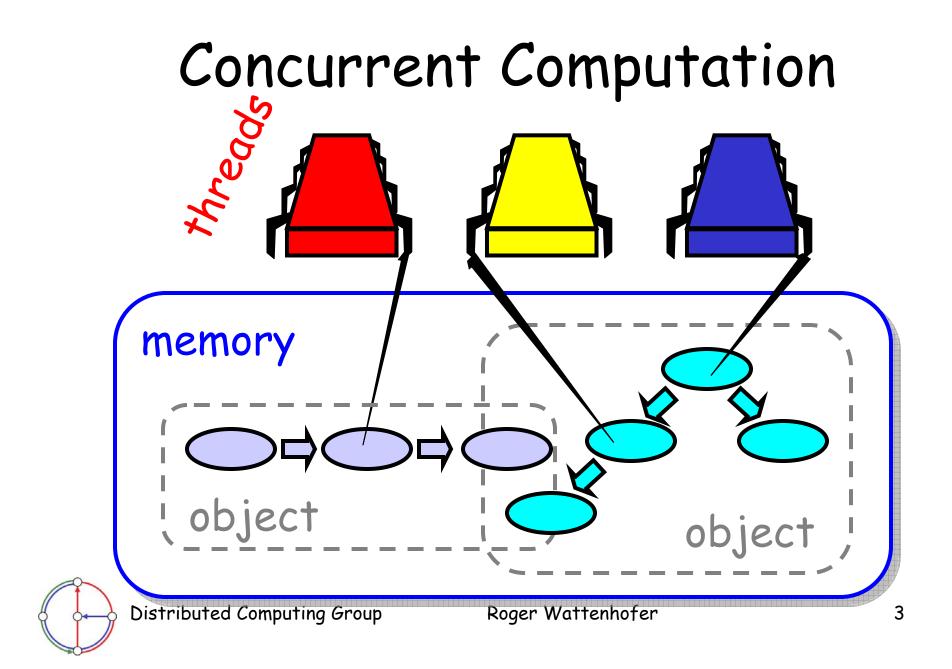
Distributed

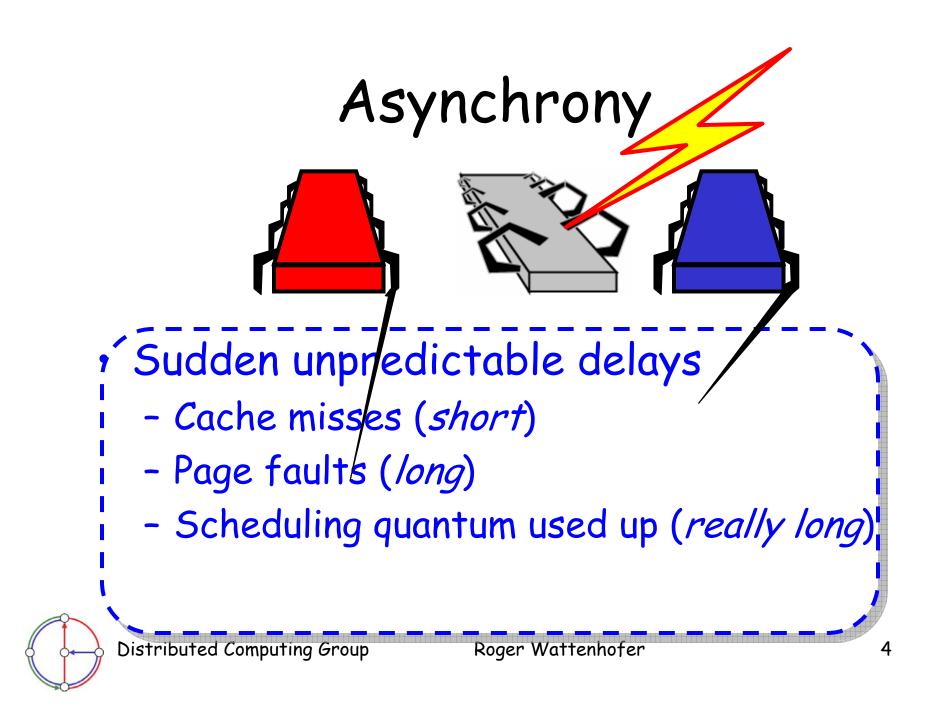
Computing

Group

a lot of kudos to Maurice Herlihy and Costas Busch for some of their slides







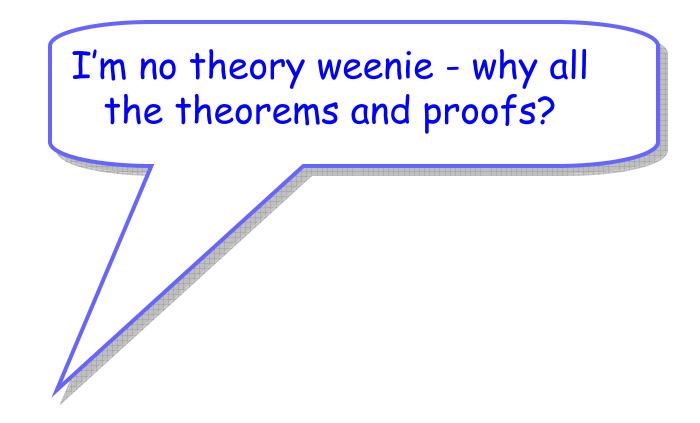
Model Summary

- Multiple threads
 - Sometimes called *processes*
- Single shared memory
- *Objects* live in memory
- Unpredictable asynchronous delays

Road Map

- We are going to focus on principles
 - Start with idealized models
 - Look at a simplistic problem
 - Emphasize correctness over pragmatism
 - "Correctness may be theoretical, but incorrectness has practical impact"

You may ask yourself ...



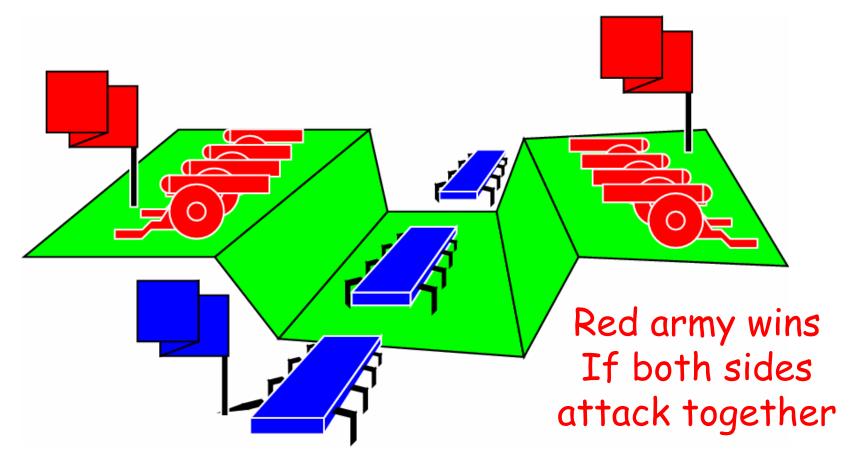
Distributed Computing Group

Fundamentalism

- Distributed & concurrent systems are hard
 - Failures
 - Concurrency
- Easier to go from theory to practice than vice-versa

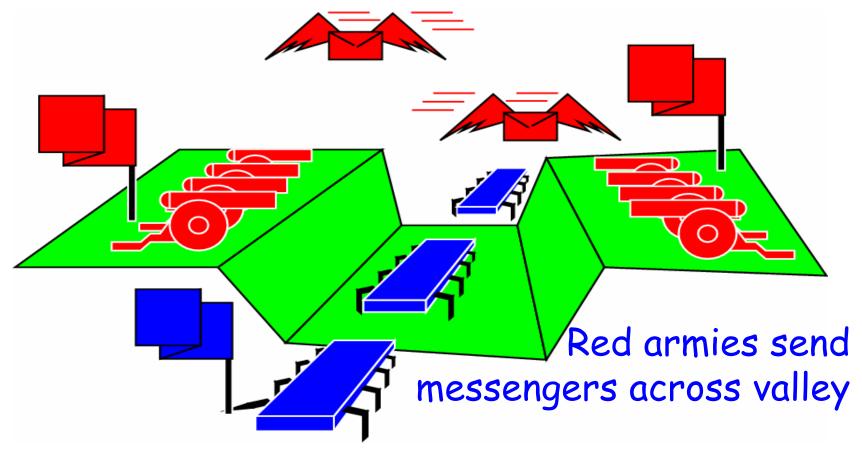
Distributed Computing Group

The Two Generals

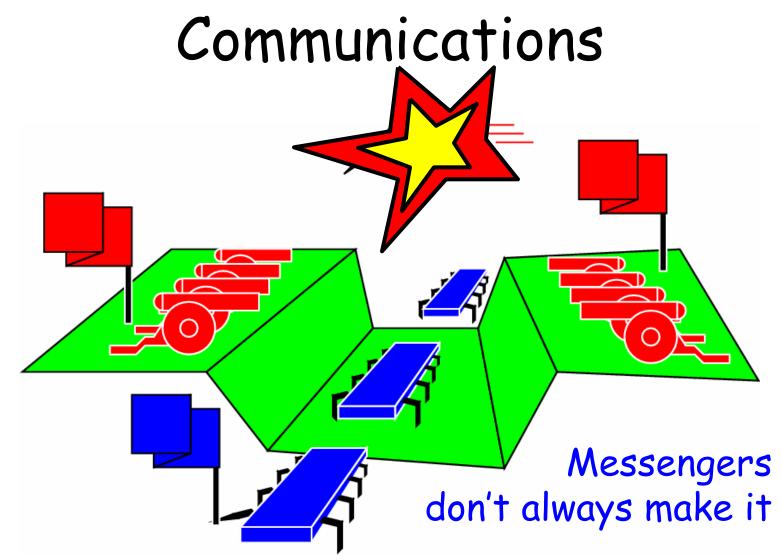


Distributed Computing Group

Communications



Distributed Computing Group



Distributed Computing Group

Your Mission

Design a protocol to ensure that red armies attack simultaneously

Distributed Computing Group

Date: Wed, 11 Dec 2002 12:33:58 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Vorlesung

Sie machen jetzt am Freitag, 08:15 die Vorlesung Verteilte Systeme, wie vereinbart. OK? (Ich bin jedenfalls am Freitag auch gar nicht da.) Ich uebernehme das dann wieder nach den Weihnachtsferien.

Distributed Computing Group

Date: Mi 11.12.2002 12:34 From: Roger Wattenhofer <wattenhofer@inf.ethz.ch> To: Friedemann Mattern <mattern@inf.ethz.ch> Subject: Re: Vorlesung

OK. Aber ich gehe nur, wenn sie diese Email nochmals bestaetigen...:-)

Gruesse -- Roger Wattenhofer

Distributed Computing Group

Date: Wed, 11 Dec 2002 12:53:37 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Naechste Runde: Re: Vorlesung ...

Das dachte ich mir fast. Ich bin Praktiker und mache es schlauer: Ich gehe nicht, unabhaengig davon, ob Sie diese email bestaetigen (beziehungsweise rechtzeitig erhalten). (:-)

Distributed Computing Group

Date: Mi 11.12.2002 13:01 From: Roger Wattenhofer <wattenhofer@inf.ethz.ch> To: Friedemann Mattern <mattern@inf.ethz.ch> Subject: Re: Naechste Runde: Re: Vorlesung ...

Ich glaube, jetzt sind wir so weit, dass ich diese Emails in der Vorlesung auflegen werde...

Distributed Computing Group

Date: Wed, 11 Dec 2002 18:55:08 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Re: Naechste Runde: Re: Vorlesung ...

Kein Problem. (Hauptsache es kommt raus, dass der Prakiker am Ende der schlauere ist... Und der Theoretiker entweder heute noch auf das allerletzte Ack wartet oder wissend das das ja gar nicht gehen kann alles gleich von vornherein bleiben laesst... (:-))

Distributed Computing Group

Theorem

There is no non-trivial protocol that ensures the red armies attacks simultaneously

Distributed Computing Group

Proof Strategy

- Assume a protocol exists
- Reason about its properties
- Derive a contradiction

Distributed Computing Group

Proof

- 1. Consider the protocol that sends fewest messages
- 2. It still works if last message lost
- 3. So just don't send it
 - Messengers' union happy
- 4. But now we have a shorter protocol!
- 5. Contradicting #1

Distributed Computing Group

Fundamental Limitation

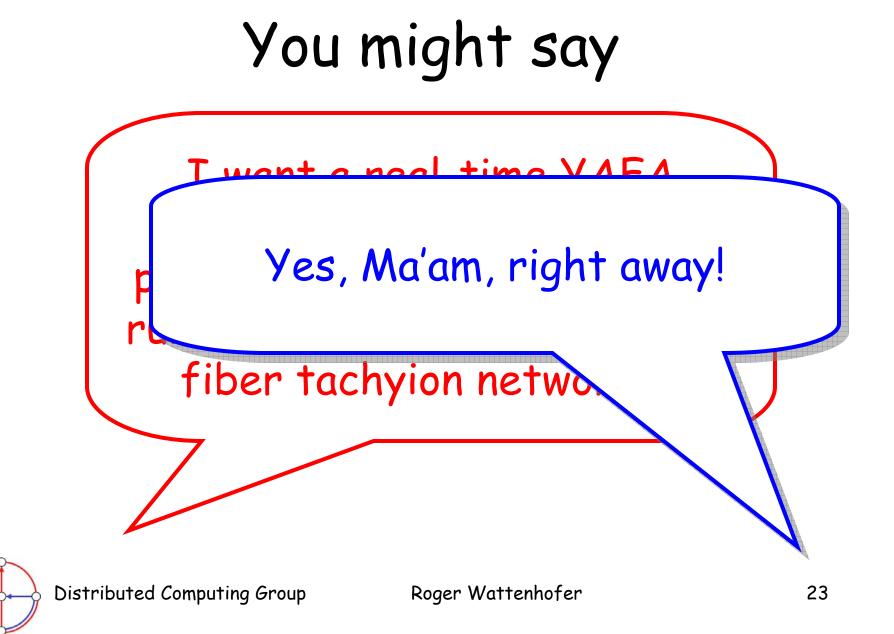
- Need an unbounded number of messages
- Or possible that no attack takes place

Distributed Computing Group

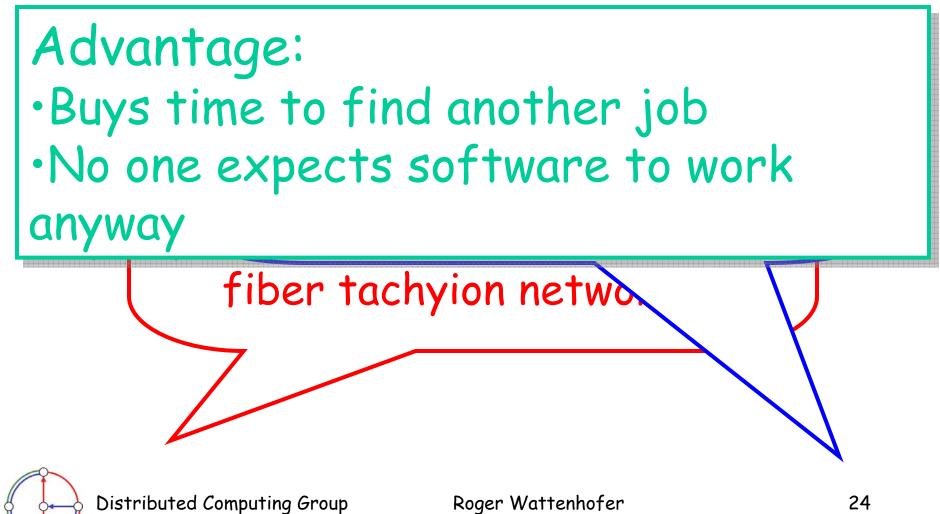
You May Find Yourself ...

I want a real-time YAFA compliant Two Generals protocol using UDP datagrams running on our enterprise-level fiber tachyion network ...

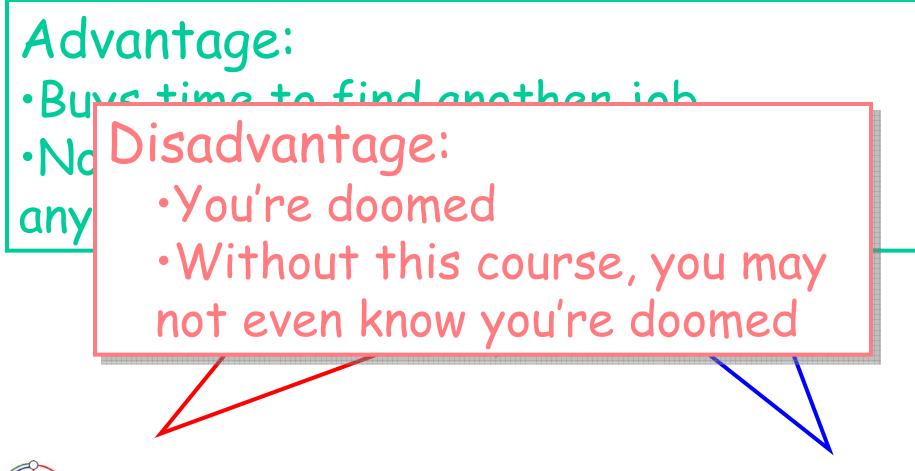
Distributed Computing Group



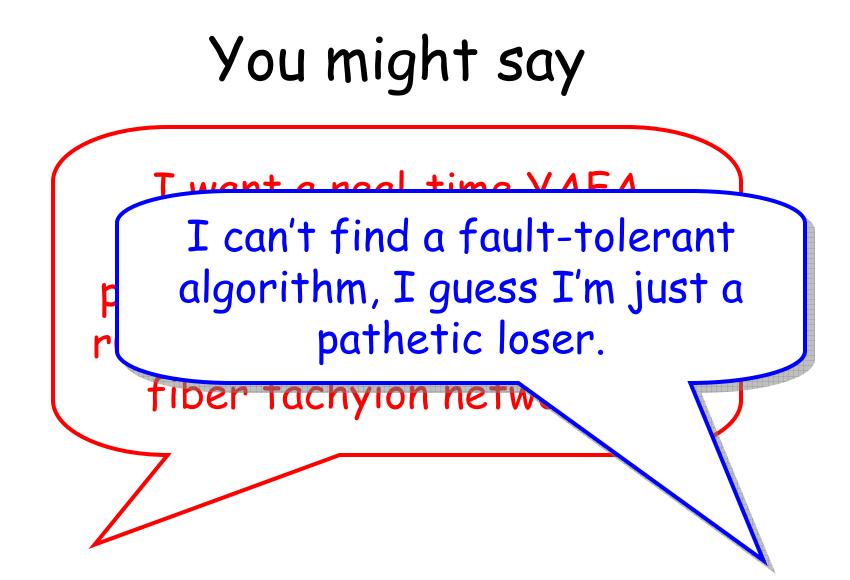
You might say



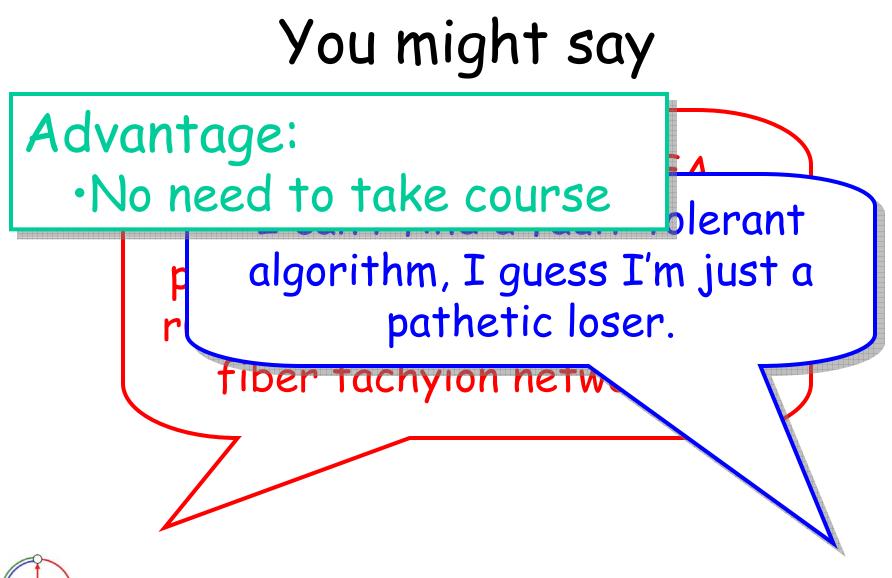
You might say



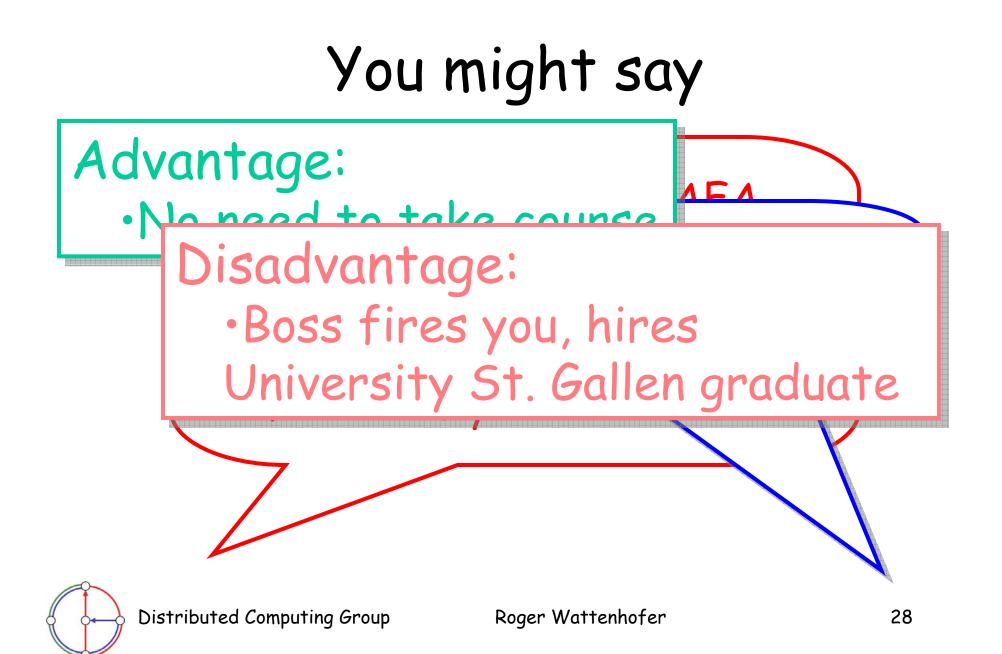
Distributed Computing Group



Distributed Computing Group



Distributed Computing Group

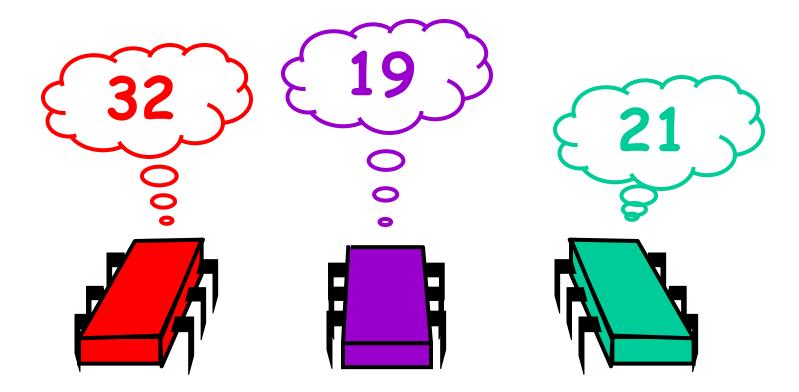


You might say

Using skills honed in course, I can avert certain disaster! •Rethink problem spec, or •Weaken requirements, or •Build on different platform

