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Concurrent Computation
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Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)
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Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous delays
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Road Map

• We are going to focus on principles
– Start with idealized models
– Look at a simplistic problem
– Emphasize correctness over pragmatism
– “Correctness may be theoretical, but 

incorrectness has practical impact”
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You may ask yourself …

I’m no theory weenie - why all 
the theorems and proofs?
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Fundamentalism

• Distributed & concurrent systems are 
hard
– Failures
– Concurrency

• Easier to go from theory to practice 
than vice-versa
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The Two Generals

Red army wins
If both sides 

attack together
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Communications

Red armies send 
messengers across valley
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Communications

Messengers
don’t always make it
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Your Mission

Design a protocol to ensure 
that red armies attack 

simultaneously
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Real World Generals

Date: Wed, 11 Dec 2002 12:33:58 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Vorlesung
Sie machen jetzt am Freitag, 08:15 die Vorlesung 
Verteilte Systeme, wie vereinbart. OK? (Ich bin 
jedenfalls am Freitag auch gar nicht da.) Ich 
uebernehme das dann wieder nach den Weihnachtsferien. 
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Real World Generals

Date: Mi 11.12.2002 12:34
From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
To: Friedemann Mattern <mattern@inf.ethz.ch>
Subject: Re: Vorlesung
OK. Aber ich gehe nur, wenn sie diese Email nochmals 
bestaetigen... :-)
Gruesse -- Roger Wattenhofer
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Real World Generals

Date: Wed, 11 Dec 2002 12:53:37 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Naechste Runde: Re: Vorlesung ...
Das dachte ich mir fast. Ich bin Praktiker und mache 
es schlauer: Ich gehe nicht, unabhaengig davon, ob Sie 
diese email bestaetigen (beziehungsweise rechtzeitig 
erhalten). (:-)
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Real World Generals

Date: Mi 11.12.2002 13:01
From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
To: Friedemann Mattern <mattern@inf.ethz.ch>
Subject: Re: Naechste Runde: Re: Vorlesung ...
Ich glaube, jetzt sind wir so weit, dass ich diese 
Emails in der Vorlesung auflegen werde...
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Real World Generals

Date: Wed, 11 Dec 2002 18:55:08 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Re: Naechste Runde: Re: Vorlesung ...
Kein Problem. (Hauptsache es kommt raus, dass der 
Prakiker am Ende der schlauere ist... Und der 
Theoretiker entweder heute noch auf das allerletzte 
Ack wartet oder wissend das das ja gar nicht gehen 
kann alles gleich von vornherein bleiben laesst...
(:-))

Distributed Computing Group                   Roger Wattenhofer 18

Theorem

There is no non-trivial 
protocol that ensures the red 
armies attacks simultaneously
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Proof Strategy

• Assume a protocol exists
• Reason about its properties
• Derive a contradiction
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Proof

1. Consider the protocol that sends 
fewest messages

2. It still works if last message lost
3. So just don’t send it

– Messengers’ union happy
4. But now we have a shorter protocol!
5. Contradicting #1
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Fundamental Limitation

• Need an unbounded number of 
messages

• Or possible that no attack takes 
place
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You May Find Yourself …

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Yes, Ma’am, right away!Yes, Ma’am, right away!
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You might say

I want a real-time dot-net 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Yes, Ma’am, right away!

Advantage:
•Buys time to find another job
•No one expects software to work 
anyway

Advantage:
•Buys time to find another job
•No one expects software to work 
anyway
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You might say

I want a real-time dot-net 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Yes, Ma’am, right away!

Advantage:
•Buys time to find another job
•No one expects software to work 
anyway

Disadvantage:
•You’re doomed
•Without this course, you may 
not even know you’re doomed

Disadvantage:
•You’re doomed
•Without this course, you may 
not even know you’re doomed
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser.

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser.
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser.

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser.

Advantage:
•No need to take course

Advantage:
•No need to take course
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser

Advantage:
•No need to take course

Advantage:
•No need to take course

Disadvantage:
•Boss fires you, hires 
University St. Gallen graduate

Disadvantage:
•Boss fires you, hires 
University St. Gallen graduate
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Using skills honed in course, I 
can avert certain disaster!

•Rethink problem spec, or
•Weaken requirements, or
•Build on different platform

Using skills honed in course, I 
can avert certain disaster!

•Rethink problem spec, or
•Weaken requirements, or
•Build on different platform
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Consensus: Each Thread has a 
Private Input

32 19
21

Distributed Computing Group                   Roger Wattenhofer 31

They Communicate
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They Agree on Some Thread’s 
Input

1919 19
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Consensus is important

• With consensus, you can implement 
anything you can imagine…

• Examples: with consensus you can 
decide on a leader, implement mutual 
exclusion, or solve the two generals 
problem
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You gonna learn

• In some models, consensus is possible
• In some other models, it is not

• Goal of this and next lecture: to learn 
whether for a given model consensus 
is possible or not … and prove it!
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Consensus #1
shared memory

• n processors, with n > 1
• Processors can atomically read or 

write (not both) a shared memory cell
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Protocol (Algorithm?)

• There is a designated memory cell c.
• Initially c is in a special state “?”
• Processor 1 writes its value v1 into c, 

then decides on v1.
• A processor j (j not 1) reads c until j 

reads something else than “?”, and 
then decides on that.
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Unexpected Delay

Swapped outback at

??? ???
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Heterogeneous Architectures 

??? ???

PentiumPentium
286

yawn

(1)
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Fault-Tolerance 

??? ???
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Consensus #2
wait-free shared memory

• n processors, with n > 1
• Processors can atomically read or 

write (not both) a shared memory cell
• Processors might crash (halt)
• Wait-free implementation… huh?
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Wait-Free Implementation

• Every process (method call) 
completes in a finite number of steps

• Implies no mutual exclusion
• We assume that we have wait-free 

atomic registers (that is, reads and 
writes to same register do not 
overlap)
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A wait-free algorithm…

• There is a cell c, initially c=“?”
• Every processor i does the following

r = Read(c);

if (r == “?”) then 

Write(c, vi); decide vi;

else 

decide r;

Distributed Computing Group                   Roger Wattenhofer 43

Is the algorithm correct?

time

cell c32 17
?
?
?

32
1732! 17!
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Theorem:
No wait-free consensus

??? ???
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Proof Strategy

• Make it simple
– n = 2, binary input

• Assume that there is a protocol
• Reason about the properties of any 

such protocol
• Derive a contradiction
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Wait-Free Computation

• Either A or B “moves”
• Moving means

– Register read
– Register write

A moves B moves
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The Two-Move Tree
Initial 
state

Final 
states
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Decision Values

1 0 0 1 1 1
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Bivalent: Both Possible

1 1 1

bivalent

1 0 0
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Univalent: Single Value Possible

1 1 1

univalent

1 0 0
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1-valent: Only 1 Possible

0 1 1 1

1-valent

01
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0-valent: Only 0 possible

1 1 1

0-valent

1 0 0
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Summary

• Wait-free computation is a tree
• Bivalent system states

– Outcome not fixed
• Univalent states

– Outcome is fixed
– Maybe not “known” yet
– 1-Valent and 0-Valent states
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Claim

Some initial system state is bivalent

(The outcome is not always fixed from 
the start.)

Distributed Computing Group                   Roger Wattenhofer 55

A 0-Valent Initial State

• All executions lead to decision of 0

0 0
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A 0-Valent Initial State

• Solo execution by A also decides 0

0
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A 1-Valent Initial State

• All executions lead to decision of 1

1 1
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A 1-Valent Initial State

• Solo execution by B also decides 1

1
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A Univalent Initial State?

• Can all executions lead to the same 
decision?

0 1
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State is Bivalent

• Solo execution by A
must decide 0

• Solo execution by B 
must decide 1

0 1
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0-valent

Critical States

1-valent

critical
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Critical States

• Starting from a bivalent initial state
• The protocol can reach a critical 

state
– Otherwise we could stay bivalent 

forever
– And the protocol is not wait-free
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From a Critical State

c

If A goes first, 
protocol decides 0

If B goes first, 
protocol decides 1

0-valent 1-valent
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Model Dependency

• So far, memory-independent!
• True for

– Registers
– Message-passing
– Carrier pigeons
– Any kind of asynchronous computation
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What are the Threads Doing?