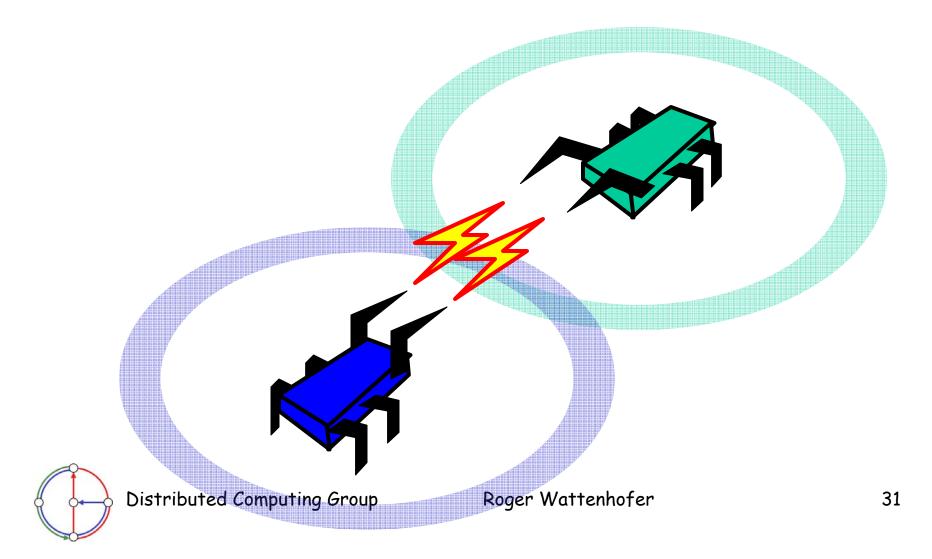
Distributed Computing Group

Consensus: Each Thread has a Private Input



Distributed Computing Group

They Communicate



They Agree on Some Thread's Input



Distributed Computing Group

Consensus is important

- With consensus, you can implement anything you can imagine...
- Examples: with consensus you can decide on a leader, implement mutual exclusion, or solve the two generals problem

Distributed Computing Group

You gonna learn

- In some models, consensus is possible
- In some other models, it is not
- Goal of this and next lecture: to learn whether for a given model consensus is possible or not ... and prove it!

Distributed Computing Group

Consensus #1 shared memory

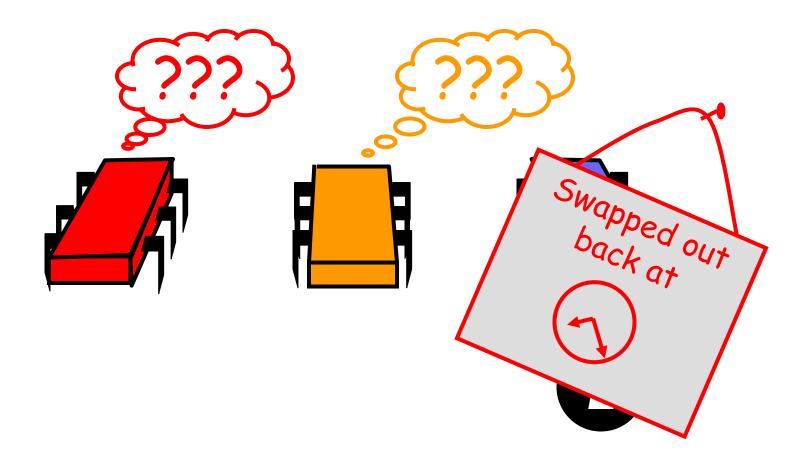
- n processors, with n > 1
- Processors can atomically *read* or *write* (not both) a shared memory cell

Protocol (Algorithm?)

- There is a designated memory cell c.
- Initially c is in a special state "?"
- Processor 1 writes its value v_1 into c, then decides on v_1 .
- A processor j (j not 1) reads c until j reads something else than "?", and then decides on that.

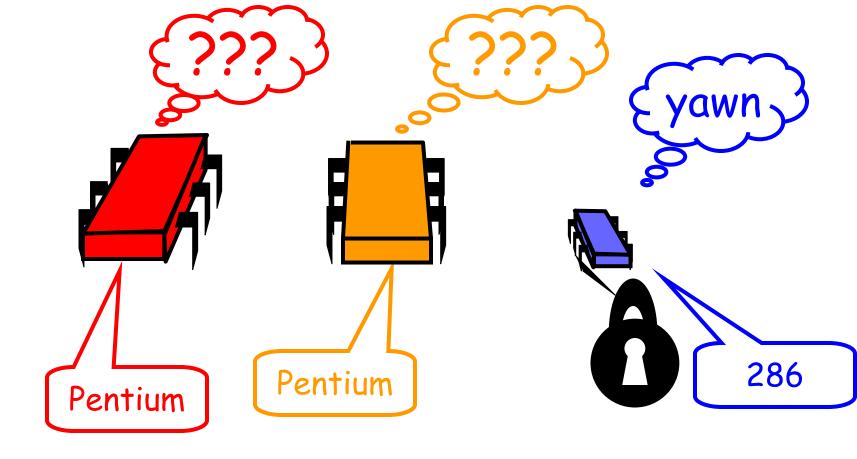
Distributed Computing Group

Unexpected Delay



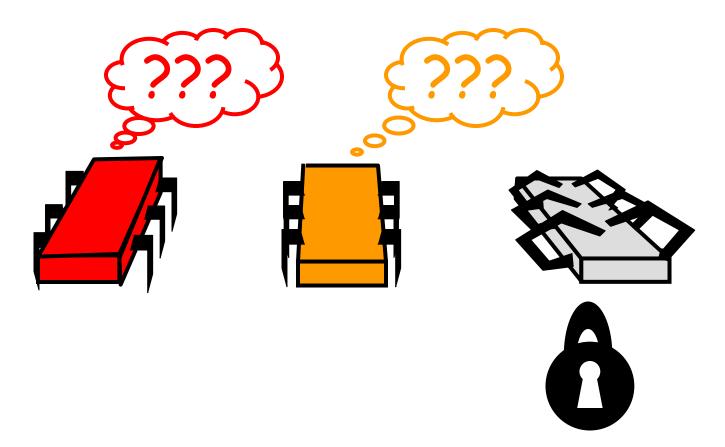
Distributed Computing Group

Heterogeneous Architectures



Distributed Computing Group

Fault-Tolerance



Distributed Computing Group

Consensus #2 wait-free shared memory

- n processors, with n > 1
- Processors can atomically *read* or *write* (not both) a shared memory cell
- Processors might crash (halt)
- Wait-free implementation ... huh?

Wait-Free Implementation

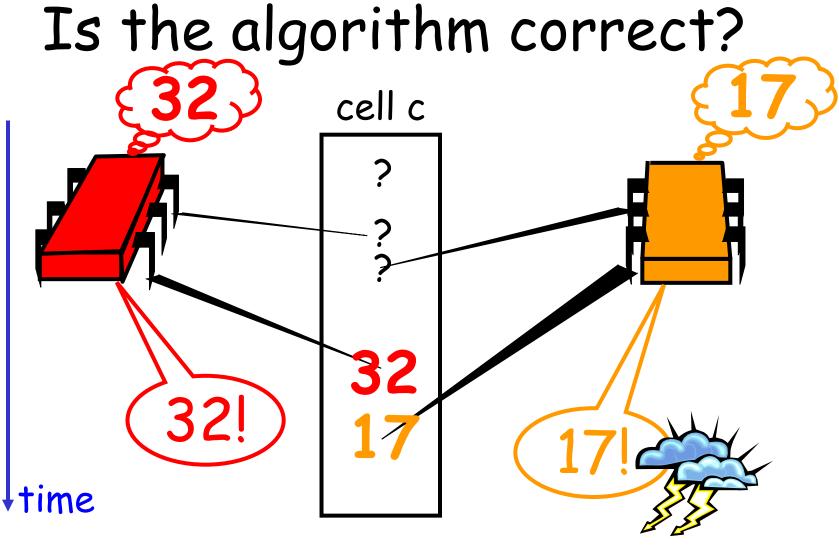
- Every process (method call) completes in a finite number of steps
- Implies no mutual exclusion
- We assume that we have wait-free atomic registers (that is, reads and writes to same register do not overlap)

Distributed Computing Group

A wait-free algorithm...

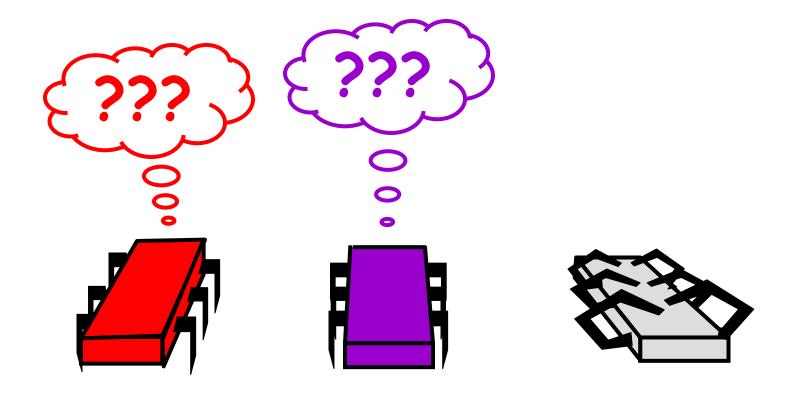
- There is a cell c, initially c="?"
- Every processor i does the following
 r = Read(c);
 if (r == "?") then
 Write(c, v_i); decide v_i;
 el se
 decide r;

Distributed Computing Group



Distributed Computing Group

Theorem: No wait-free consensus



Distributed Computing Group

Proof Strategy

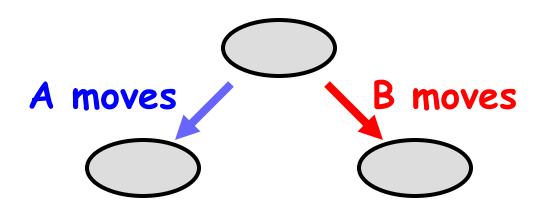
• Make it simple

- n = 2, binary input

- Assume that there is a protocol
- Reason about the properties of any such protocol
- Derive a contradiction

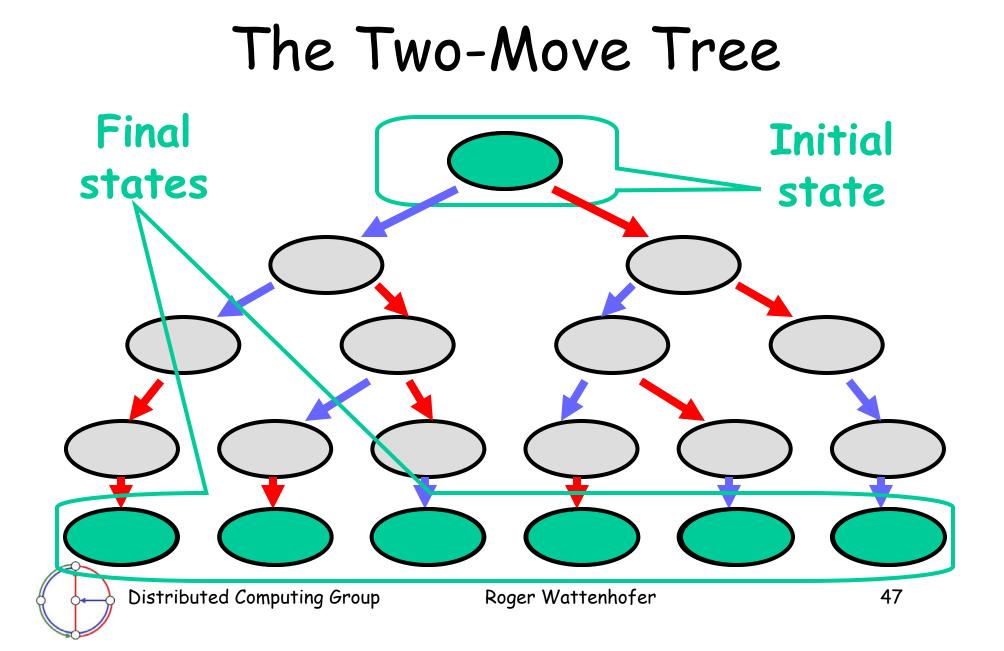
Distributed Computing Group

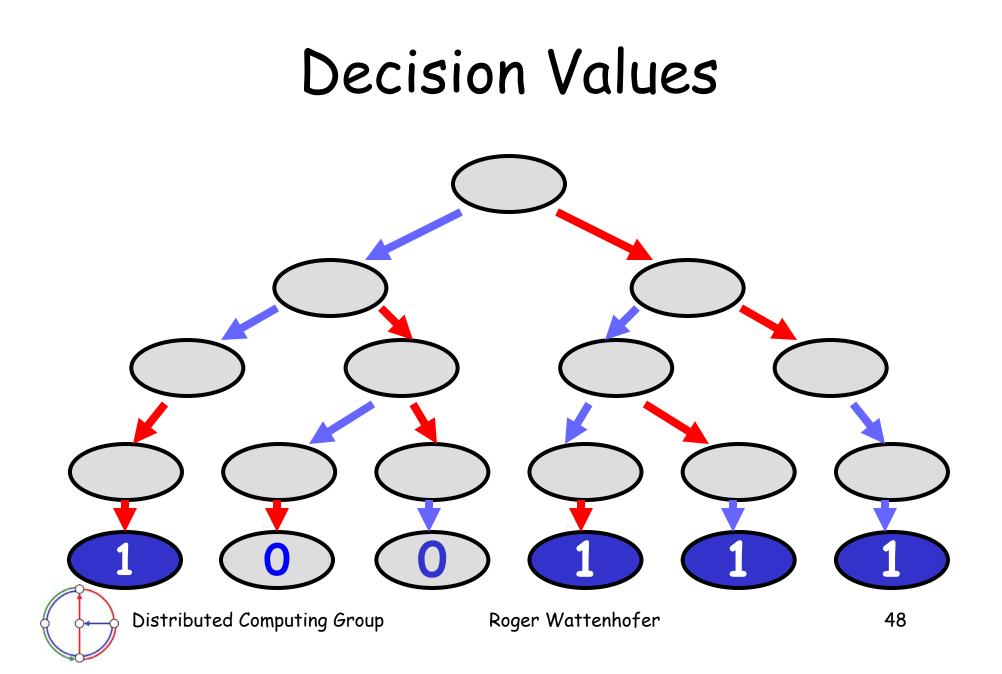
Wait-Free Computation

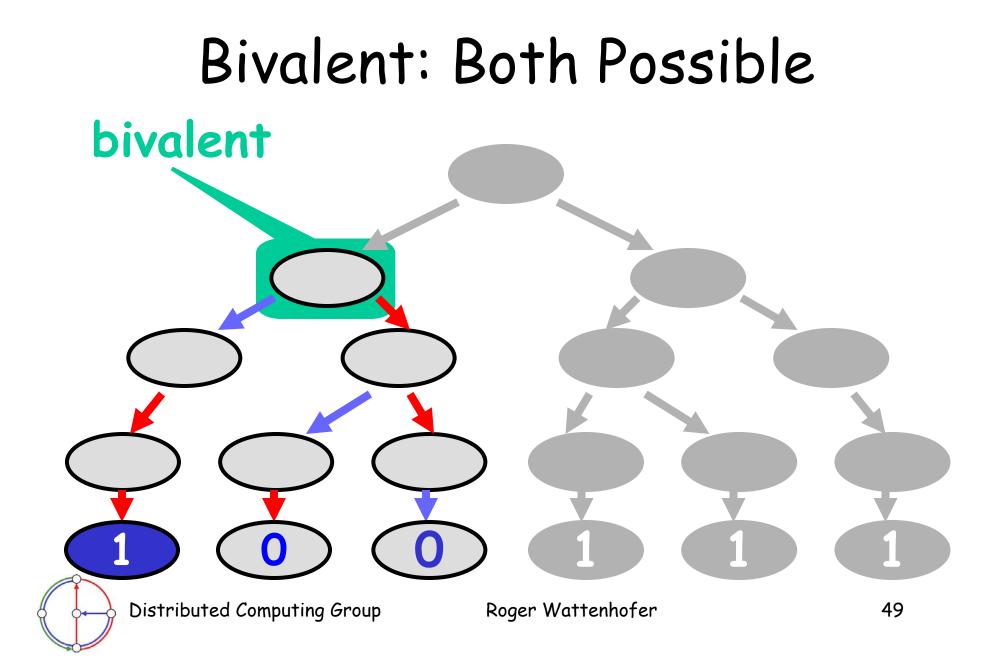


- Either A or B "moves"
- Moving means
 - Register read
 - Register write

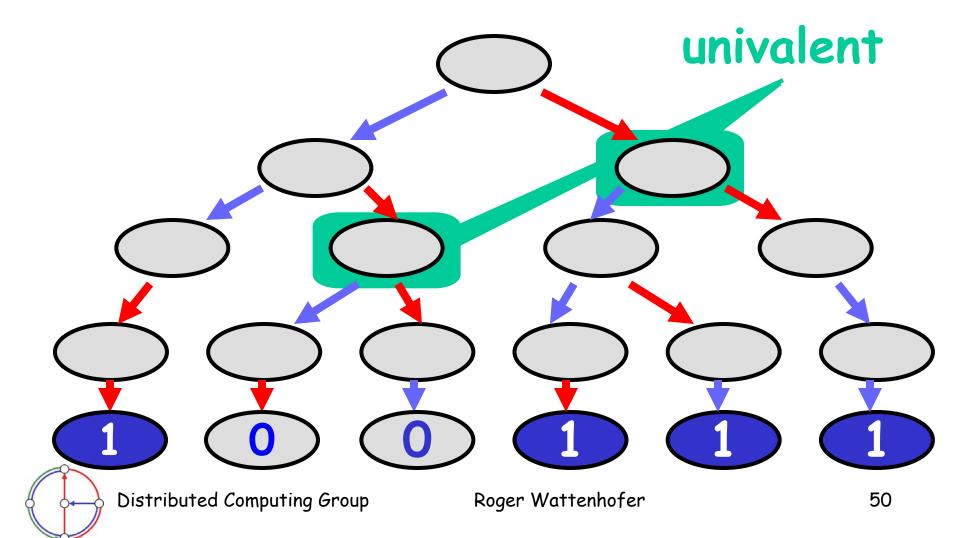
Distributed Computing Group

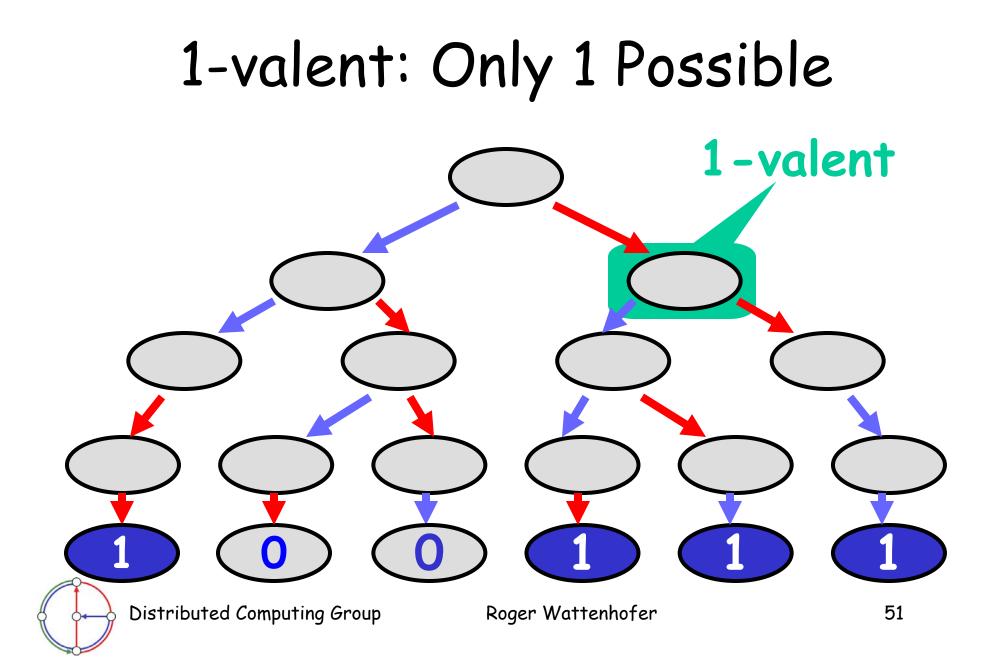


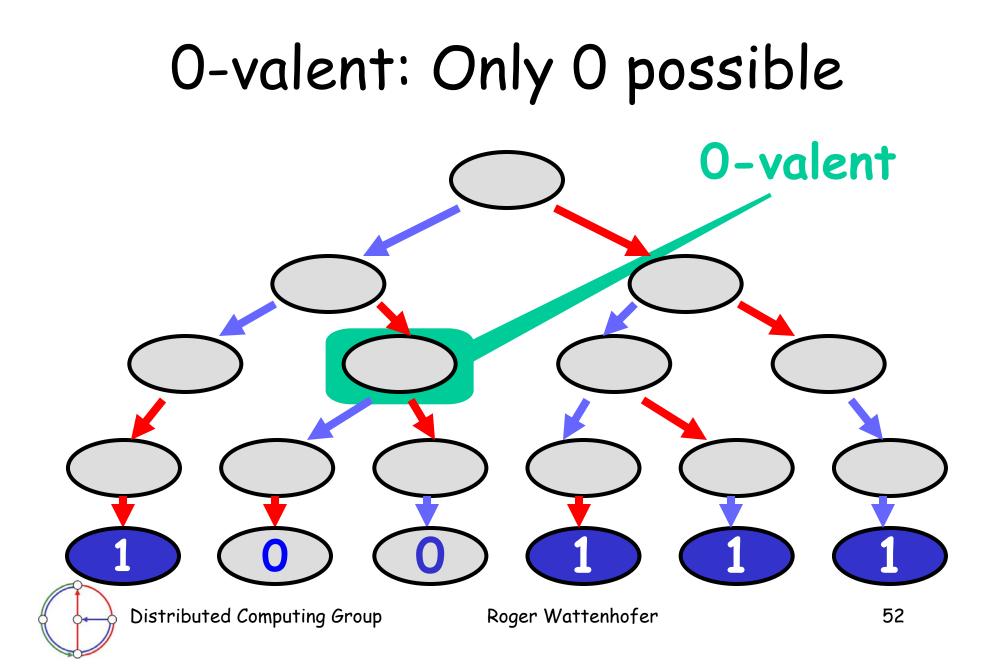




Univalent: Single Value Possible







Summary

- Wait-free computation is a tree
- Bivalent system states
 - Outcome not fixed
- Univalent states
 - Outcome is fixed
 - Maybe not "known" yet
 - 1-Valent and O-Valent states

Distributed Computing Group

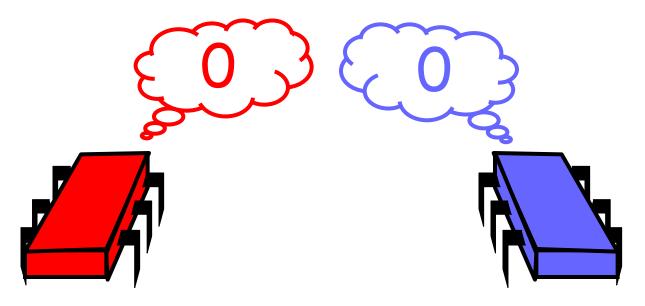
Claim

Some initial system state is bivalent

(The outcome is not always fixed from the start.)