• Reads and/or writes
• To same/different registers
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Possible Interactions

????y.write()

????x.write()

????y.read()

????x.read()

y.write()x.write()y.read()x.read()
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Reading Registers

A runs solo, 
decides 0

B reads x

1

0
A runs solo, 
decides 1

c

States look 
the same to A
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Possible Interactions

??nonoy.write()

??nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Writing Distinct Registers

A writes y B writes x

10

c

The song remains the same

A writes yB writes x
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Possible Interactions

?nononoy.write()

no?nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Writing Same Registers

States look 
the same to A

A writes x B writes x

1
A runs solo, 
decides 1

c

0

A runs solo, 
decides 0 A writes x
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That’s All, Folks!

nonononoy.write()

nonononox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Theorem

• It is impossible to solve consensus 
using read/write atomic registers
– Assume protocol exists
– It has a bivalent initial state
– Must be able to reach a critical state
– Case analysis of interactions

• Reads vs others
• Writes vs writes
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What Does Consensus have to 
do with Distributed Systems?
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We want to build a 
Concurrent FIFO Queue
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With Multiple Dequeuers!
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A Consensus Protocol

2-element array

FIFO Queue 
with red and 
black balls

8

Coveted red ball Dreaded black ball
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Protocol: Write Value to Array

0 1
0

(3)
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0

Protocol: Take Next Item from 
Queue

0 1
8
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0 1

Protocol: Take Next Item from 
Queue

I got the 
coveted red ball, 
so I will decide 

my value

I got the dreaded 
black ball, so I will 
decide the other’s 
value from the 

array
8
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Why does this Work?

• If one thread gets the red ball
• Then the other gets the black ball
• Winner can take her own value
• Loser can find winner’s value in array

– Because threads write array
before dequeuing from queue
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Implication

• We can solve 2-thread consensus 
using only
– A two-dequeuer queue
– Atomic registers
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Implications

• Assume there exists
– A queue implementation from atomic registers

• Given
– A consensus protocol from queue and registers

• Substitution yields
– A wait-free consensus protocol from atomic 

registers

cont
radi

ction
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Corollary

• It is impossible to implement a two-
dequeuer wait-free FIFO queue with 
read/write shared memory.

• This was a proof by reduction; 
important beyond NP-completeness…



Distributed Computing Group                   Roger Wattenhofer 85

Consensus #3
read-modify-write shared mem.
• n processors, with n > 1
• Wait-free implementation
• Processors can atomically read and

write a shared memory cell in one 
atomic step: the value written can 
depend on the value read

• We call this a RMW register
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Protocol

• There is a cell c, initially c=“?”
• Every processor i does the following

RMW(c), with

if (c == “?”) then 

Write(c, vi); decide vi;

else 

decide c;

atomic step
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Discussion

• Protocol works correctly
– One processor accesses c as the first; 

this processor will determine decision
• Protocol is wait-free
• RMW is quite a strong primitive

– Can we achieve the same with a weaker 
primitive?

Distributed Computing Group                   Roger Wattenhofer 88

Read-Modify-Write 
more formally

• Method takes 2 arguments:
– Variable x
– Function f

• Method call:
– Returns value of x
– Replaces x with f(x)
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public abstract class RMW {
private int value;

public void rmw(function f) {
int prior  = this.value;
this.value = f(this.value);
return prior;

}

}

Read-Modify-Write

Return prior value

Apply function
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public abstract class RMW {
private int value;

public void read() {
int prior  = this.value;
this.value = this.value;
return prior;

}

}

Example: Read

identity function
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public abstract class RMW {
private int value;

public void TAS() {
int prior  = this.value;
this.value = 1;
return prior;

}

}

Example: test&set

constant function
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public abstract class RMW {
private int value;

public void fai() {
int prior  = this.value;
this.value = this.value+1;
return prior;

}

}

Example: fetch&inc

increment function
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public abstract class RMW {
private int value;

public void faa(int x) {
int prior  = this.value;
this.value = this.value+x;
return prior;

}

}

Example: fetch&add

addition function
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public abstract class RMW {
private int value;

public void swap(int x) {
int prior  = this.value;
this.value = x;
return prior;

}

}

Example: swap

constant function
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public abstract class RMW {
private int value;

public void CAS(int old, int new) {
int prior = this.value;
if (this.value == old)

this.value = new;
return prior;

}

}

Example: compare&swap

complex function
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“Non-trivial” RMW

• Not simply read
• But

– test&set, fetch&inc, fetch&add, 
swap, compare&swap, general RMW

• Definition: A RMW is non-trivial if 
there exists a value v such that v ≠
f(v)
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Consensus Numbers (Herlihy)