Distributed Computing Group

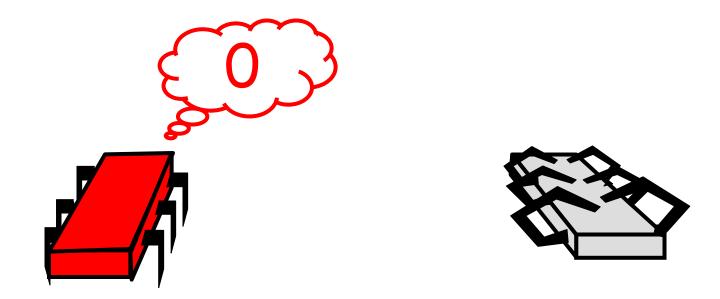
A O-Valent Initial State



All executions lead to decision of 0

Distributed Computing Group

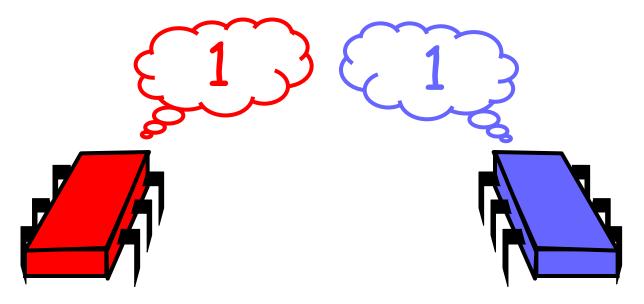
A O-Valent Initial State



Solo execution by A also decides 0

Distributed Computing Group

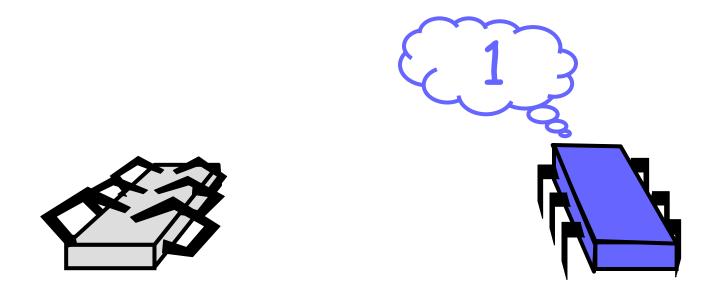
A 1-Valent Initial State



All executions lead to decision of 1

Distributed Computing Group

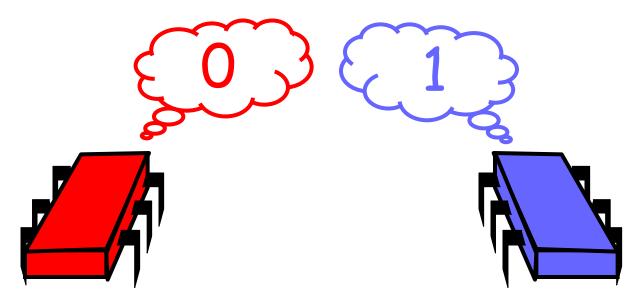
A 1-Valent Initial State



Solo execution by B also decides 1

Distributed Computing Group

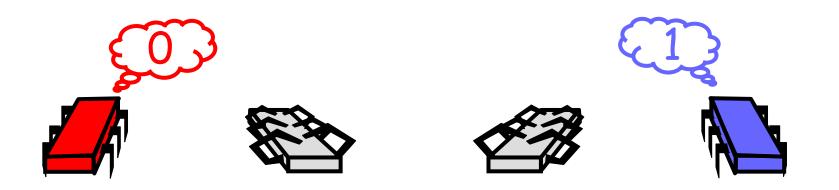
A Univalent Initial State?



Can all executions lead to the same decision?

Distributed Computing Group

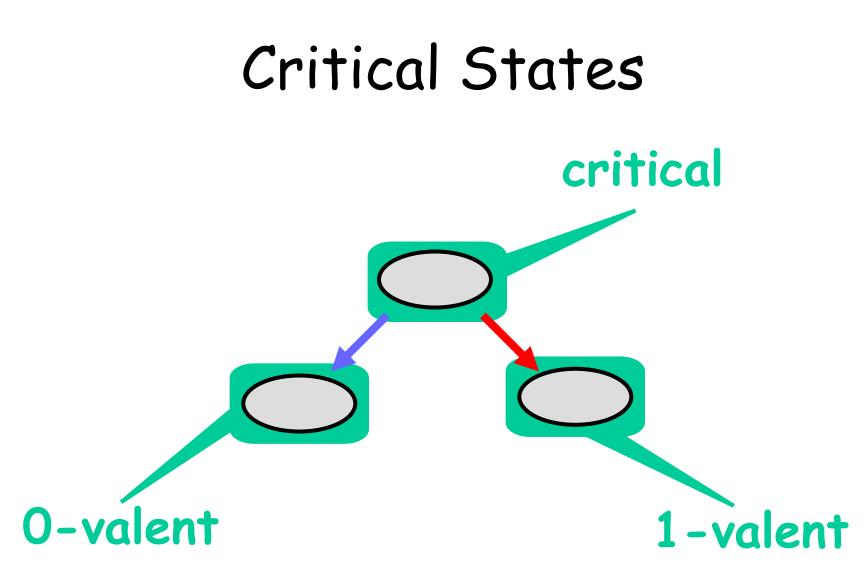
State is Bivalent



 Solo execution by A
 Solo execution by B must decide 0

must decide 1

Distributed Computing Group

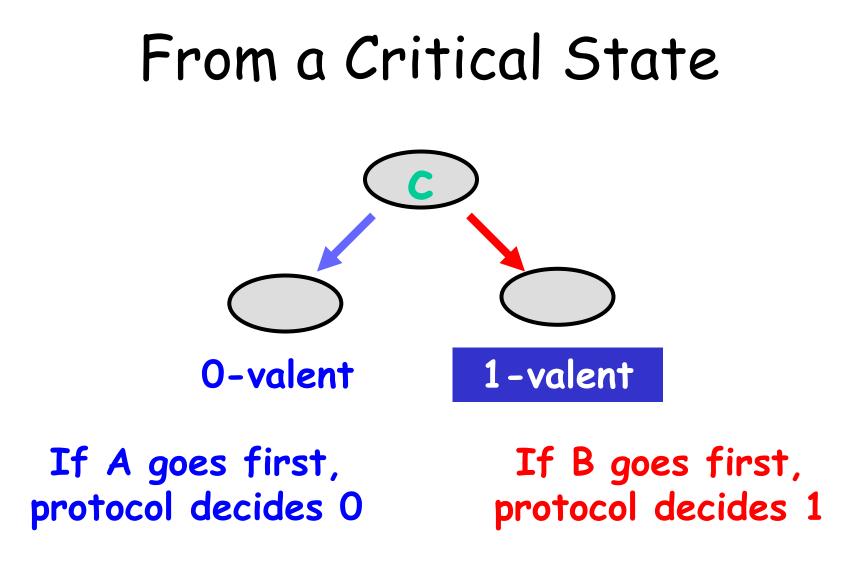


Distributed Computing Group

Critical States

- Starting from a bivalent initial state
- The protocol can reach a critical state
 - Otherwise we could stay bivalent forever
 - And the protocol is not wait-free

Distributed Computing Group



Distributed Computing Group

Model Dependency

- So far, memory-independent!
- True for
 - Registers
 - Message-passing
 - Carrier pigeons
 - Any kind of asynchronous computation

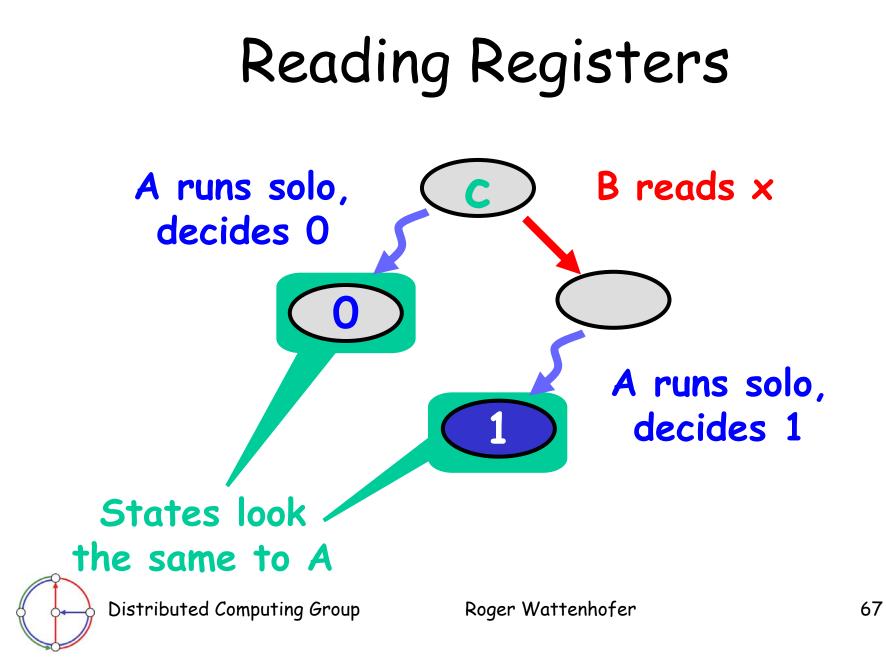
Distributed Computing Group

What are the Threads Doing?

- Reads and/or writes
- To same/different registers

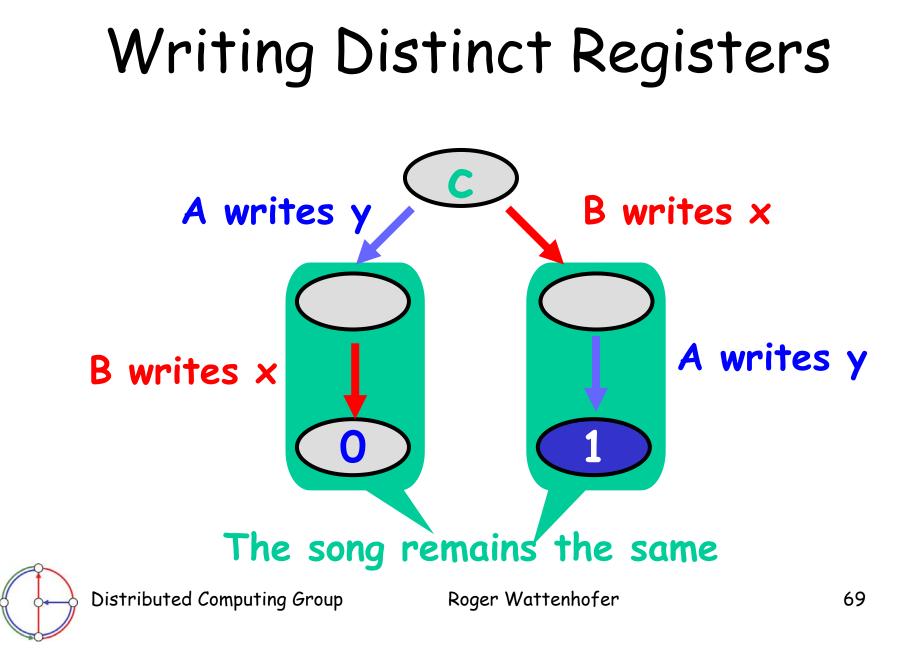
Possible Interactions

	x.read()	y.read()	x.write()	y.write()
x.read()	?	?	?	?
y.read()	?	?	?	?
x.write()	?	?	?	?
y.write()	?	?	?	?
Distributed Co	mputing Group	Roger Wattenhofer		66



Possible Interactions

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	?	?
y.write()	no	no	?	?
Distributed Computing Group		Roger Wattenhofer		68



Possible Interactions

	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	?	no
y.write()	no	no	no	?
Distributed Co	omputing Group	Roger Wat	l tenhofer	70



That's All, Folks!

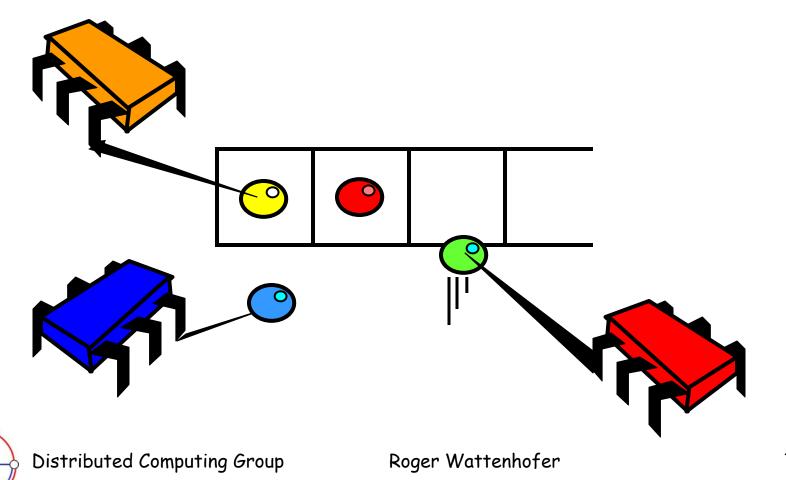
	x.read()	y.read()	x.write()	y.write()
x.read()	no	no	no	no
y.read()	no	no	no	no
x.write()	no	no	no	no
y.write()	no	no	no	no
Distributed Co	omputing Group	Roger Wattenhofer		72

Theorem

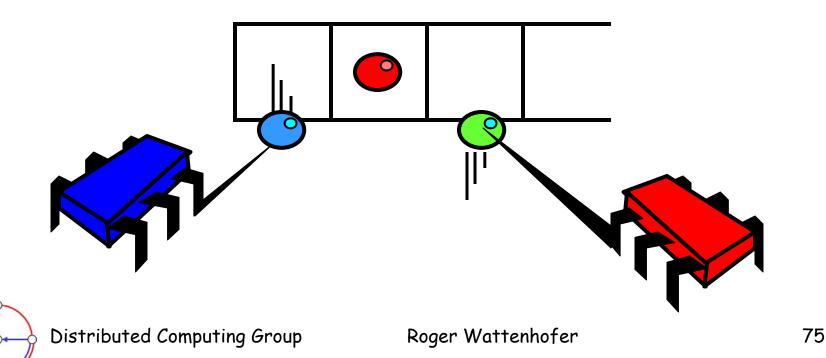
- It is impossible to solve consensus using read/write atomic registers
 - Assume protocol exists
 - It has a bivalent initial state
 - Must be able to reach a critical state
 - Case analysis of interactions
 - Reads vs others
 - Writes vs writes

Distributed Computing Group

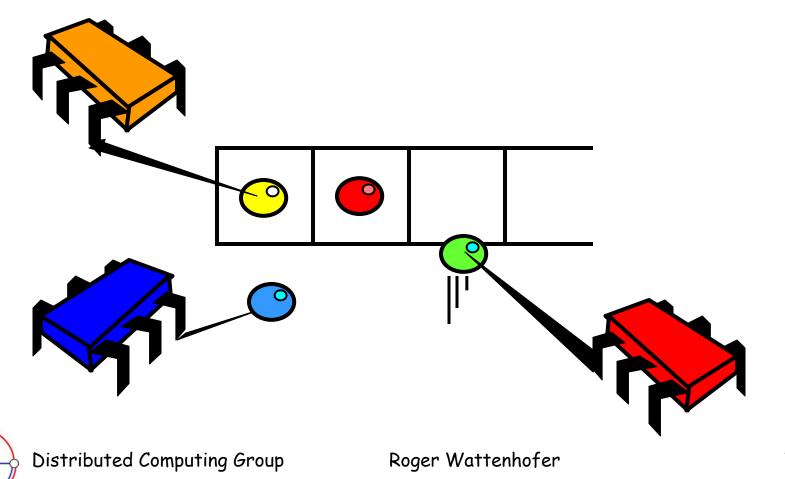
What Does Consensus have to do with Distributed Systems?



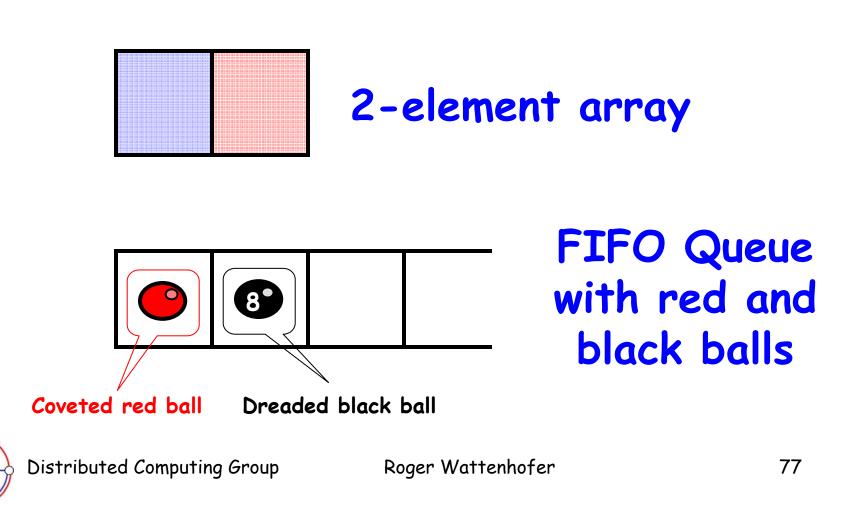
We want to build a Concurrent FIFO Queue



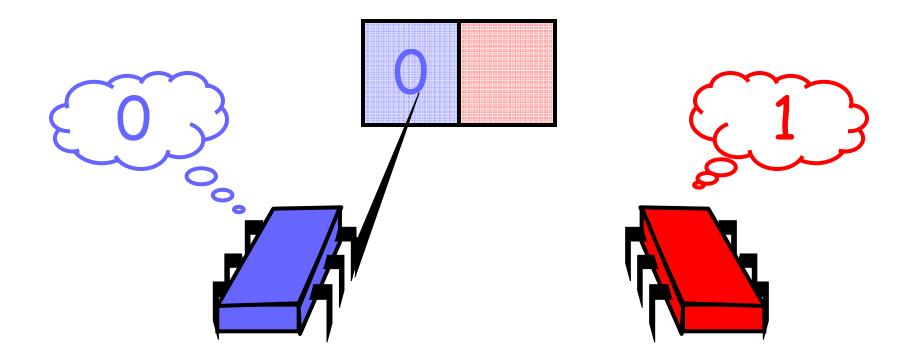
With Multiple Dequeuers!



A Consensus Protocol

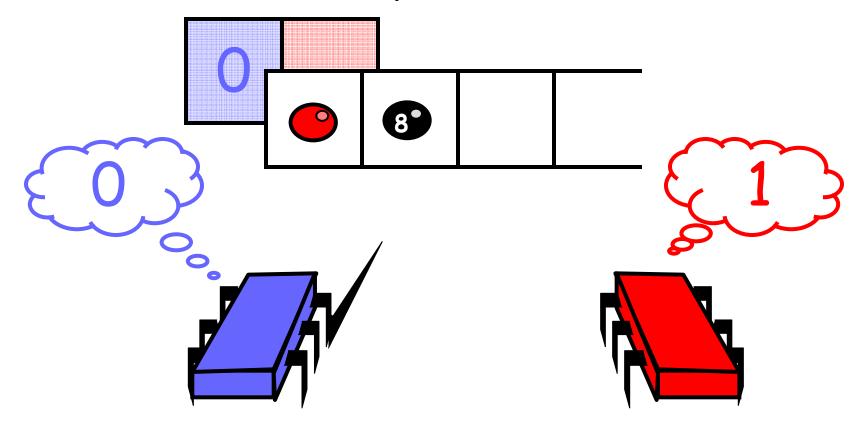


Protocol: Write Value to Array

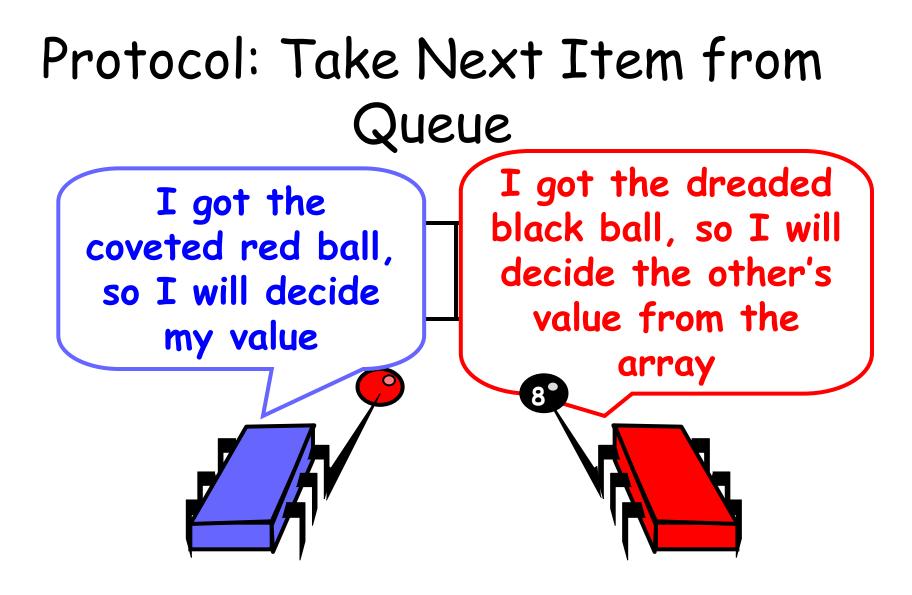


Distributed Computing Group

Protocol: Take Next Item from Queue



Distributed Computing Group



Distributed Computing Group

Why does this Work?

- If one thread gets the red ball
- Then the other gets the black ball
- Winner can take her own value
- Loser can find winner's value in array
 - Because threads write array before dequeuing from queue

Distributed Computing Group

Implication

- We can solve 2-thread consensus using only
 - A two-dequeuer queue
 - Atomic registers

Implications

- Assume there exists
 - A queue implementation from atomic registers
- Given
 - A consensus protocol from queue and registers
- Substitution yields
 - A wait-free consensus protocol from atomio registers

Distributed Computing Group

Corollary

- It is impossible to implement a twodequeuer wait-free FIFO queue with read/write shared memory.
- This was a proof by reduction; important beyond NP-completeness...

Distributed Computing Group

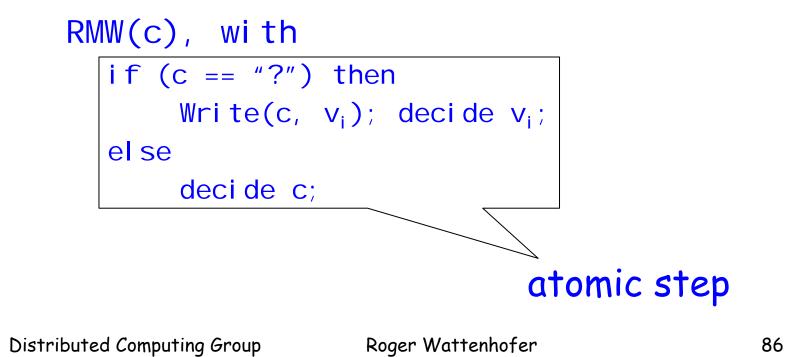
Consensus #3 read-modify-write shared mem.

- n processors, with n > 1
- Wait-free implementation
- Processors can atomically read and write a shared memory cell in one atomic step: the value written can depend on the value read
- We call this a RMW register

Distributed Computing Group

Protocol

- There is a cell c, initially c="?"
- Every processor i does the following



Discussion

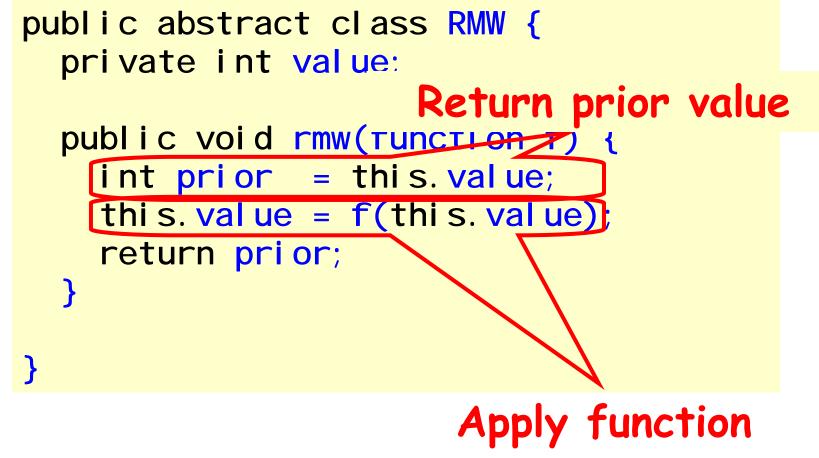
- Protocol works correctly
 - One processor accesses c as the first;
 this processor will determine decision
- Protocol is wait-free
- RMW is quite a strong primitive
 - Can we achieve the same with a weaker primitive?

Distributed Computing Group

Read-Modify-Write more formally

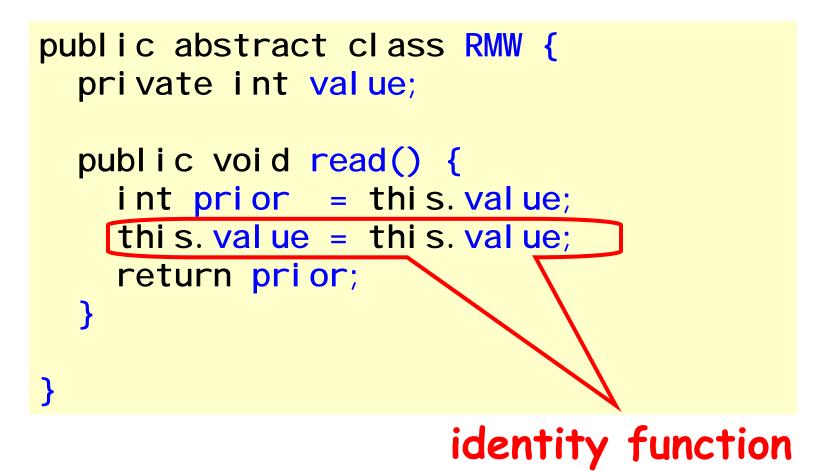
- Method takes 2 arguments:
 - Variable x
 - Function f
- Method call:
 - Returns value of x
 - Replaces x with f(x)

Distributed Computing Group



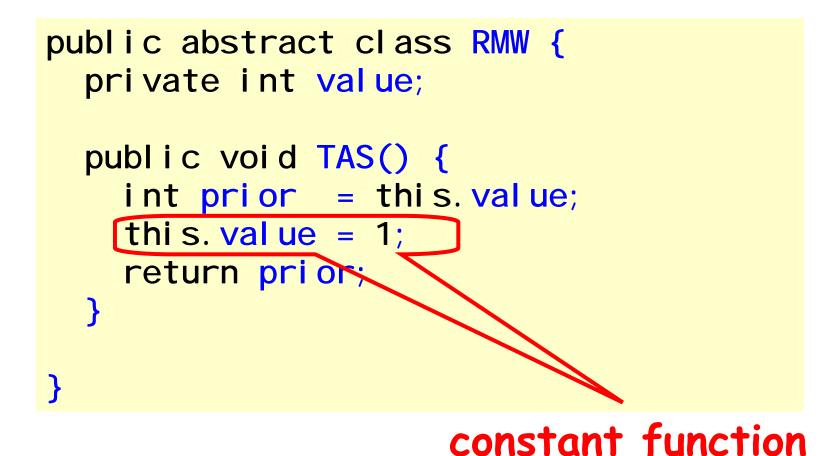
Distributed Computing Group

Example: Read



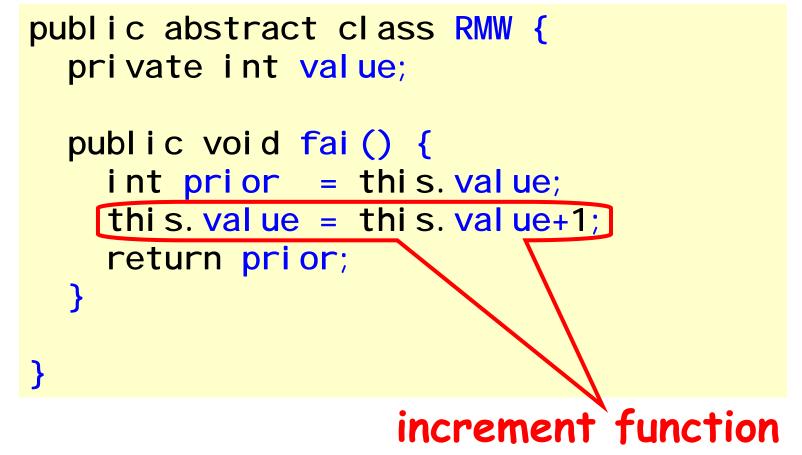
Distributed Computing Group

Example: test&set



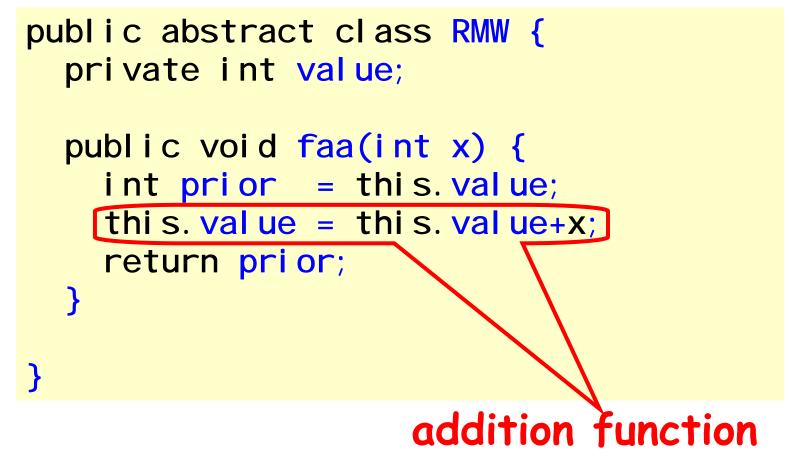
Distributed Computing Group

Example: fetch&inc



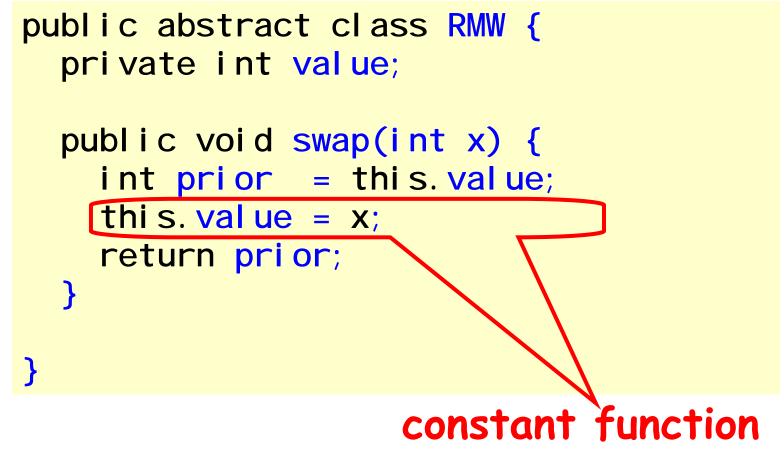
Distributed Computing Group

Example: fetch&add



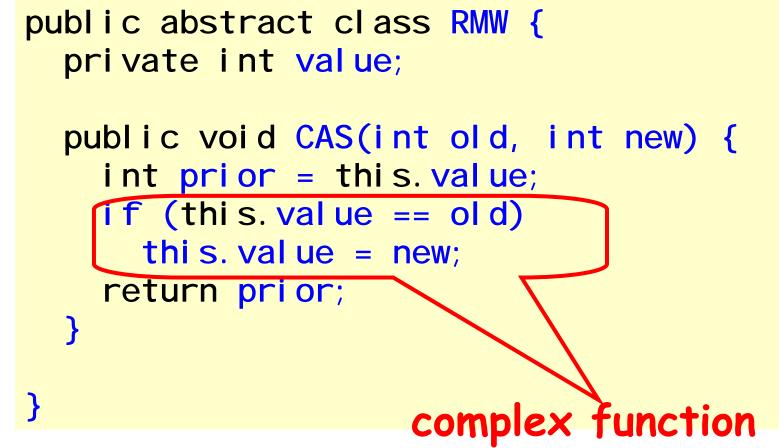
Distributed Computing Group

Example: swap



Distributed Computing Group

Example: compare&swap



Distributed Computing Group

"Non-trivial" RMW

- Not simply read
- But
 - teståset, fetchåinc, fetchåadd, swap, compareåswap, general RMW
- Definition: A RMW is non-trivial if there exists a value v such that v ≠ f(v)

Distributed Computing Group

Consensus Numbers (Herlihy)

- An object has consensus number n
 - If it can be used
 - Together with atomic read/write registers
 - To implement n-thread consensus
 - But not (n+1)-thread consensus

Consensus Numbers

• Theorem

- Atomic read/write registers have consensus number 1

- Proof
 - Works with 1 process
 - We have shown impossibility with 2

Distributed Computing Group

Consensus Numbers

- Consensus numbers are a useful way of measuring synchronization power
- Theorem
 - If you can implement X from Y
 - And X has consensus number c
 - Then Y has consensus number at least c

Distributed Computing Group

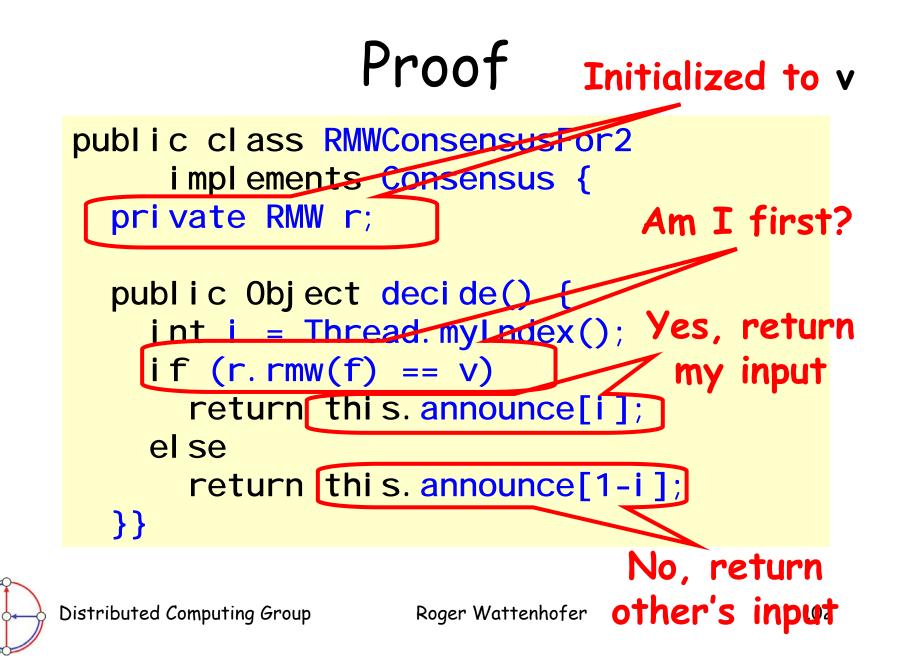
Synchronization Speed Limit

- Conversely
 - If X has consensus number c
 - And Y has consensus number d < c
 - Then there is no way to construct a wait-free implementation of X by Y
- This theorem will be very useful
 Unforeseen practical implications!

Theorem

- Any non-trivial RMW object has consensus number at least 2
- Implies no wait-free implementation of RMW registers from read/write registers
- Hardware RMW instructions not just a convenience

Distributed Computing Group



Proof

- · We have displayed
 - A two-thread consensus protocol
 - Using any non-trivial RMW object

Distributed Computing Group

Interfering RMW

- Let F be a set of functions such that for all f_i and f_j either
 - They commute: $f_i(f_j(x))=f_j(f_i(x))$
 - They overwrite: $f_i(f_j(x))=f_i(x)$
- Claim: Any such set of RMW objects has consensus number exactly 2

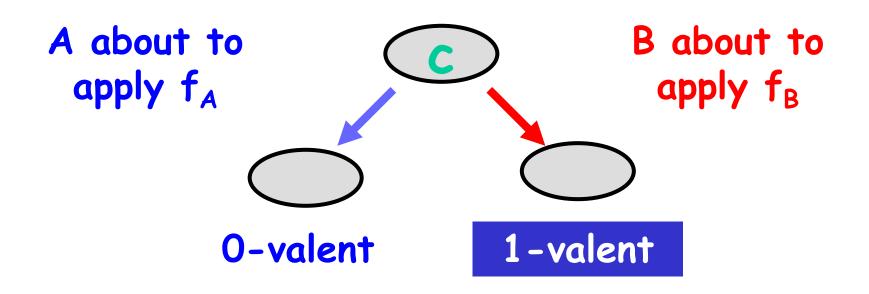
Distributed Computing Group

Examples

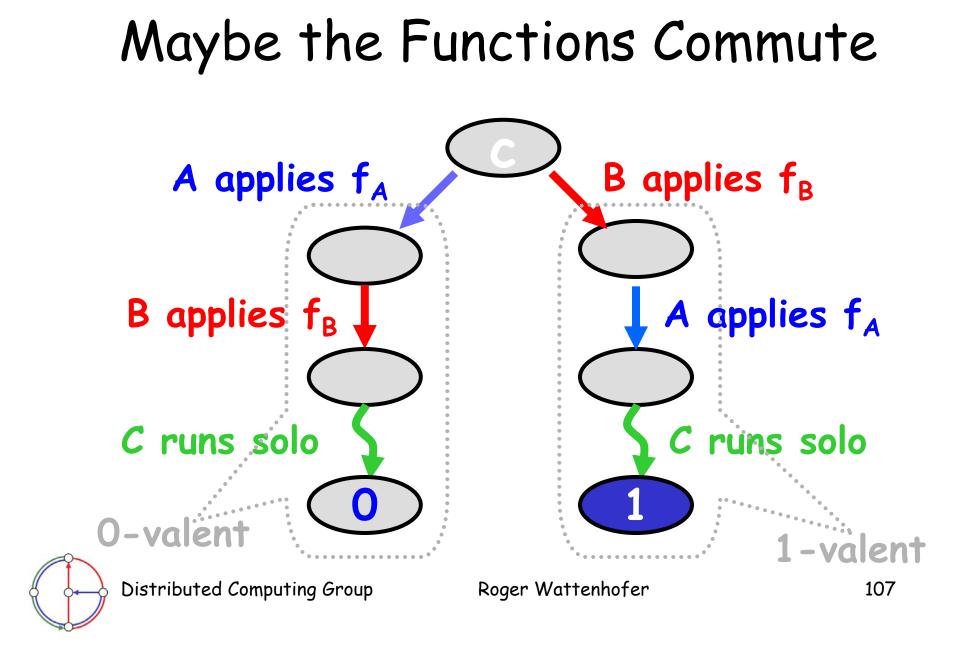
- Test-and-Set
 - Overwrite
- Swap
 - Overwrite
- Fetch-and-inc
 - Commute