• An object has consensus number n
– If it can be used

• Together with atomic read/write registers
– To implement n-thread consensus

• But not (n+1)-thread consensus
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Consensus Numbers

• Theorem
– Atomic read/write registers have 

consensus number 1

• Proof
– Works with 1 process
– We have shown impossibility with 2
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Consensus Numbers

• Consensus numbers are a useful way 
of measuring synchronization power

• Theorem
– If  you can implement X from Y
– And X has consensus number c
– Then Y has consensus number at least c
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Synchronization Speed Limit

• Conversely
– If X has consensus number c
– And Y has consensus number d < c
– Then there is no way to construct a 

wait-free implementation of X by Y
• This theorem will be very useful

– Unforeseen practical implications!
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Theorem

• Any non-trivial RMW object has 
consensus number at least 2

• Implies no wait-free implementation 
of RMW registers from read/write 
registers

• Hardware RMW instructions not just 
a convenience
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Proof
public class RMWConsensusFor2

implements Consensus {
private RMW r;

public Object decide() {
int i = Thread.myIndex();
if (r.rmw(f) == v)

return this.announce[i];
else

return this.announce[1-i];    
}}

Initialized to v

Am I first?

Yes, return 
my input

No, return 
other’s input
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Proof

• We have displayed
– A two-thread consensus protocol
– Using any non-trivial RMW object

Distributed Computing Group                   Roger Wattenhofer 104

Interfering RMW

• Let F be a set of functions such that 
for all fi and fj, either
– They commute: fi(fj(x))=fj(fi(x))
– They overwrite: fi(fj(x))=fi(x)

• Claim: Any such set of RMW objects 
has consensus number exactly 2
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Examples

• Test-and-Set
– Overwrite

• Swap
– Overwrite

• Fetch-and-inc
– Commute
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Meanwhile Back at the Critical 
State

c

0-valent 1-valent

A about to 
apply fA

B about to 
apply fB
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Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1
C runs solo C runs solo

1-valent
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Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1
C runs solo C runs solo

1-valent

These states look the same to CThese states look the same to C
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Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent
Distributed Computing Group                   Roger Wattenhofer 110

Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent

These states look the same to CThese states look the same to C
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Impact

• Many early machines used these 
“weak” RMW instructions
– Test-and-set (IBM 360)
– Fetch-and-add (NYU Ultracomputer)
– Swap

• We now understand their limitations
– But why do we want consensus anyway?
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public class RMWConsensus
implements Consensus {

private RMW r;

public Object decide() {
int i = Thread.myIndex();
int j = r.CAS(-1,i);
if (j == -1)

return this.announce[i];
else

return this.announce[j];    
}}

CAS has Unbounded 
Consensus NumberInitialized to -1

Am I first?

Yes, return 
my input

No, return 
other’s input
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The Consensus Hierarchy

1 Read/Write Registers, …

2 T&S, F&I, Swap, …

∞ CAS, …

.

.

.
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Consensus #4
Synchronous Systems

• In real systems, one can sometimes 
tell if a processor had crashed
– Timeouts
– Broken TCP connections

• Can one solve consensus at least in 
synchronous systems?
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Communication Model

• Complete graph
• Synchronous

1p

2p

3p

4p5p
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1p

2p

3p

4p5p

a
a

aa

Send a message to all processors 
in one round: Broadcast
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At the end of the round:
everybody receives a

1p

2p

3p

4p5p

a

a

a

a
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1p

2p

3p

4p5p

a

a

aa
b

b

b

b

Broadcast: Two or more processes 
can broadcast in the same round
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1p

2p

3p

4p5p

a,b

a

b
a,b

a,b

At end of round...
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Crash Failures

Faulty 
processor 1p

2p

3p

4p5p

a
a

aa



Distributed Computing Group                   Roger Wattenhofer 121

1p

2p

3p

4p5p

a

a

Some of the messages are lost,
they are never received

Faulty 
processor
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1p

2p

3p

4p5p

a

a

Effect

Faulty 
processor
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Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

3p 3p

After a failure, the process disappears 
from the network
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Consensus: 
Everybody has an initial value

0

1

2 3

4

Start
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3

3

3 3

3

Finish

Everybody must decide on the 
same value
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1

1

1 1

1

Start

If everybody starts with the same value
they must decide on that value

Finish
1

1

1 1

1

Validity condition:
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A simple algorithm

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

(only one round is needed)
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0

1

2 3

4

Start
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0

1

2 3

4

Broadcast values
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4
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0