Distributed Computing Group

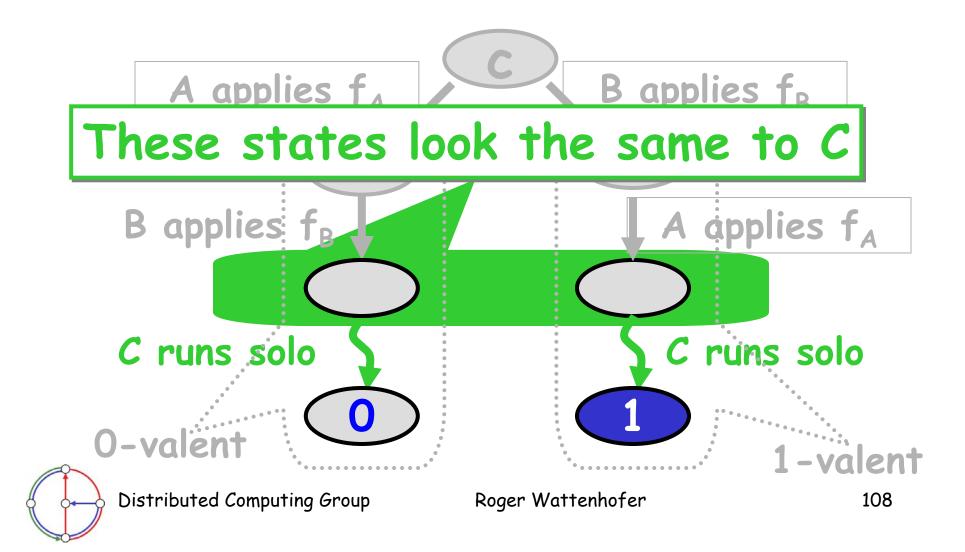
Meanwhile Back at the Critical State

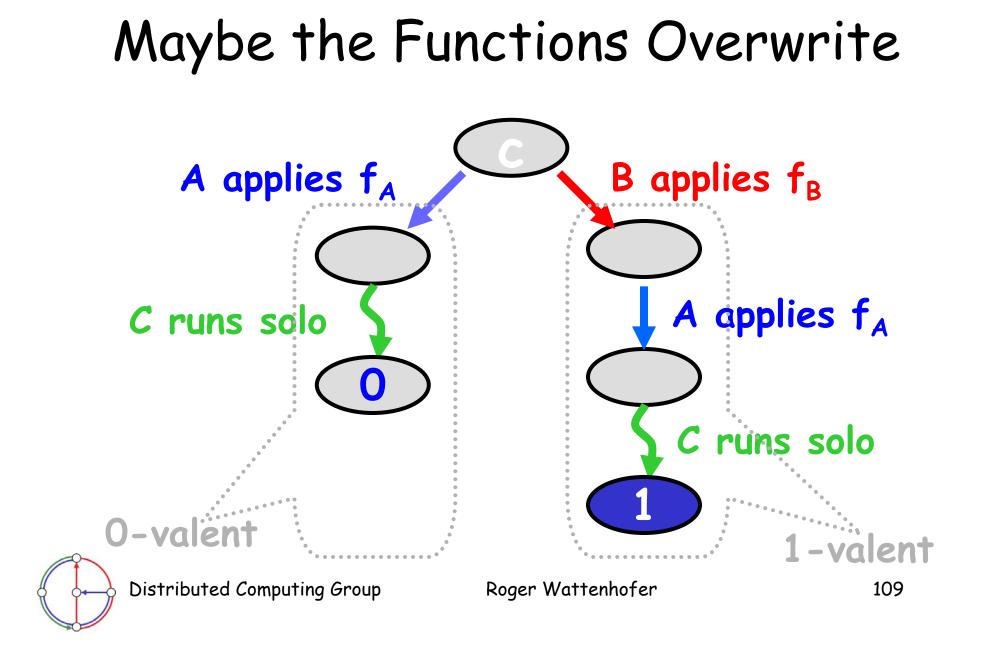


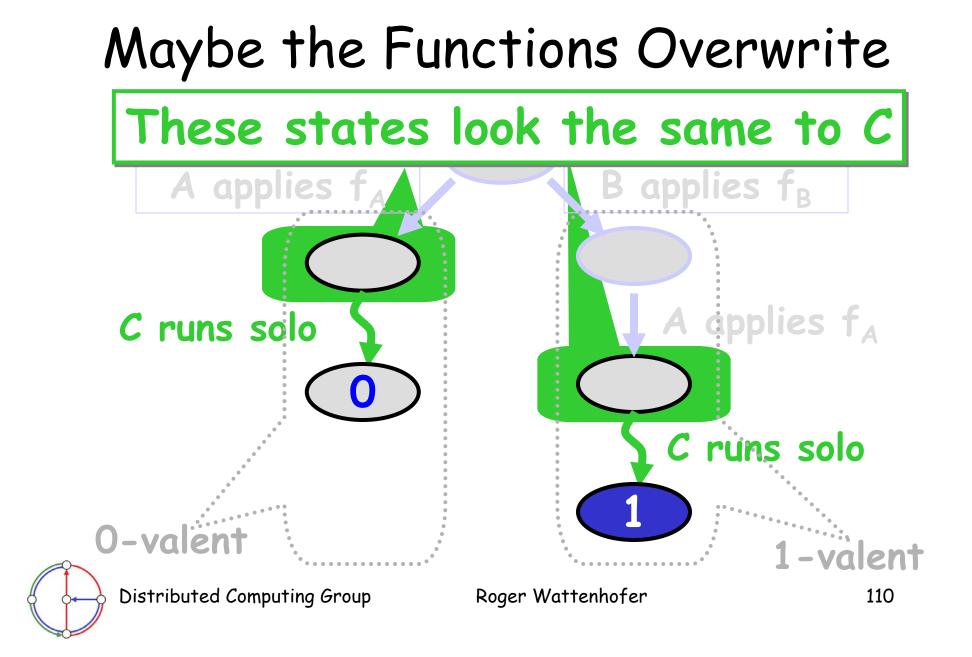
Distributed Computing Group



Maybe the Functions Commute



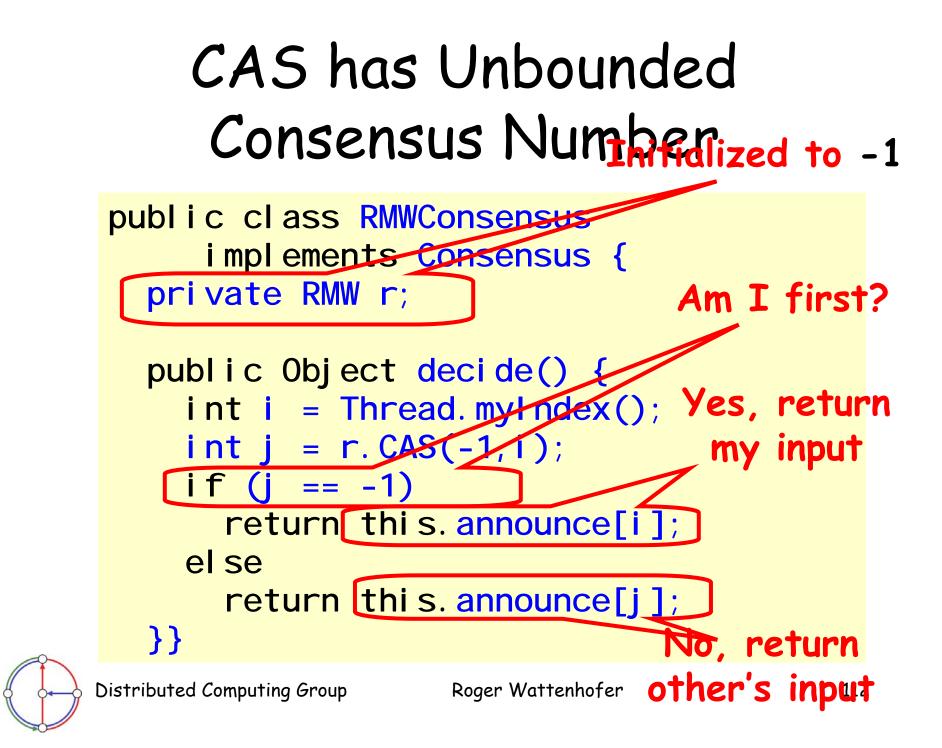




Impact

- Many early machines used these "weak" RMW instructions
 - Test-and-set (IBM 360)
 - Fetch-and-add (NYU Ultracomputer)
 - Swap
- We now understand their limitations
 - But why do we want consensus anyway?

Distributed Computing Group



The Consensus Hierarchy

2 T&S, F&I, Swap, ...

Distributed Computing Group

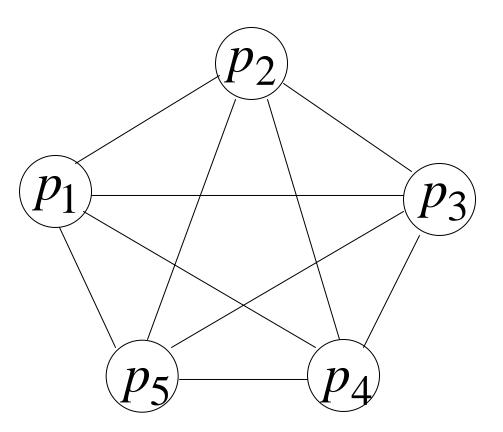
Consensus #4 Synchronous Systems

- In real systems, one can sometimes tell if a processor had crashed
 - Timeouts
 - Broken TCP connections
- Can one solve consensus at least in synchronous systems?

Distributed Computing Group

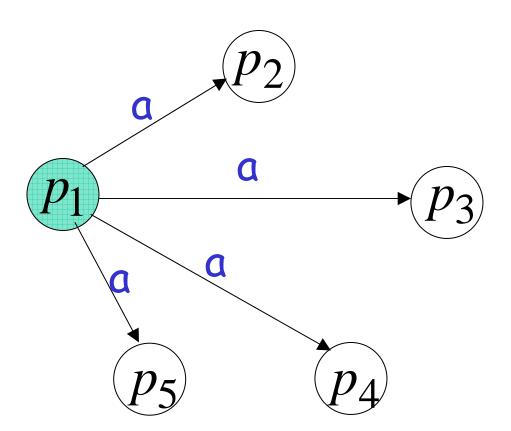
Communication Model

- Complete graph
- Synchronous



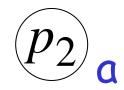
Distributed Computing Group

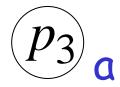
Send a message to all processors in one round: Broadcast



Distributed Computing Group

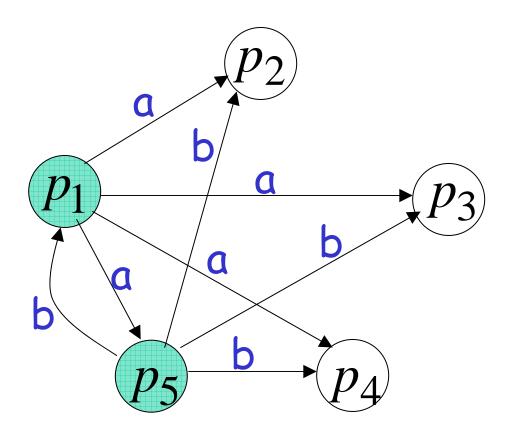
At the end of the round: everybody receives a



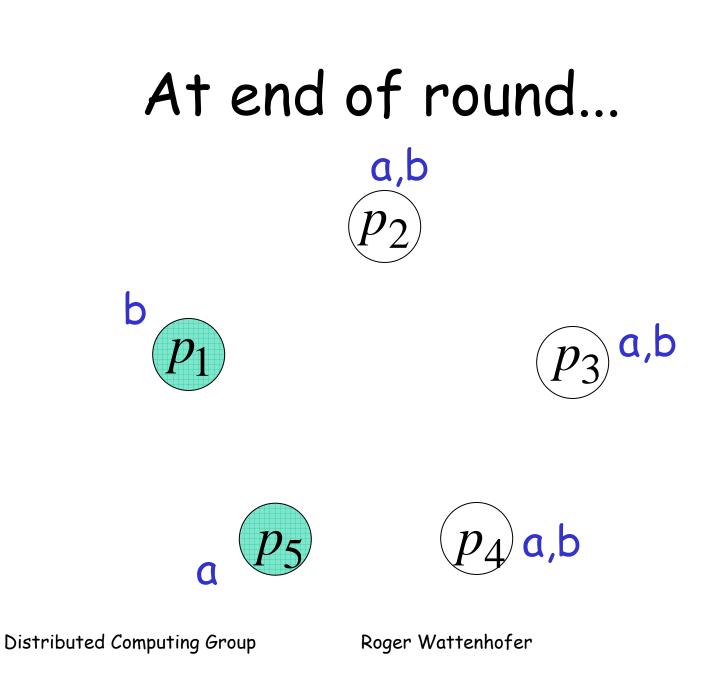


Distributed Computing Group

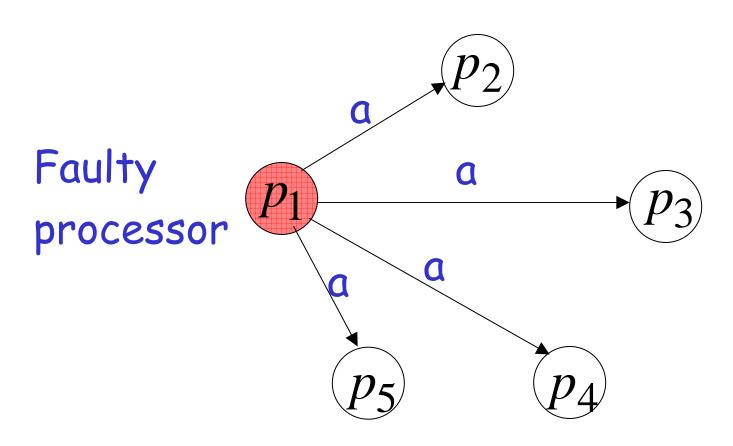
Broadcast: Two or more processes can broadcast in the same round



Distributed Computing Group

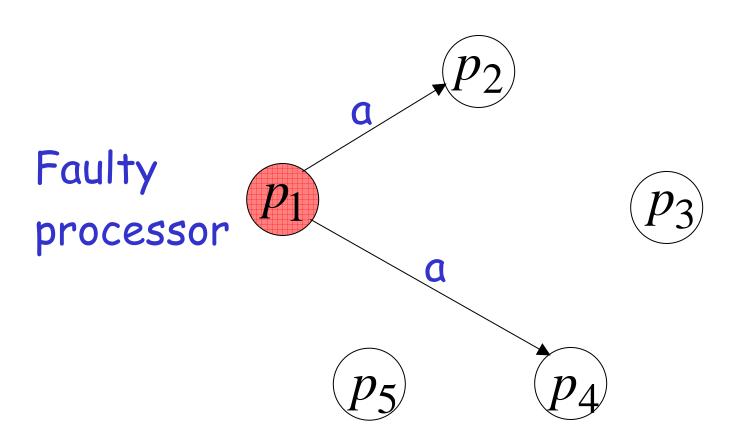


Crash Failures



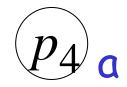
Distributed Computing Group

Some of the messages are lost, they are never received



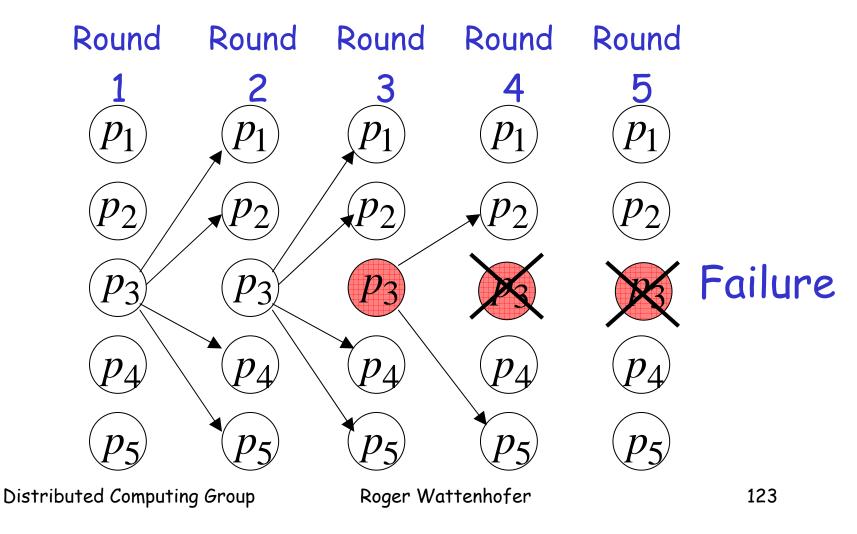
Distributed Computing Group

Effect



Distributed Computing Group

After a failure, the process disappears from the network

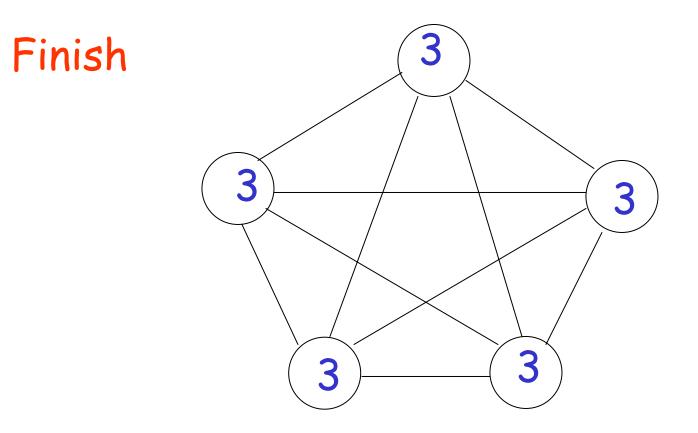


Consensus: Everybody has an initial value



Distributed Computing Group

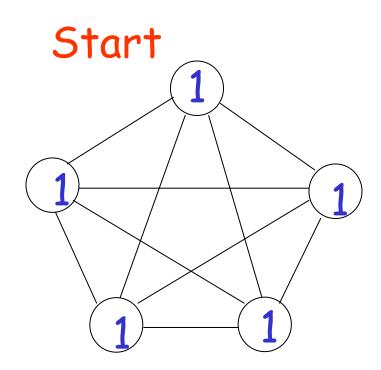
Everybody must decide on the same value

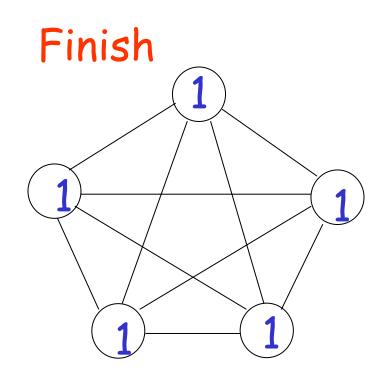


Distributed Computing Group

Validity condition:

If everybody starts with the same value they must decide on that value





Distributed Computing Group

A simple algorithm

Each processor:

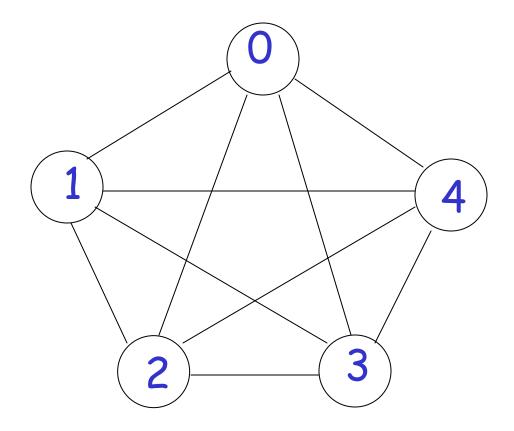
1. Broadcasts value to all processors

2. Decides on the minimum

(only one round is needed)

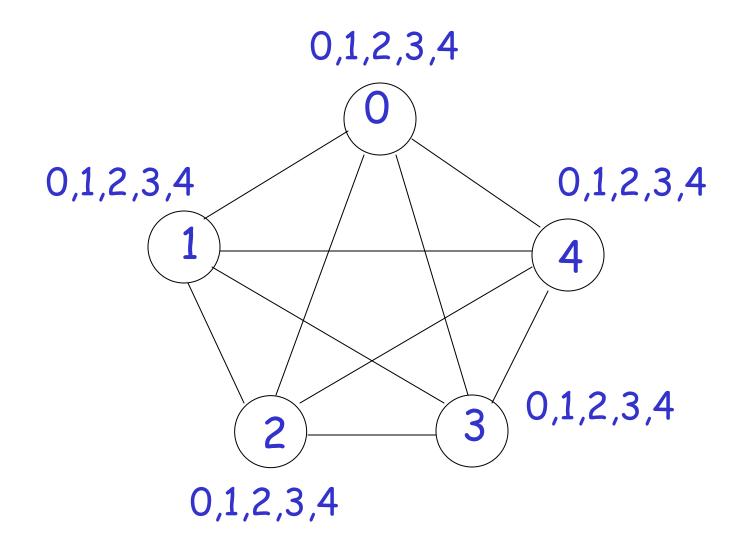
Distributed Computing Group

Start



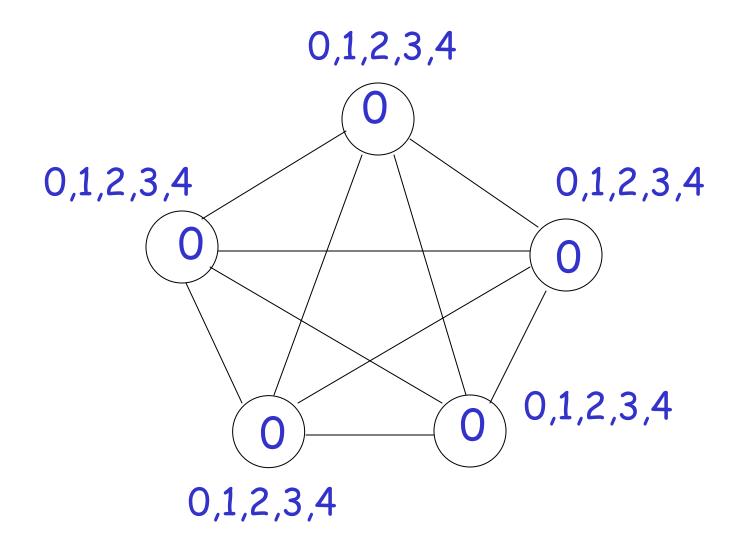
Distributed Computing Group

Broadcast values

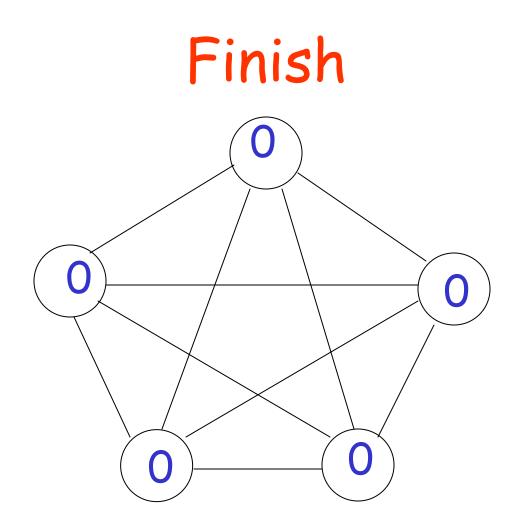


Distributed Computing Group

Decide on minimum

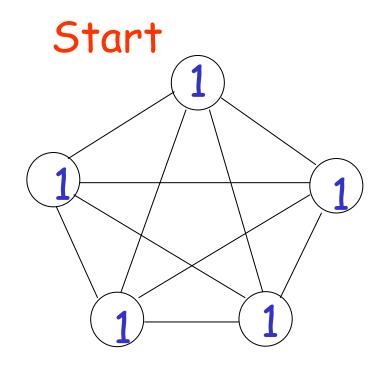


Distributed Computing Group



Distributed Computing Group

This algorithm satisfies the validity condition



Finish 1 1 1 1 1 1 1

If everybody starts with the same initial value, everybody sticks to that value (minimum)

Distributed Computing Group

Consensus with Crash Failures

The simple algorithm <u>doesn't</u> work

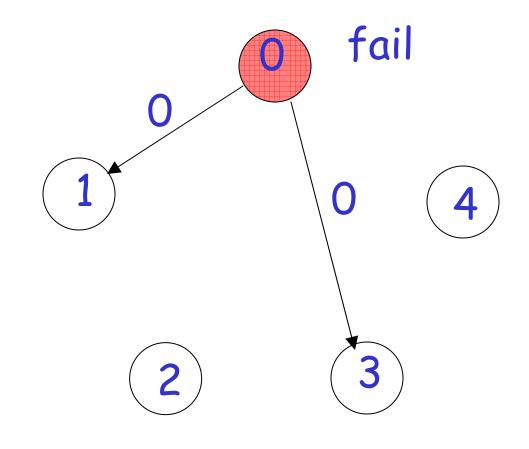
Each processor:

1. Broadcasts value to all processors

2. Decides on the minimum

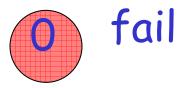
Distributed Computing Group

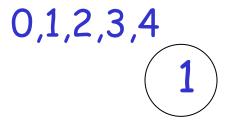
Start The failed processor doesn't broadcast its value to all processors

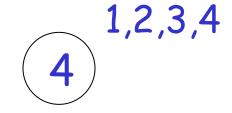


Distributed Computing Group

Broadcasted values



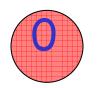




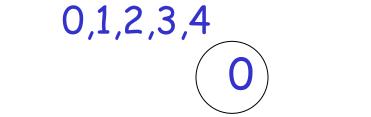
3 0,1,2,3,4 1,2,3,4₍ 2

Distributed Computing Group

Decide on minimum



fail

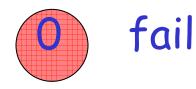


1,2,3,4 1

0,1,2,3,4 1,2,3,4 0

Distributed Computing Group

Finish - No Consensus!





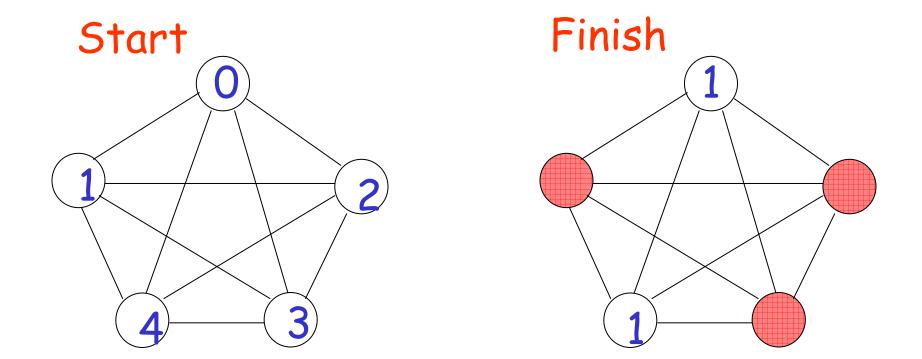
Distributed Computing Group

If an algorithm solves consensus for failed processes we say it is

an f-resilient consensus algorithm

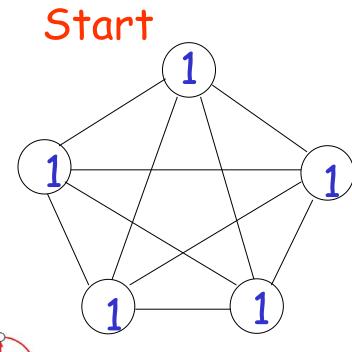
Distributed Computing Group

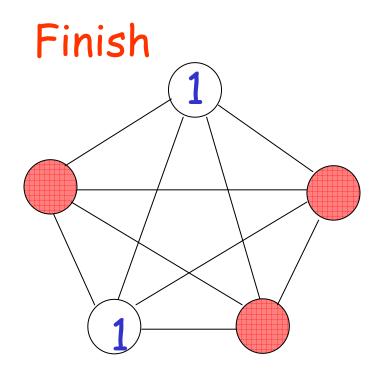
Example: The input and output of a 3-resilient consensus algorithm



Distributed Computing Group

New validity condition: all non-faulty processes decide on a value that is available initially.





Distributed Computing Group

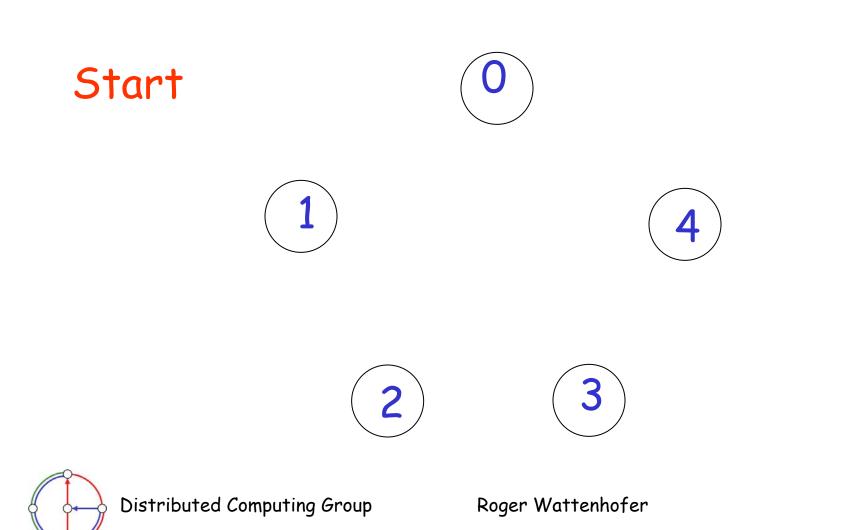
Roger Wattenhofer

140

An f-resilient algorithm

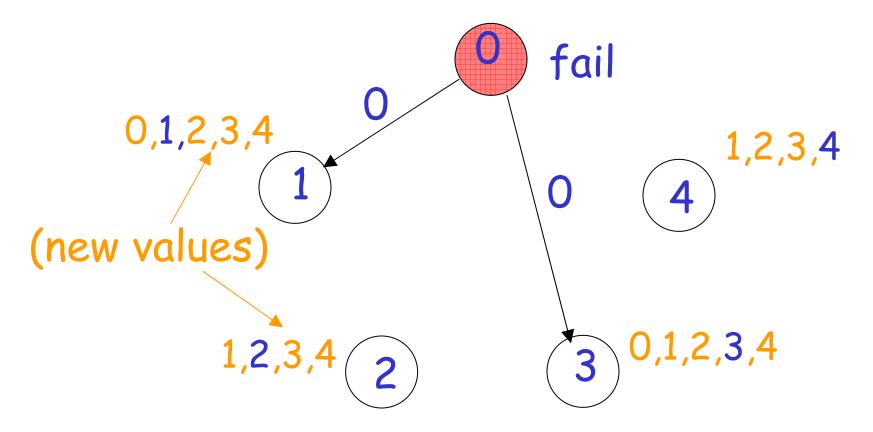
Round 1: Broadcast my value Round 2 to round f+1: Broadcast any new received values End of round f+1: Decide on the minimum value received

Example: f=1 failures, f+1=2 rounds needed



Example: f=1 failures, f+1 = 2 rounds needed

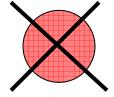
Round 1 Broadcast all values to everybody

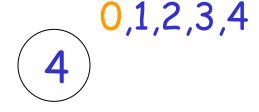


Distributed Computing Group

Example: f=1 failures, f+1 = 2 rounds needed

Round 2 Broadcast all new values to everybody

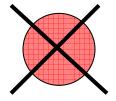


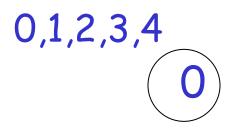


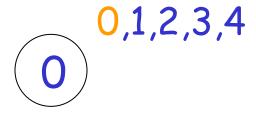
) **0,1,2,3,4** 0,1,2,3,4 3 2

Distributed Computing Group

Finish Decide on minimum value



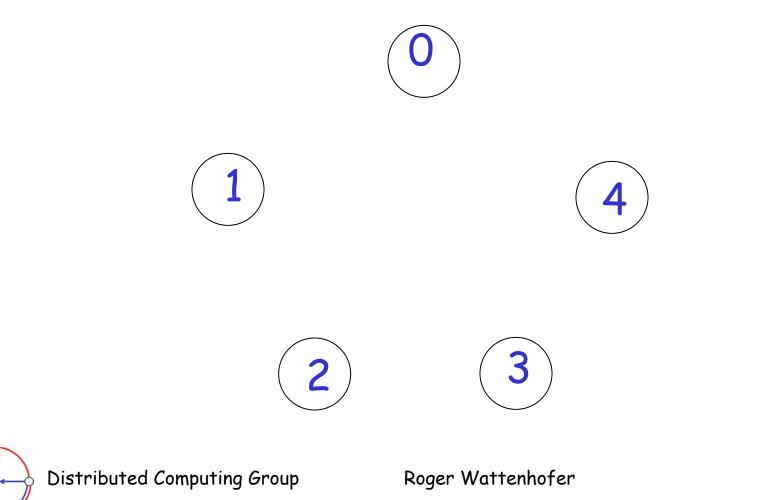




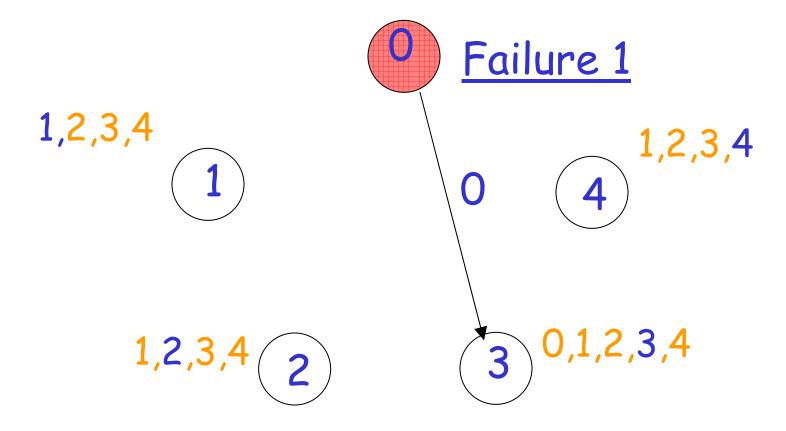
) **0,1,2,3,4** 0,1,2,3,4 0

Distributed Computing Group

Start Example of execution with 2 failures

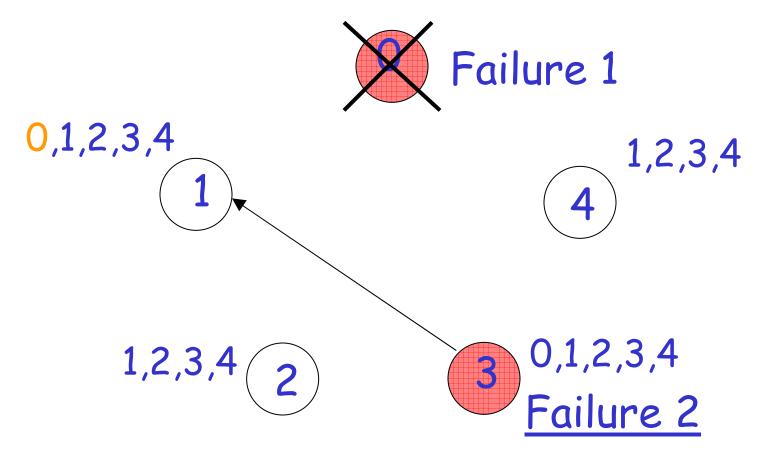


Round 1 Broadcast all values to everybody



Distributed Computing Group

Round 2 Broadcast new values to everybody



Distributed Computing Group

Round 3 Broadcast new values to everybody

0,1,2,3,4 2

4

Failure 1

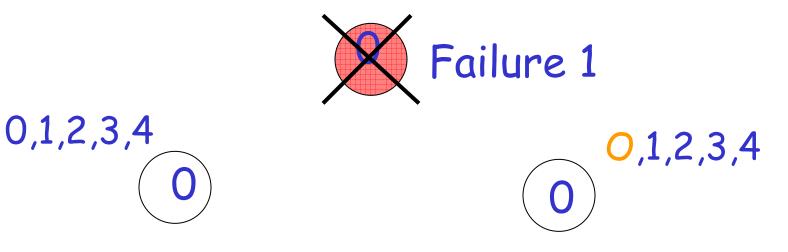
Distributed Computing Group

0,1,2,3,4

Roger Wattenhofer

0,1,2,3,4

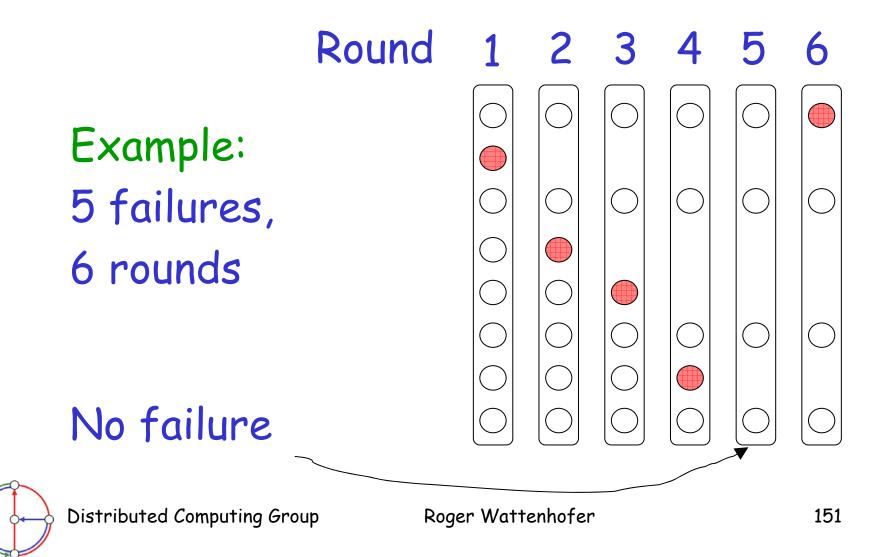
Finish Decide on the minimum value



0,1,2,3,4

Distributed Computing Group

If there are f failures and f+1 rounds then there is a round with no failed process



At the end of the round with no failure:

 Every (non faulty) process knows about all the values of all the other participating processes

•This knowledge doesn't change until the end of the algorithm

Distributed Computing Group

Therefore, at the end of the round with no failure:

Everybody would decide on the same value

However, as we don't know the exact position of this round, we have to let the algorithm execute for f+1 rounds

Distributed Computing Group

Validity of algorithm:

when all processes start with the same input value then the consensus is that value

This holds, since the value decided from each process is some input value

Distributed Computing Group

A Lower Bound

Theorem: Any f-resilient consensus algorithm requires at least f+1 rounds

Distributed Computing Group

Proof sketch:

Assume for contradiction that f or less rounds are enough

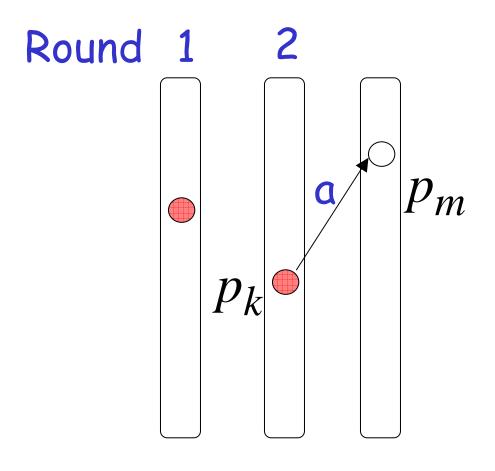
Worst case scenario:

There is a process that fails in each round

Distributed Computing Group

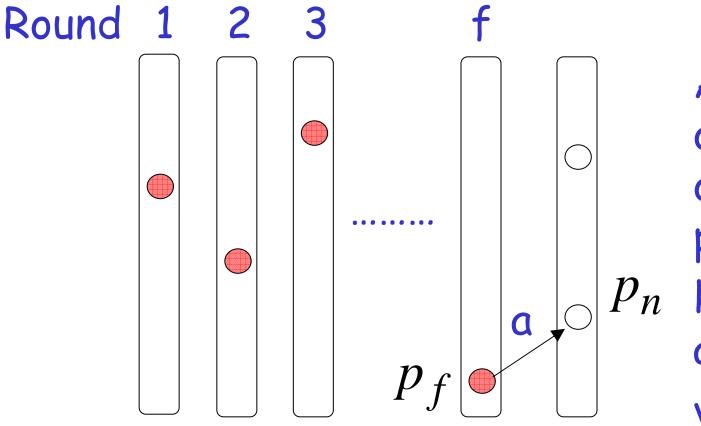
Worst case scenario Round before process P_i fails, it sends its value a to only one p_i Ω process p_k

Distributed Computing Group



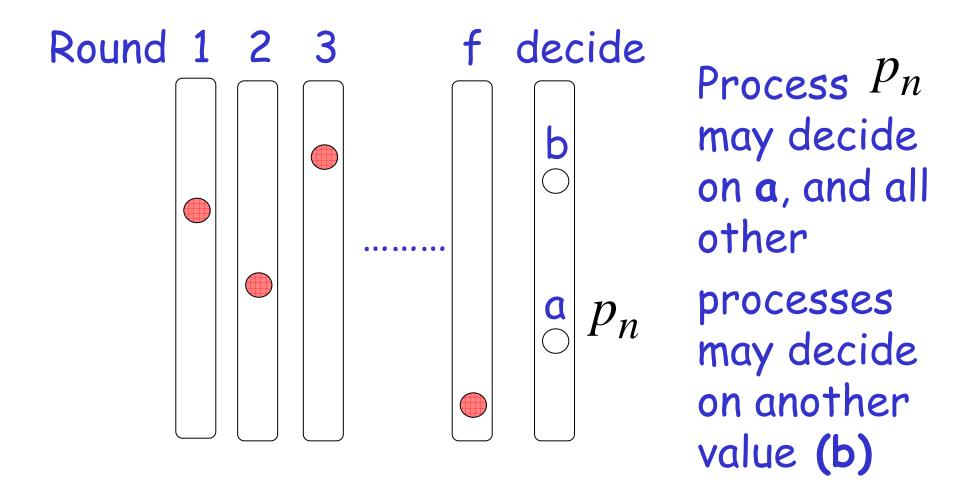
before process P_k fails, it sends value a to only one process P_m

Distributed Computing Group

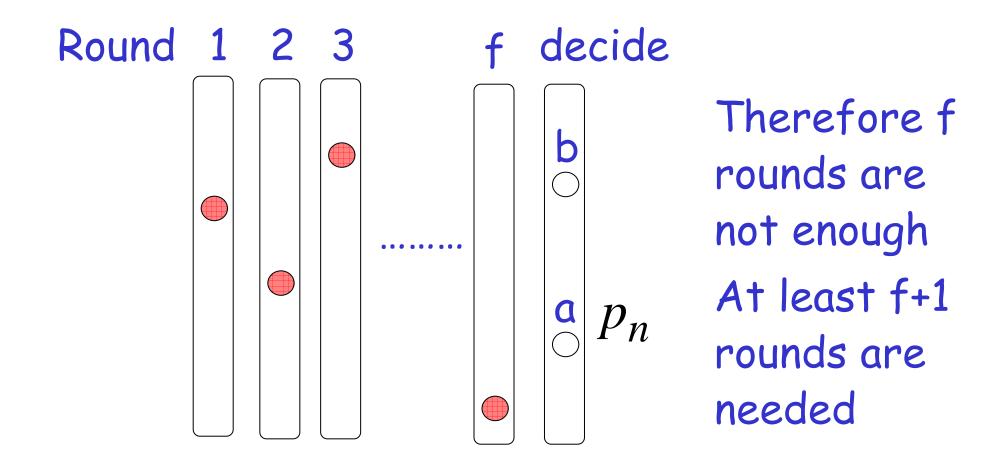


At the end of round fonly one process p_n knows about value a

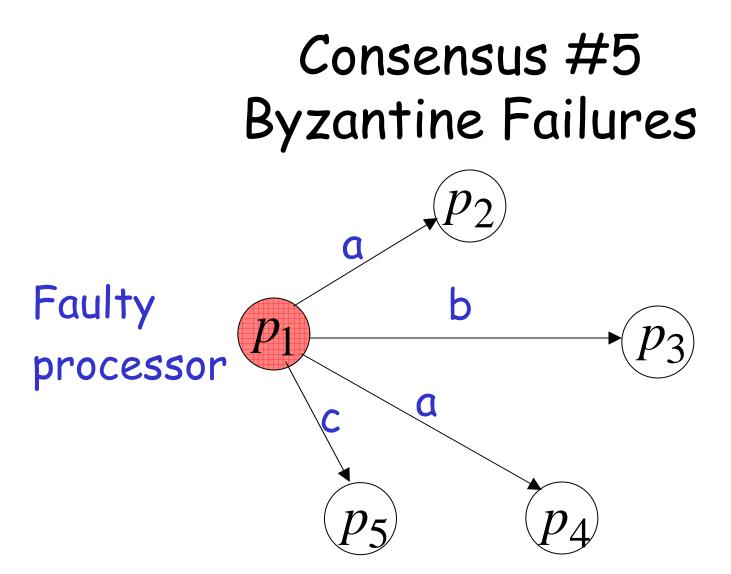
Distributed Computing Group



Distributed Computing Group



Distributed Computing Group

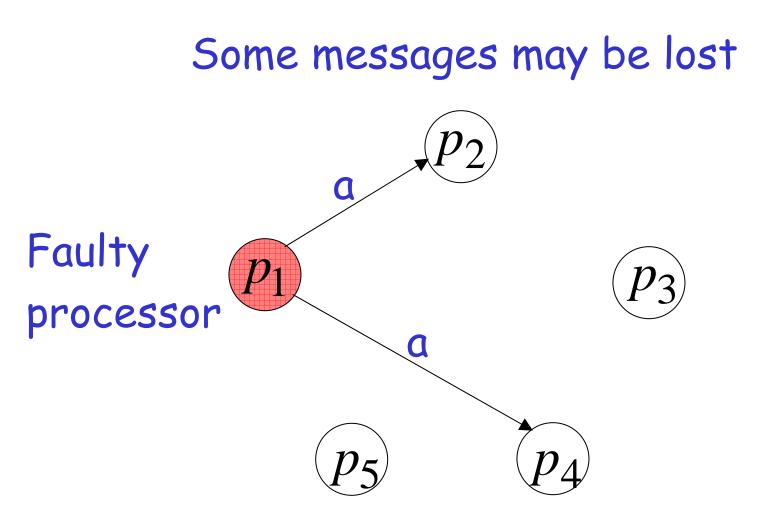


Different processes receive different values

Distributed Computing Group

Roger Wattenhofer

162



A Byzantine process can behave like a Crashed-failed process

Distributed Computing Group



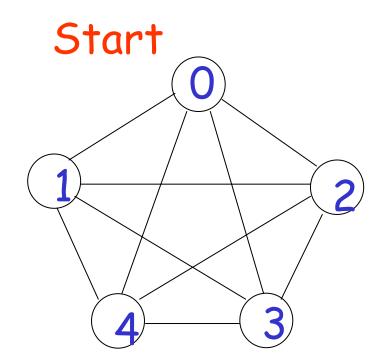
Consensus with Byzantine Failures

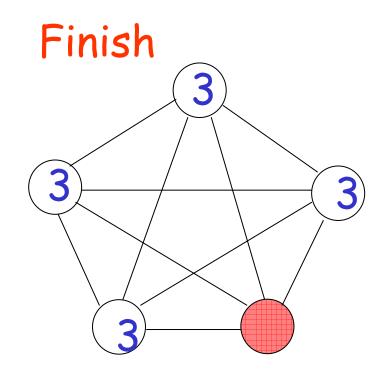
f-resilient consensus algorithm:

solves consensus for f failed processes

Distributed Computing Group

Example: The input and output of a 1-resilient consensus algorithm





Distributed Computing Group

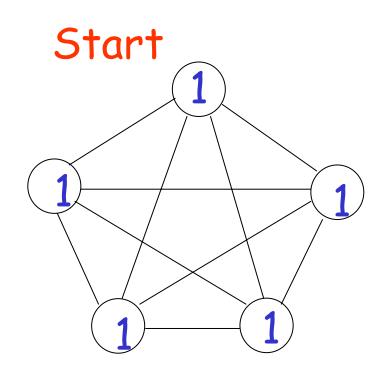
Roger Wattenhofer

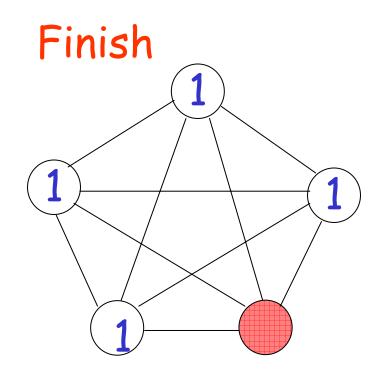
166

Validity condition:

if all non-faulty processes start with

the same value then all non-faulty processes decide on that value





Distributed Computing Group

Lower bound on number of rounds

Theorem: Any f-resilient consensus algorithm requires at least f+1 rounds

Proof: follows from the crash failure lower bound

Distributed Computing Group

Upper bound on failed processes

Theorem: There is no *f*-resilient algorithm for *n* processes, where $f \ge n/3$