0

0 0

0

Decide on minimum

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4
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0

0

0 0

0

Finish
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This algorithm satisfies the validity condition

1

1

1 1

1

Start Finish
1

1

1 1

1

If everybody starts with the same initial value,
everybody sticks to that value (minimum)
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Consensus with Crash Failures

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

The simple algorithm doesn’t work
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0

1

2 3

4

Start

fail

The failed processor doesn’t 
broadcast its value to all processors

0

0
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0

1

2 3

4
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Broadcasted values
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0

0

1 0

1
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Decide on minimum
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0

0

1 0

1

fail

Finish - No Consensus!
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If an algorithm solves consensus for 
f failed processes we say it is 

an f-resilient consensus algorithm
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0

1

4 3

2

Start Finish
1

1

Example: The input and output of a 
3-resilient consensus algorithm
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New validity condition:
all non-faulty processes decide on a value 
that is available initially.

1

1

1 1

1

Start Finish
1

1
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An f-resilient algorithm

Round 1:
Broadcast my value

Round 2 to round f+1:
Broadcast any new received values

End of round f+1:
Decide on the minimum value received
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0

1

2 3

4

Start

Example: f=1 failures, f+1=2 rounds needed
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0

1

2 3

4

Round 1

0

0
fail

Example: f=1 failures, f+1 = 2 rounds needed

Broadcast all values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

(new values)
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Example: f=1 failures, f+1 = 2 rounds needed

Round 2 Broadcast all new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
1

2 3

4
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Example: f=1 failures, f+1 = 2 rounds needed

Finish Decide on minimum value

0

0 0

0
0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
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0

1

2 3

4

Start

Example: f=2 failures, f+1 = 3 rounds needed

Example of execution with 2 failures
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0

1

2 3

4

Round 1

0

Failure 1

Broadcast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example: f=2 failures, f+1 = 3 rounds needed
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0

1

2 3

4

Round 2

Failure 1

Broadcast new values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed



Distributed Computing Group                   Roger Wattenhofer 149

0

1

2 3

4

Round 3

Failure 1

Broadcast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed
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0

0

0 3

0

Finish

Failure 1

Decide on the minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed
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Example:
5 failures,
6 rounds

1 2

No failure

3 4 5 6Round

If there are f failures and f+1 rounds then 
there is a round with no failed process
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• Every (non faulty) process knows 
about all the values of all the other 
participating processes

•This knowledge doesn’t change until
the end of the algorithm

At the end of the
round with no failure:
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Everybody would decide on the same value

However, as we don’t know the exact 
position of this round, 

we have to let the algorithm execute 
for f+1 rounds 

Therefore, at the end of the
round with no failure:
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when all processes start with the same
input value then the consensus is that value

This holds, since the value decided from
each process is some input value

Validity of algorithm:
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A Lower Bound

Any f-resilient consensus algorithm
requires at least f+1 rounds

Theorem:
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Proof sketch:

Assume for contradiction that f 
or less rounds are enough

Worst case scenario:

There is a process that fails in 
each round
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Round

a

1
before process       
fails, it sends its 
value a to only one 
process 

ip

kp

ip

kp

Worst case scenario
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Round

a

1
before process       
fails, it sends 
value a to only one 
process 

mp

kp

kp

mp

Worst case scenario

2
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Round 1

fp

Worst case scenario

2

………

a np

f3
At the end 
of round f
only one 
process
knows 
about 
value a

np
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Round 1

Worst case scenario

2

………

f3
Process         
may decide 
on a, and all 
other 
processes 
may decide 
on another 
value (b)

np

npa

b

decide
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Round 1

Worst case scenario

2

………

f3

npa

b

decide
Therefore f 
rounds are 
not enough
At least f+1 
rounds are 
needed
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Consensus #5
Byzantine Failures

Faulty 
processor 1p

2p

3p

4p5p

a
b

ac

Different processes receive different values
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1p

2p

3p

4p5p

a

a

A Byzantine process can behave like a 
Crashed-failed process 

Some messages may be lost

Faulty 
processor
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Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

After failure the process continues
functioning in the network

3p 3p

Failure

1p

2p

4p

5p

Round
6

3p
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Consensus with Byzantine 
Failures

solves consensus for f failed processes 

f-resilient consensus algorithm:
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The input and output of 
a 1-resilient consensus algorithm

0

1

4 3

2

Start Finish
3

3

Example:

3 3
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Validity condition:
if all non-faulty processes start with
the same value then all non-faulty processes
decide on that value

1

1

1 1

1

Start Finish
1

1

1 1
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Any f-resilient consensus 
algorithm requires at least
f+1 rounds

Theorem:

follows from the crash failure 
lower bound 

Proof:

Lower bound on number of 
rounds
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There is no f-resilient algorithm 

for n processes, where f ≥ n/3

Theorem:

Plan: First we prove the 3 process case,
and then the general case

Upper bound on failed 
processes
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There is no 1-resilient algorithm
for 3 processes 

Lemma:

Proof: Assume for contradiction that 
there is a 1-resilient algorithm 
for 3 processes

The 3 processes case
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0p

1p 2p

A(0)

B(1) C(0)

Initial value

Local
algorithm
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0p

1p 2p

1

1 1

Decision value
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

Assume 6 processes are in a ring

(just for fun)
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

B(1)
1p

0p
A(1)

2p
faulty

C(1)

C(0)Processes think they are in 
a triangle
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

1
1p

0p
1

2p
faulty

(validity condition)
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3p

4p

2p
A(0) C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
C(0)

B(0)

0p
A(0)

A(1)

faulty

B(1)
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
0

0

0p
faulty

(validity condition)
Distributed Computing Group                   Roger Wattenhofer 178

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0pA(1)C(0)

1p
B(1)B(0)

faulty
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0p10

1p faulty
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2p 0p
10

1p faulty

Impossibility
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There is no algorithm that solves
consensus for 3 processes
in which 1 is a byzantine process

Conclusion
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Assume for contradiction that
there is an f -resilient algorithm A
for n processes, where f ≥ n/3

We will use algorithm A to solve consensus
for 3 processes and 1 failure (which is 
impossible, thus we have a contradiction) 

The n processes case

Distributed Computing Group                   Roger Wattenhofer 183

1p

0 1

2p np

1

… …

2 21 0 00 1 1start

failures

1p

1 1

2p np… …

1 1 11 1finish

Algorithm A
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3
1 npp Κ

1q

2q3q
3
21

3
nn pp Κ

+nn pp Κ
1

3
2 +

Each process q simulates algorithm A

on n/3 of “p” processes
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3
1 npp Κ1q

2q3q
3
21

3
nn pp Κ

+nn pp Κ
1

3
2 +

fails

When a single q is byzantine, then n/3 of 

the “p” processes are byzantine too.
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3
1 npp Κ

1q

2q3q
3
21

3
nn pp Κ

+nn pp Κ
1

3
2 +

fails

algorithm A tolerates n/3 failures 

Finish of 
algorithm A

k
kk

k kk

k

k

kk
kk

k

all decide k
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1q

2q3q

fails

Final decision 
k

k

We reached consensus with 1 failure
Impossible!!!
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There is no f-resilient algorithm

for n processes with f ≥ n/3

Conclusion
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The King Algorithm

solves consensus with n processes and
f failures where f < n/4 in f +1 “phases”

There are f+1 phases
Each phase has two rounds
In each phase there is a different king
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Example: 12 processes, 2 faults, 3 kings

0 1 1 2 21 0 00 1 1 0

initial values

Faulty
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Example: 12 processes, 2 faults, 3 kings

Remark: There is a king that is not faulty

0 1 1 2 21 0 00 1 1 0

initial values

King 1 King 2 King 3
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Each processor      has a preferred valueip iv

In the beginning, the preferred value 

is set to the initial value

The King algorithm
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Round 1, processor      :ip

• Broadcast preferred value

• Set        to the majority of 
values received

iv
iv

The King algorithm: Phase k
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•If       had majority of less than           

Round 2, king        :kp

•Broadcast new preferred value  

Round 2, process        :ip
kv

iv fn +
2

then set         to iv kv

The King algorithm: Phase k
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End of Phase f+1:

Each process decides on preferred value

The King algorithm
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Example: 6 processes, 1 fault

Faulty

0 1

king 1

king 20

11

2
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0 1

king 1

0

11

2

Phase 1, Round 1

2,1,1,0,0,0 

2,1,1,1,0,0 

2,1,1,1,0,0 2,1,1,0,0,0 

2,1,1,0,0,0 

0

1

1 0

0

Everybody broadcasts
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1 0

king 1

0

11

0

Phase 1, Round 1 Choose the majority

Each majority population was 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value
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Phase 1, Round 2