Plan: First we prove the 3 process case, and then the general case

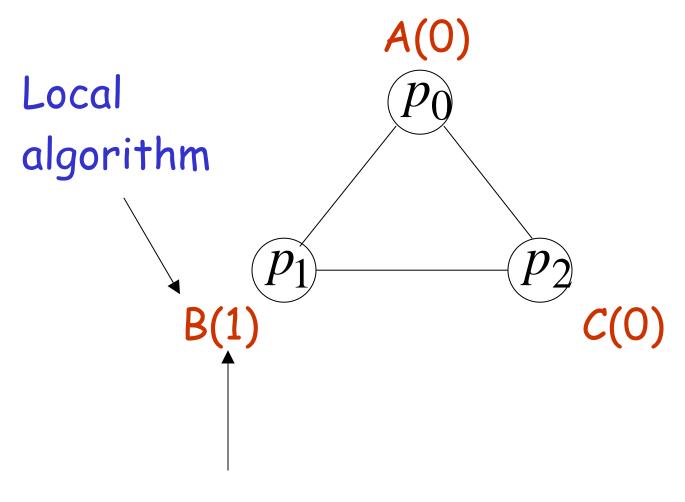
Distributed Computing Group

The 3 processes case

Lemma: There is no 1-resilient algorithm for 3 processes

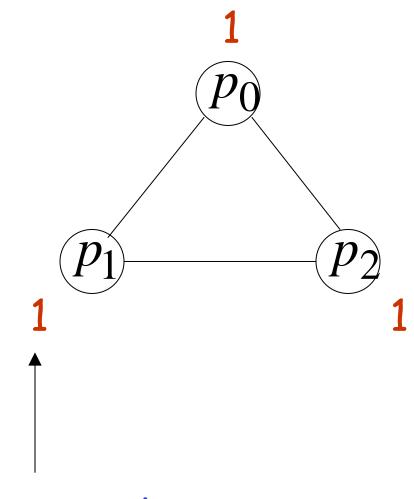
Proof: Assume for contradiction that there is a 1-resilient algorithm for 3 processes

Distributed Computing Group



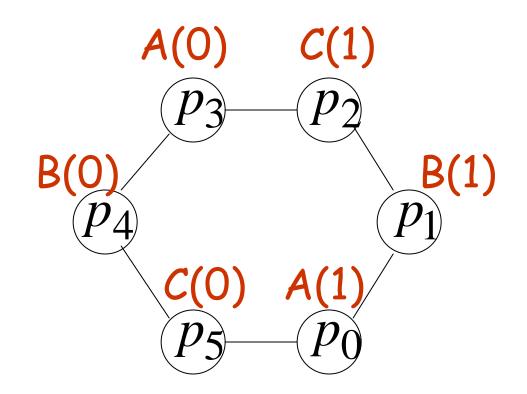
Initial value

Distributed Computing Group



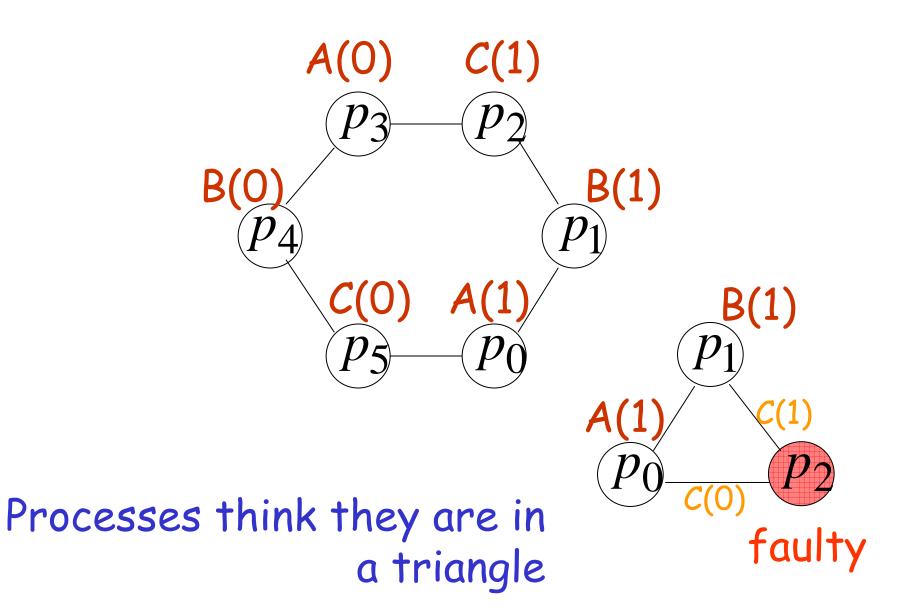
Decision value

Distributed Computing Group

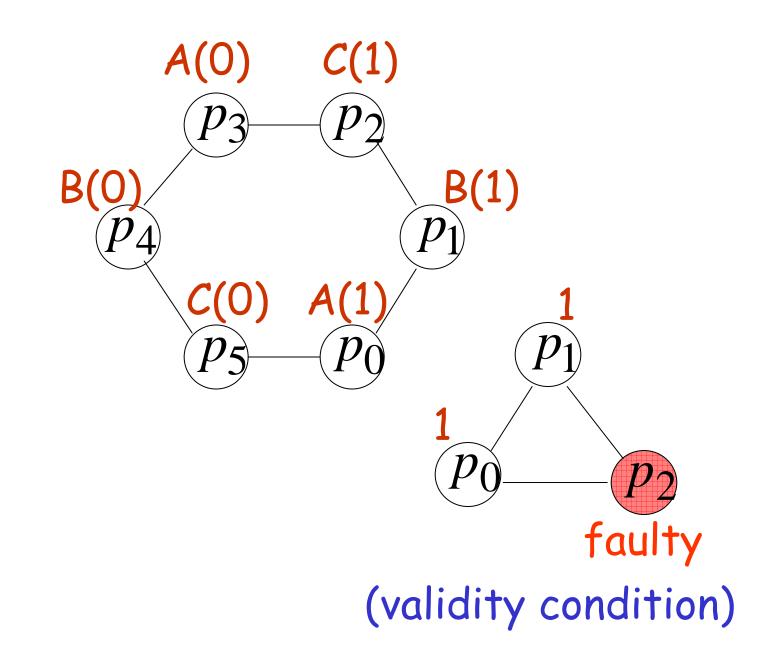


Assume 6 processes are in a ring (just for fun)

Distributed Computing Group



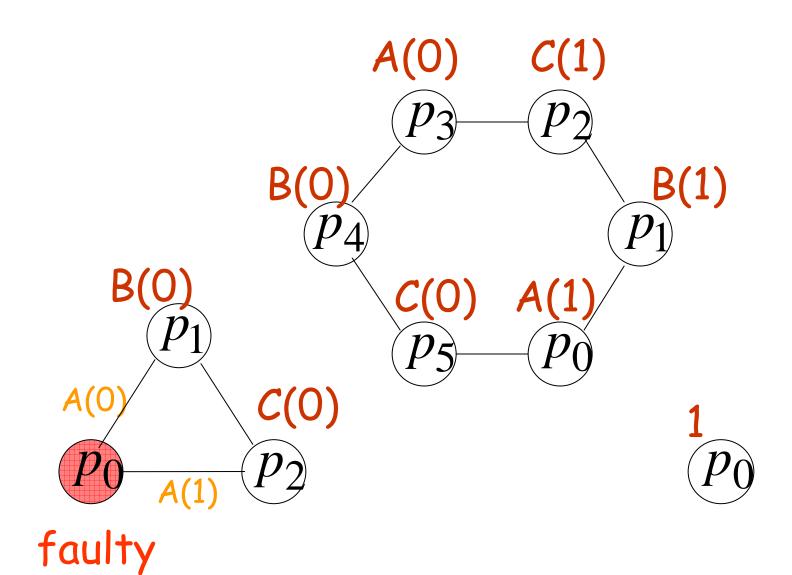
Distributed Computing Group



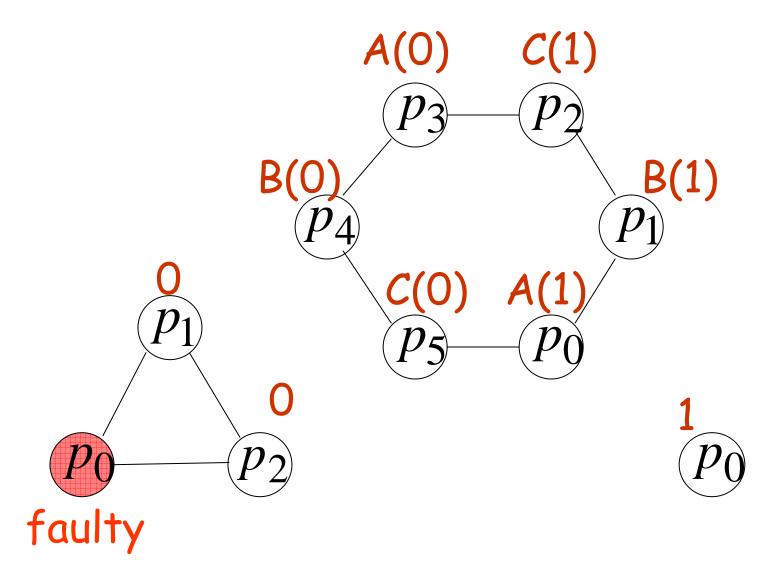
Distributed Computing Group

Roger Wattenhofer

175

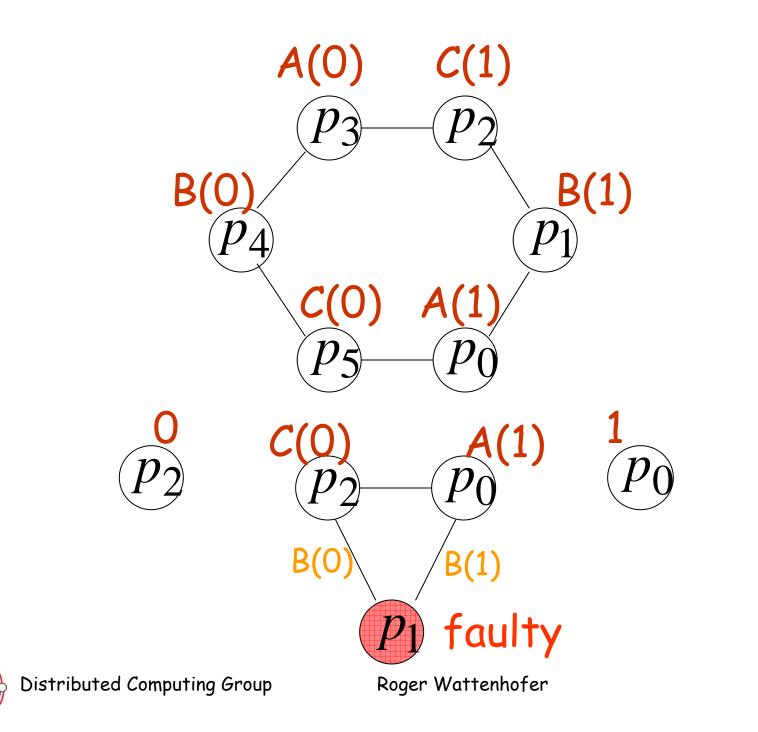


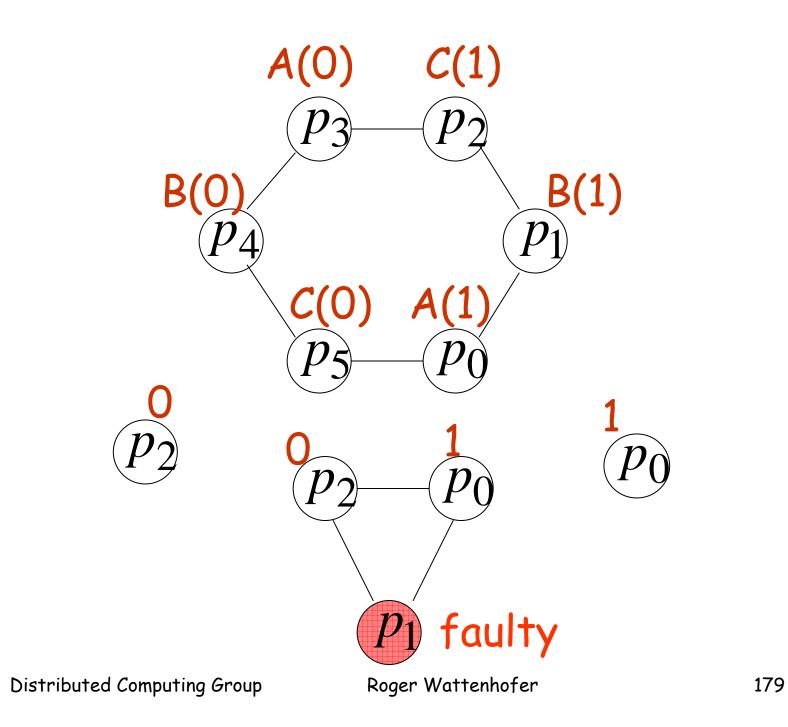
Distributed Computing Group



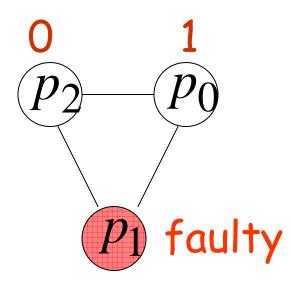
(validity condition)

Distributed Computing Group





Impossibility



Distributed Computing Group

Conclusion

There is no algorithm that solves consensus for 3 processes in which 1 is a byzantine process

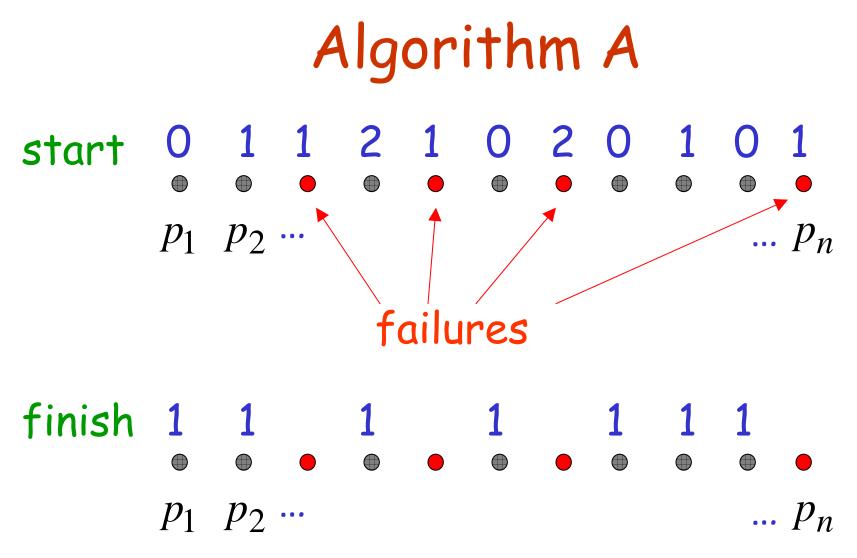
Distributed Computing Group

The n processes case

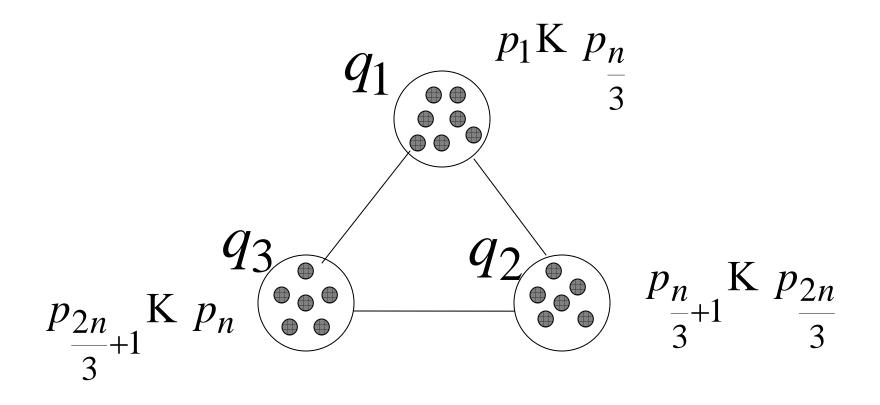
Assume for contradiction that there is an f-resilient algorithm Afor n processes, where $f \ge n/3$

We will use algorithm A to solve consensus for 3 processes and 1 failure (which is impossible, thus we have a contradiction)

Distributed Computing Group

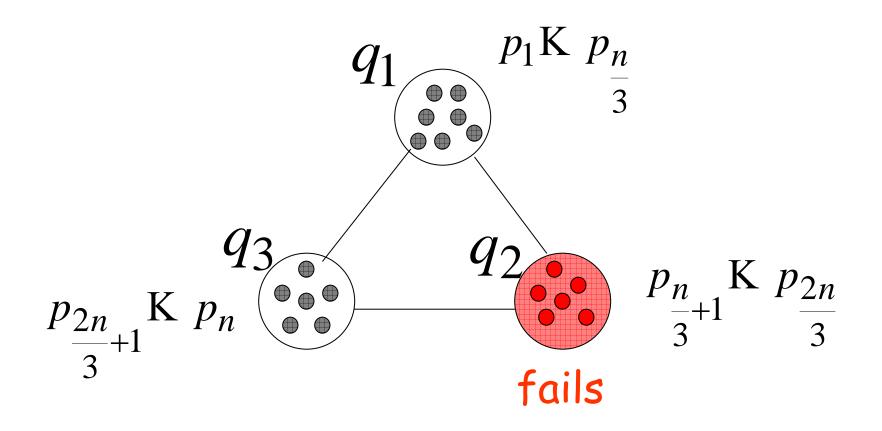


Distributed Computing Group



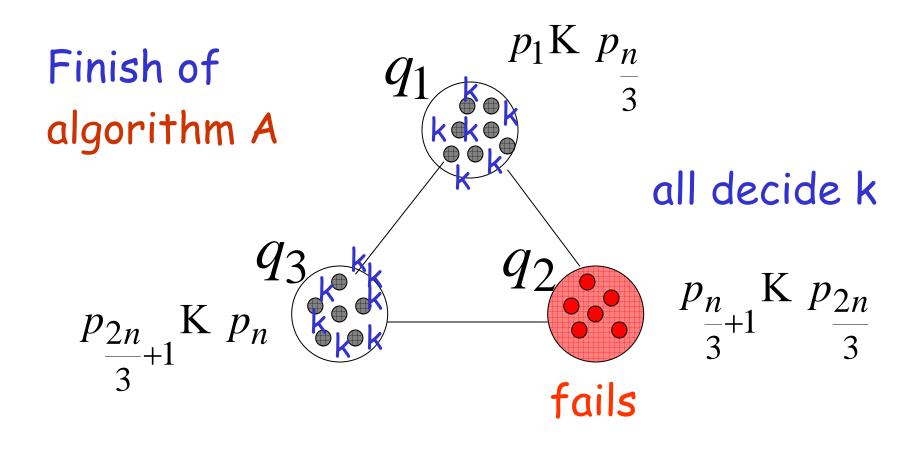
Each process q simulates algorithm A on n/3 of "p" processes

Distributed Computing Group



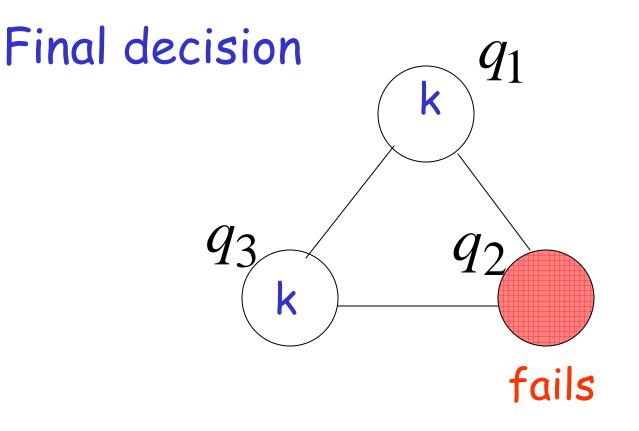
When a single q is byzantine, then n/3 of the "p" processes are byzantine too.

Distributed Computing Group



algorithm A tolerates n/3 failures

Distributed Computing Group



We reached consensus with 1 failure Impossible!!!

Distributed Computing Group

Conclusion

There is no *f*-resilient algorithm for *n* processes with $f \ge n/3$

Distributed Computing Group

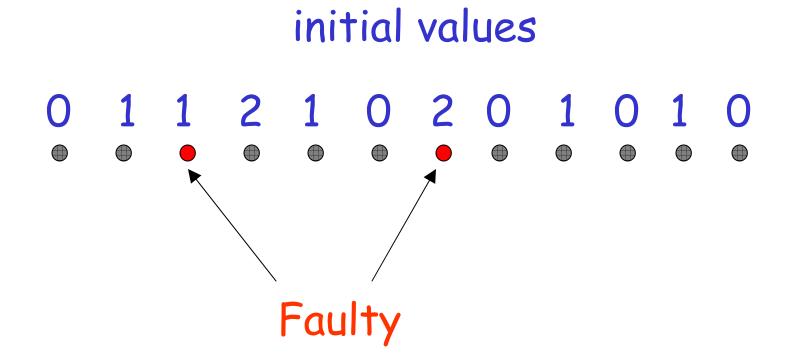
The King Algorithm

solves consensus with *n* processes and *f* failures where *f* < *n*/4 in *f*+1 "phases"

There are f+1 phases Each phase has two rounds In each phase there is a different king

Distributed Computing Group

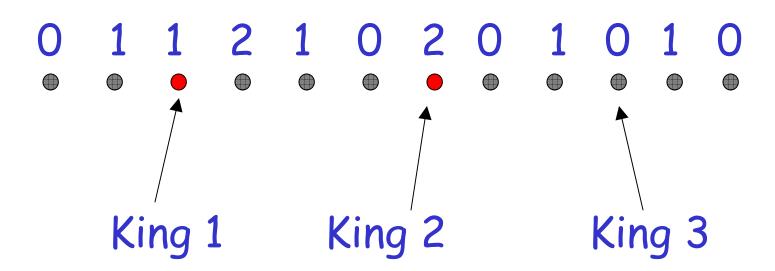
Example: 12 processes, 2 faults, 3 kings



Distributed Computing Group

Example: 12 processes, 2 faults, 3 kings

initial values



Remark: There is a king that is not faulty

Distributed Computing Group

The King algorithm

Each processor p_i has a preferred value v_i

In the beginning, the preferred value is set to the initial value

Distributed Computing Group

The King algorithm: <u>Phase k</u>

Round 1, processor p_i :

- Broadcast preferred value v_i
- Set v_i to the majority of values received

Distributed Computing Group

The King algorithm: Phase k Round 2, king p_k : •Broadcast new preferred value v_k Round 2, process p_i : •If v_i had majority of less than $\frac{n}{2} + f$ then set v_i to v_k

Distributed Computing Group

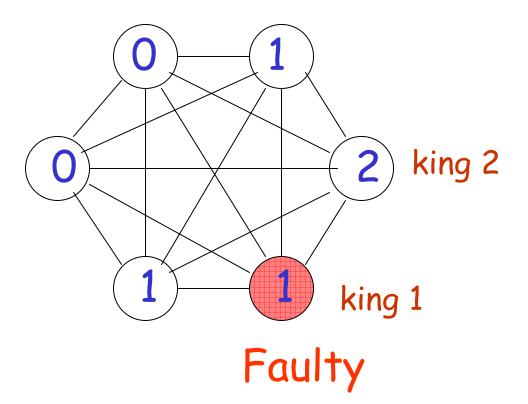
The King algorithm

End of Phase f+1:

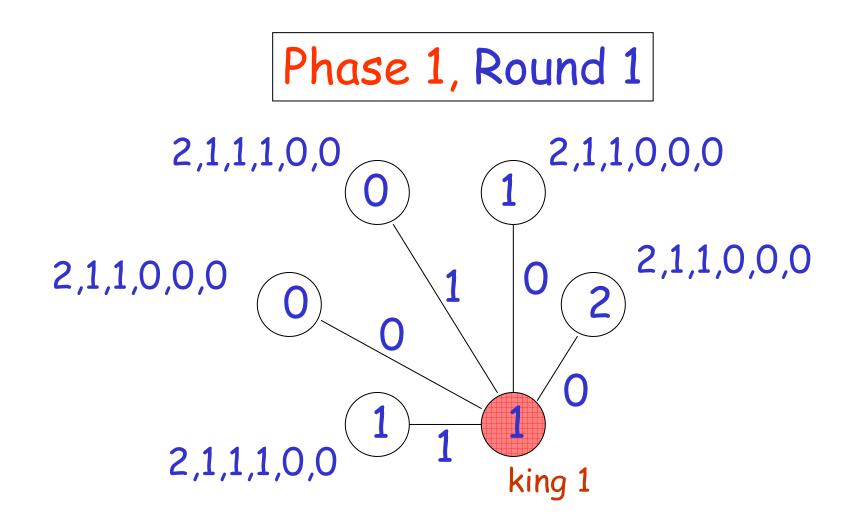
Each process decides on preferred value

Distributed Computing Group

Example: 6 processes, 1 fault

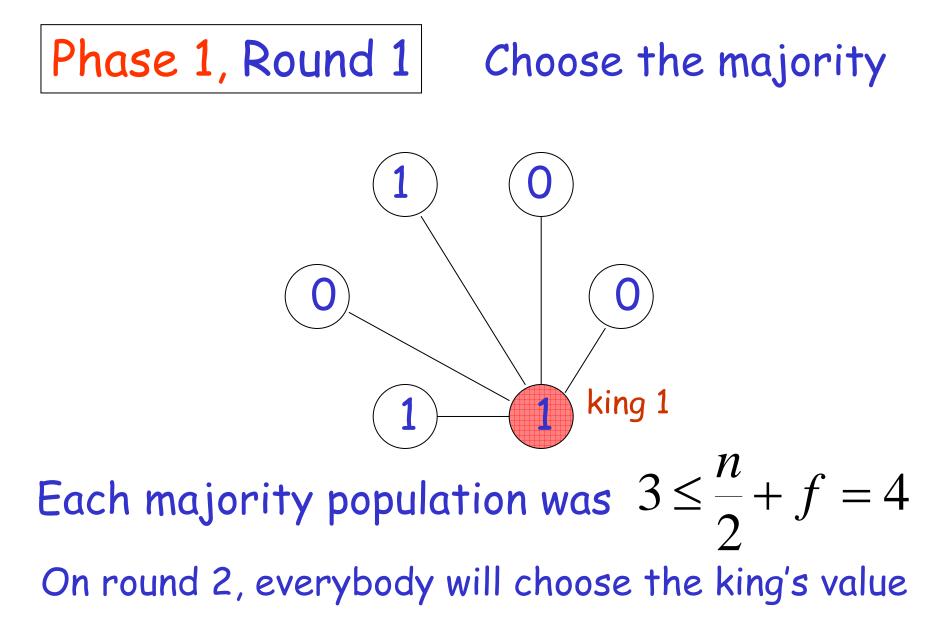


Distributed Computing Group



Everybody broadcasts

Distributed Computing Group



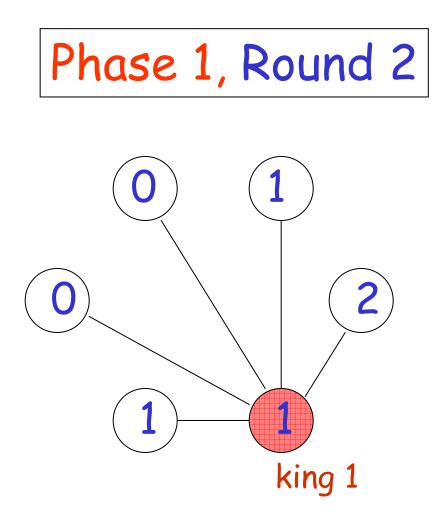
 \bigcirc

Distributed Computing Group

Phase 1, Round 2 T 1 2 king 1

The king broadcasts

Distributed Computing Group

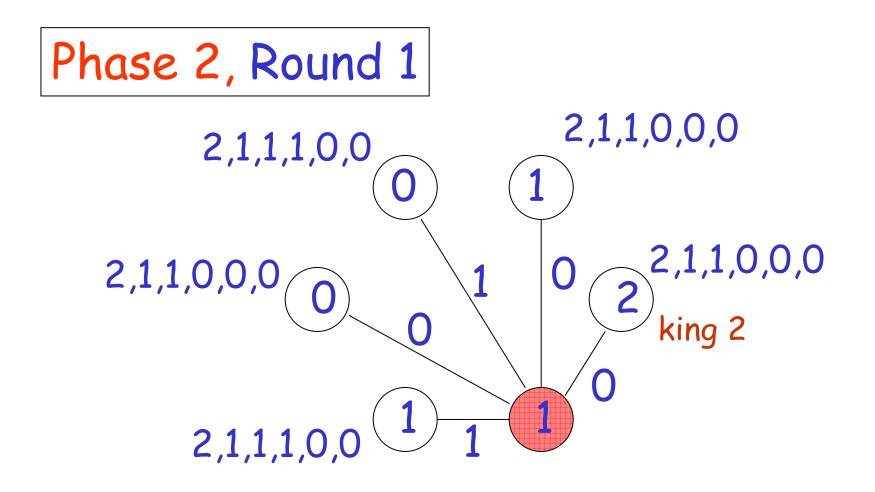


Everybody chooses the king's value

Distributed Computing Group

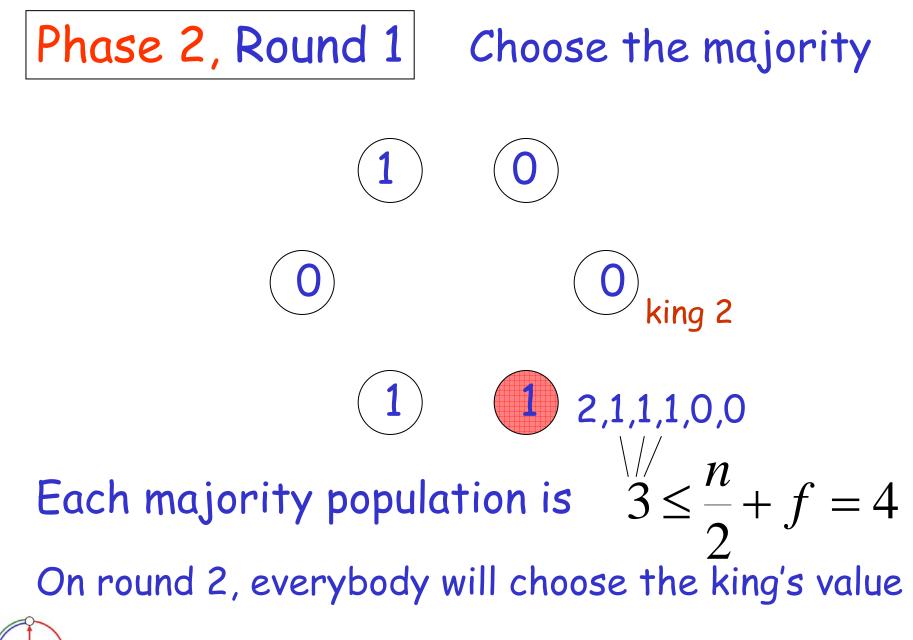
Roger Wattenhofer

200

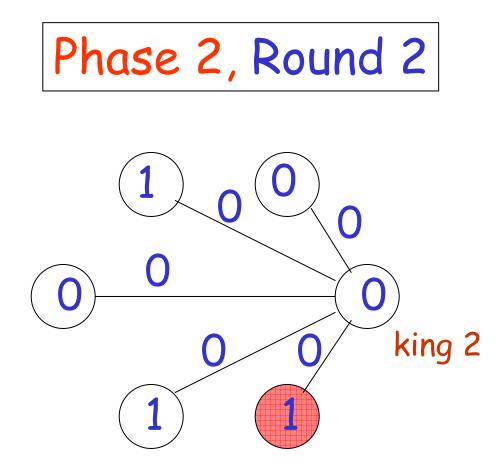


Everybody broadcasts

Distributed Computing Group

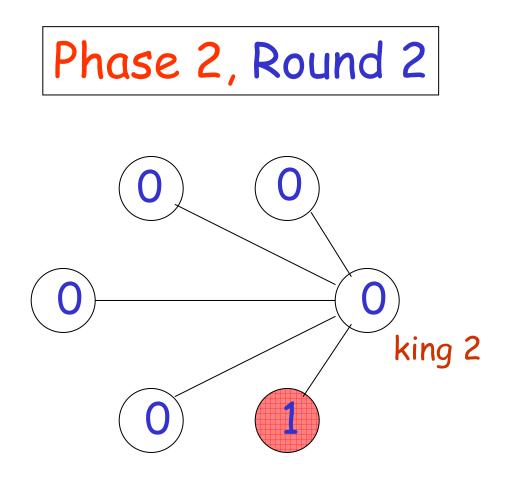


Distributed Computing Group



The king broadcasts

Distributed Computing Group



Everybody chooses the king's value Final decision

Distributed Computing Group

Invariant / Conclusion

In the round where the king is non-faulty, everybody will choose the king's value ${f v}$

After that round, the majority will remain value \mathbf{v} with a majority population which is at least $n-f > \frac{n}{2} + f$

Distributed Computing Group

Roger Wattenhofer

205

Exponential Algorithm

solves consensus with *n* processes and *f* failures where *f* < *n*/3 in *f*+1 "phases"

But: uses messages with exponential size

Distributed Computing Group

Consensus #6 Randomization

- So far we looked at deterministic algorithms only. We have seen that there is no asynchronous algorithm.
- Can one solve consensus if we allow our algorithms to use randomization?

Distributed Computing Group

Yes, we can!

- We tolerate some processes to be faulty (at most f stop failures)
- General idea: Try to push your initial value; if other processes do not follow, try to push one of the suggested values randomly.

Distributed Computing Group

Randomized Algorithm

- At most f stop-failures (assume n > 9f)
- For process p_i with initial input $x \in \{0,1\}$:
- Broadcast Proposal(x, round)
 Wait for n-f Proposal messages.
 If at least n-2f messages have value v, then x := v, else x := undecided.

Distributed Computing Group

Randomized Algorithm

- 4. Broadcast Bid(x, round).
- 5. Wait for n-f Bid messages.
- 6. If at least n-2f messages have value v, then decide on v.
 - If at least n-4f messages have value v, then x := v.
 - Else choose x randomly $(p(0) = p(1) = \frac{1}{2})$
- 7. Go back to step 1 (next round).

Distributed Computing Group

What do we want?

- Agreement: Non-faulty processes decide non-conflicting values.
- Validity: If all have the same input, that input should be decided.
- Termination: All non-faulty processes eventually decide.

Distributed Computing Group

All processes have same input

- Then everybody will agree on that input in the very first round already.
- Validity follows immediately
- If not, then any decision is fine!
- Validity follows too (in any case).

Distributed Computing Group

What if process i decides in step 6a (Agreement)...?

 Then process i has received at least n-2f Bid messages with value v.

 Then everybody else has received at least n-3f messages will value v, and thus everybody will propose v next round, and thus decide v.

Distributed Computing Group

What about termination?

- We have seen that if a process decides in step 6a, all others will follow in the next round at latest.
- If in step 6b/c, all processes choose the same value (with probability 2⁻ⁿ), all give the same bid, and terminate in the next round.

Distributed Computing Group

Byzantine & Asynchronous?

- The presented protocol is in fact already working in the Byzantine case!
- (That's why we have "n-4f" in the protocol and "n-3f" in the proof.)

Distributed Computing Group

But termination is awfully slow...

- In expectation, about the same number of processes will choose 1 or 0 in step 6c.
- The probability that a strong majority of processes will propose the same value in the next round is exponentially small.

Distributed Computing Group

Naïve Approach

- In step 6c, all processes should choose the same value! (Reason: validity is not a problem anymore since for sure there exist 0's and 1's and therefore we can savely always propose the same...)
- Replace 6c by: "choose x := 1"!

Distributed Computing Group

Problem of Naïve Approach

- What if a majority of processes bid 0 in round 4? Then some of the processes might go into 6b (setting x=0), others into 6c (setting x=1). Then the picture is again not clear in the next round
- Anyway: Approach 1 is deterministic!
 We know (#2) that this doesn't work!

Distributed Computing Group

Shared/Common Coin

- The idea is to replace 6c with a subroutine where all the processes compute a so-called shared (a.k.a. common, "global") coin.
- A shared coin is a random binary variable that is 0 with constant probability, and 1 with constant probability.

Distributed Computing Group

Shared Coin Algorithm

Code for process i:

- Set local coin c_i := 0 with probability 1/n, else (w.h.p.) c_i := 1.
- 2. Use reliable broadcast* to tell all processes about your local coin c_i.
- 3. If you receive a local coin c_j of another process j, add j to the set coins_i, and memorize c_j .

Distributed Computing Group

Shared Coin Algorithm

- If you have seen exactly n-f local coins then copy the set coins_i into the set seen_i (but do not stop extending coins_i if you see new coins)
- 5. Use reliable broadcast to tell all processes about your set seen_i.

Distributed Computing Group

Shared Coin Algorithm

- 6. If you have seen at least n-f seen_j which satisfy seen_j \subseteq coins_i, then terminate with:
- 7. If you have seen at least a single local coin with c_j = 0 then return 0, else (if you have seen 1-coins only) return 1.

Distributed Computing Group

Why does the shared coin algorithm terminate?

- For simplicity we look at f crash failures only, assuming that 3f < n.
- Since at most f processes crash you will see at least n-f local coins in step 4.
- For the same reason you will see at least n-f seen sets in step 6.
- Since we used reliable broadcast, you will eventually see all the coins that are in the other's sets.

Distributed Computing Group

Why does the algorithm work?

- Looks like magic at first...
- General idea: a third of the local coins will be seen by all the processes! If there is a "O" among them we're done. If not, chances are high that there is no "O" at all.
- Proof details: next few slides...

Distributed Computing Group

Proof: Matrix

- Let i be the first process to terminate (reach step 7)
- For process i we draw a matrix of all the sets seen; (columns) and local coins c_k (rows) process i has seen.
- We draw an "X" in the matrix if and only if set seen, includes coin c_k .

Distributed Computing Group

Proof: Matrix (f=2, n=7, n-f=5)

	seen ₁	seen ₃	seen ₅	seen ₆	seen7
coin ₁	X	X	X	X	X
coin ₂			X	X	X
coin ₃	X	X	X	X	X
coin ₅	X	X	X		X
coin ₆	X	X	X	X	
coin ₇	×	×		X	X

 Note that there are at least (n-f)² X's in this matrix (≥n-f rows, n-f X's in each row).

Distributed Computing Group

Proof: Matrix

- Lemma 1: There are at least f+1 rows where at least f+1 cells have an "X".
- Proof: Suppose by contradiction that this is not the case. Then the number of X is bounded from above by f.(n-f) + (n-f).f, ...

Few rows have many X

All other rows have at most f \boldsymbol{X}

Proof: Matrix $|X| \leq 2f(n-f)$ we use $3f < n \rightarrow 2f < n-f$ < $(n-f)^{2}$ but we know that $|X| \ge (n-f)^2$ $\leq |\mathbf{X}|$. A contradiction!

Distributed Computing Group

Proof: The set W

- Let W be the set of local coins where the rows in the matrix have more than f X's.
- Lemma 2: All local coins in the set W are seen by all processes (that terminate).
- Proof: Let w ∈ W be such a local coin. With Lemma 1 we know that w is at least in f+1 seen sets. Since each process must see at least n-f seen sets (before terminating), these sets overlap, and w will be seen.

Distributed Computing Group

Proof: End game

- Theorem: With constant probability all processes decide 0, with constant probability all processes decide 1.
- Proof: With probability $(1-1/n)^n \approx 1/e$ all processes choose $c_i = 1$, and therefore all will decide 1.
- With probability 1-((1-1/n)^{|W|}) there is at least one 0 in the set W. Since $|W| \approx n/3$ this probability is constant. Using Lemma 2 we know that in this case all processes will decide 0.

Distributed Computing Group

Back to Randomized Consensus

- Plugging the shared coin back into the randomized consensus algorithm is all we needed.
- If some of the processes go into 6b and, the others still have a constant chance that they will agree on the same shared coin.
- The randomized consensus protocol finishes in a constant number of rounds!

Distributed Computing Group

Improvements

- For crash-failures, there is a constant expected time algorithm which tolerates f failures with 2f < n.
- For Byzantine failures, there is a constant expected time algorithm which tolerates f failures with 3f < n.
- Similar algorithms have been proposed for the shared memory model.

Distributed Computing Group

Databases et al.

- Consensus plays a vital role in many distributed systems, most notably in distributed databases:
 - Two-Phase-Commit (2PC)
 - Three-Phase-Commit (3PC)

Distributed Computing Group

Summary

- We have solved consensus in a variety of models; particularly we have seen
 - algorithms
 - wrong algorithms
 - lower bounds
 - impossibility results
 - reductions
 - etc.

Distributed Computing Group

Credits

- The impossibility result (#2) is from Fischer, Lynch, Patterson, 1985.
- The hierarchy (#3) is from Herlihy, 1991.
- The synchronous studies (#4) are from Dolev and Strong, 1983, and others.
- The Byzantine studies (#5) are from Lamport, Shostak, Pease, 1980ff., and others.
- The first randomized algorithm (#6) is from Ben-Or, 1983.

Distributed Computing Group