1 0

0

11

0
0

1

0 1

2

king 1

The king broadcasts
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Phase 1, Round 2

0 1

0

11

2

king 1

Everybody chooses the king’s value



Distributed Computing Group                   Roger Wattenhofer 201

0 1

king 2
0

11

2

Phase 2, Round 1

2,1,1,0,0,0 

2,1,1,1,0,0 

2,1,1,1,0,0 2,1,1,0,0,0 

2,1,1,0,0,0 

0

1

1 0

0

Everybody broadcasts
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1 0

0

11

0

Phase 2, Round 1 Choose the majority

Each majority population is 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value

king 2

2,1,1,1,0,0 
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Phase 2, Round 2

1 0

0

11

0

The king broadcasts

king 2

00
0

0 0
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Phase 2, Round 2

0 0

0

10

0
king 2

Everybody chooses the king’s value
Final decision
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In the round where the king is non-faulty, 
everybody will choose the king’s value v

After that round, the majority will 

remain value v with a majority population
which is at least fnfn +>−

2

Invariant / Conclusion
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Exponential Algorithm

solves consensus with n processes and
f failures where f < n/3 in f +1 “phases”

But: uses messages with exponential size
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Consensus #6
Randomization

• So far we looked at deterministic 
algorithms only. We have seen that 
there is no asynchronous algorithm.

• Can one solve consensus if we allow 
our algorithms to use randomization?
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Yes, we can!

• We tolerate some processes to be 
faulty (at most f stop failures)

• General idea: Try to push your initial 
value; if other processes do not 
follow, try to push one of the 
suggested values randomly.
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Randomized Algorithm

• At most f stop-failures (assume n > 9f)
• For process pi with initial input x ∈ {0,1}:

1. Broadcast Proposal(x, round)
2. Wait for n-f Proposal messages. 
3. If at least n-2f messages have value v, 

then x := v, else x := undecided.
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Randomized Algorithm

4. Broadcast Bid(x, round).
5. Wait for n-f Bid messages.
6. If at least n-2f messages have value v, 

then decide on v.
If at least n-4f messages have value v, 

then x := v.
Else choose x randomly (p(0) = p(1) = ½)

7. Go back to step 1 (next round).
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What do we want?

• Agreement: Non-faulty processes 
decide non-conflicting values.

• Validity: If all have the same input, 
that input should be decided.

• Termination: All non-faulty processes 
eventually decide.
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All processes have same input

• Then everybody will agree on that 
input in the very first round already.

• Validity follows immediately

• If not, then any decision is fine! 
• Validity follows too (in any case).
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What if process i decides in 
step 6a (Agreement)…?

• Then process i has received at least 
n-2f Bid messages with value v.

vvv vvvvvvvvvvvvvvvvv www  www

• Then everybody else has received at least n-
3f messages will value v, and thus everybody 
will propose v next round, and thus decide v.
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What about termination?

• We have seen that if a process 
decides in step 6a, all others will 
follow in the next round at latest.

• If in step 6b/c, all processes choose 
the same value (with probability 2-n), 
all give the same bid, and terminate in 
the next round.
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Byzantine & Asynchronous?

• The presented protocol is in fact 
already working in the Byzantine case!

• (That’s why we have “n-4f” in the 
protocol and “n-3f” in the proof.)
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But termination is awfully slow…

• In expectation, about the same 
number of processes will choose 1 or 
0 in step 6c.

• The probability that a strong 
majority of processes will propose 
the same value in the next round is 
exponentially small.
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Naïve Approach

• In step 6c, all processes should 
choose the same value! (Reason: 
validity is not a problem anymore 
since for sure there exist 0’s and 1’s 
and therefore we can savely always 
propose the same…)

• Replace 6c by: “choose x := 1”!
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Problem of Naïve Approach

• What if a majority of processes bid 0 
in round 4? Then some of the 
processes might go into 6b (setting 
x=0), others into 6c (setting x=1). 
Then the picture is again not clear in 
the next round

• Anyway: Approach 1 is deterministic! 
We know (#2) that this doesn’t work!
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Shared/Common Coin

• The idea is to replace 6c with a 
subroutine where all the processes 
compute a so-called shared (a.k.a. 
common, “global”) coin.

• A shared coin is a random binary 
variable that is 0 with constant 
probability,  and 1 with constant 
probability.
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Shared Coin Algorithm

Code for process i:
1. Set local coin ci := 0 with 

probability 1/n, else (w.h.p.) ci := 1.
2. Use reliable broadcast* to tell all 

processes about your local coin ci.
3. If you receive a local coin cj of 

another process j, add j to the set 
coinsi, and memorize cj.
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Shared Coin Algorithm

4. If you have seen exactly n-f local 
coins then copy the set coinsi into 
the set seeni (but do not stop 
extending coinsi if you see new 
coins)

5. Use reliable broadcast to tell all 
processes about your set seeni.
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Shared Coin Algorithm

6. If you have seen at least n-f seenj
which satisfy seenj ⊆ coinsi, then 
terminate with:

7. If you have seen at least a single 
local coin with cj = 0 then return 0, 
else (if you have seen 1-coins only) 
return 1.
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Why does the shared coin 
algorithm terminate?

• For simplicity we look at f crash failures 
only, assuming that 3f < n.

• Since at most f processes crash you will 
see at least n-f local coins in step 4.

• For the same reason you will see at least 
n-f seen sets in step 6.

• Since we used reliable broadcast, you will 
eventually see all the coins that are in the 
other’s sets.
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Why does the algorithm work?

• Looks like magic at first…
• General idea: a third of the local 

coins will be seen by all the 
processes! If there is a “0” among 
them we’re done. If not, chances are 
high that there is no “0” at all.

• Proof details: next few slides…
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Proof: Matrix

• Let i be the first process to 
terminate (reach step 7)

• For process i we draw a matrix of all 
the sets seenj (columns) and local 
coins ck (rows) process i has seen.

• We draw an “X” in the matrix if and 
only if set seeni includes coin ck. 
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Proof: Matrix (f=2, n=7, n-f=5)

XXXXcoin7

XXXXcoin6

XXXXcoin5

XXXXXcoin3

XXXcoin2

XXXXXcoin1

seen7seen6seen5seen3seen1

• Note that there are at least (n-f)2 X’s in 
this matrix (≥n-f rows, n-f X’s in each row).
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Proof: Matrix

• Lemma 1: There are at least f+1 rows 
where at least f+1 cells have an “X”.

• Proof: Suppose by contradiction that 
this is not the case. Then the 
number of X is bounded from above 
by f·(n-f) + (n-f)·f, …

Few rows have many X All other rows have at most f X
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Proof: Matrix

|X| · 2f(n-f)
we use 3f < n 2f < n-f

<  (n-f)2

but we know that |X| ≥ (n-f)2

· |X|. 
A contradiction!
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Proof: The set W
• Let W be the set of local coins where the 

rows in the matrix have more than f X’s.
• Lemma 2: All local coins in the set W are 

seen by all processes (that terminate).
• Proof: Let w ∈ W be such a local coin. 

With Lemma 1 we know that w is at least 
in f+1 seen sets. Since each process must 
see at least n-f seen sets (before 
terminating), these sets overlap, and w 
will be seen.
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Proof: End game
• Theorem: With constant probability all 

processes decide 0, with constant 
probability all processes decide 1.

• Proof: With probability (1-1/n)n ≈ 1/e all 
processes choose ci = 1, and therefore all 
will decide 1.

• With probability 1-((1-1/n)|W|) there is at 
least one 0 in the set W. Since |W| ≈ n/3 
this probability is constant. Using Lemma 
2 we know that in this case all processes 
will decide 0. 
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Back to Randomized Consensus

• Plugging the shared coin back into the
randomized consensus algorithm is all we
needed.

• If some of the processes go into 6b and, 
the others still have a constant chance 
that they will agree on the same shared 
coin. 

• The randomized consensus protocol 
finishes in a constant number of rounds!
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Improvements

• For crash-failures, there is a constant 
expected time algorithm which tolerates f 
failures with 2f < n.

• For Byzantine failures, there is a constant 
expected time algorithm which tolerates f 
failures with 3f < n.

• Similar algorithms have been proposed for 
the shared memory model. 
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Databases et al.

• Consensus plays a vital role in many 
distributed systems, most notably in 
distributed databases:
– Two-Phase-Commit (2PC)
– Three-Phase-Commit (3PC)
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Summary

• We have solved consensus in a variety 
of models; particularly we have seen 
– algorithms
– wrong algorithms
– lower bounds
– impossibility results
– reductions
– etc.
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Questions?


