
Distributed
Computing

Group

The Consensus Problem
Roger Wattenhofer

a lot of kudos to
Maurice Herlihy

and Costas Busch
for some of
their slides

Distributed Computing Group Roger Wattenhofer 2

Sequential Computation

memory

object object

thread

Distributed Computing Group Roger Wattenhofer 3

Concurrent Computation

memory

object object

th
re

ad
s

Distributed Computing Group Roger Wattenhofer 4

Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)

Distributed Computing Group Roger Wattenhofer 5

Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous delays

Distributed Computing Group Roger Wattenhofer 6

Road Map

• We are going to focus on principles
– Start with idealized models
– Look at a simplistic problem
– Emphasize correctness over pragmatism
– “Correctness may be theoretical, but

incorrectness has practical impact”

Distributed Computing Group Roger Wattenhofer 7

You may ask yourself …

I’m no theory weenie - why all
the theorems and proofs?

Distributed Computing Group Roger Wattenhofer 8

Fundamentalism

• Distributed & concurrent systems are
hard
– Failures
– Concurrency

• Easier to go from theory to practice
than vice-versa

Distributed Computing Group Roger Wattenhofer 9

The Two Generals

Red army wins
If both sides

attack together

Distributed Computing Group Roger Wattenhofer 10

Communications

Red armies send
messengers across valley

Distributed Computing Group Roger Wattenhofer 11

Communications

Messengers
don’t always make it

Distributed Computing Group Roger Wattenhofer 12

Your Mission

Design a protocol to ensure
that red armies attack

simultaneously

Distributed Computing Group Roger Wattenhofer 13

Real World Generals

Date: Wed, 11 Dec 2002 12:33:58 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Vorlesung
Sie machen jetzt am Freitag, 08:15 die Vorlesung
Verteilte Systeme, wie vereinbart. OK? (Ich bin
jedenfalls am Freitag auch gar nicht da.) Ich
uebernehme das dann wieder nach den Weihnachtsferien.

Distributed Computing Group Roger Wattenhofer 14

Real World Generals

Date: Mi 11.12.2002 12:34
From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
To: Friedemann Mattern <mattern@inf.ethz.ch>
Subject: Re: Vorlesung
OK. Aber ich gehe nur, wenn sie diese Email nochmals
bestaetigen... :-)
Gruesse -- Roger Wattenhofer

Distributed Computing Group Roger Wattenhofer 15

Real World Generals

Date: Wed, 11 Dec 2002 12:53:37 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Naechste Runde: Re: Vorlesung ...
Das dachte ich mir fast. Ich bin Praktiker und mache
es schlauer: Ich gehe nicht, unabhaengig davon, ob Sie
diese email bestaetigen (beziehungsweise rechtzeitig
erhalten). (:-)

Distributed Computing Group Roger Wattenhofer 16

Real World Generals

Date: Mi 11.12.2002 13:01
From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
To: Friedemann Mattern <mattern@inf.ethz.ch>
Subject: Re: Naechste Runde: Re: Vorlesung ...
Ich glaube, jetzt sind wir so weit, dass ich diese
Emails in der Vorlesung auflegen werde...

Distributed Computing Group Roger Wattenhofer 17

Real World Generals

Date: Wed, 11 Dec 2002 18:55:08 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Re: Naechste Runde: Re: Vorlesung ...
Kein Problem. (Hauptsache es kommt raus, dass der
Prakiker am Ende der schlauere ist... Und der
Theoretiker entweder heute noch auf das allerletzte
Ack wartet oder wissend das das ja gar nicht gehen
kann alles gleich von vornherein bleiben laesst...
(:-))

Distributed Computing Group Roger Wattenhofer 18

Theorem

There is no non-trivial
protocol that ensures the red
armies attacks simultaneously

Distributed Computing Group Roger Wattenhofer 19

Proof Strategy

• Assume a protocol exists
• Reason about its properties
• Derive a contradiction

Distributed Computing Group Roger Wattenhofer 20

Proof

1. Consider the protocol that sends
fewest messages

2. It still works if last message lost
3. So just don’t send it

– Messengers’ union happy
4. But now we have a shorter protocol!
5. Contradicting #1

Distributed Computing Group Roger Wattenhofer 21

Fundamental Limitation

• Need an unbounded number of
messages

• Or possible that no attack takes
place

Distributed Computing Group Roger Wattenhofer 22

You May Find Yourself …

I want a real-time YAFA
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

I want a real-time YAFA
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

Distributed Computing Group Roger Wattenhofer 23

You might say

I want a real-time YAFA
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

Yes, Ma’am, right away!Yes, Ma’am, right away!

Distributed Computing Group Roger Wattenhofer 24

You might say

I want a real-time dot-net
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

Yes, Ma’am, right away!

Advantage:
•Buys time to find another job
•No one expects software to work
anyway

Advantage:
•Buys time to find another job
•No one expects software to work
anyway

Distributed Computing Group Roger Wattenhofer 25

You might say

I want a real-time dot-net
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

Yes, Ma’am, right away!

Advantage:
•Buys time to find another job
•No one expects software to work
anyway

Disadvantage:
•You’re doomed
•Without this course, you may
not even know you’re doomed

Disadvantage:
•You’re doomed
•Without this course, you may
not even know you’re doomed

Distributed Computing Group Roger Wattenhofer 26

You might say

I want a real-time YAFA
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

I can’t find a fault-tolerant
algorithm, I guess I’m just a

pathetic loser.

I can’t find a fault-tolerant
algorithm, I guess I’m just a

pathetic loser.

Distributed Computing Group Roger Wattenhofer 27

You might say

I want a real-time YAFA
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

I can’t find a fault-tolerant
algorithm, I guess I’m just a

pathetic loser.

I can’t find a fault-tolerant
algorithm, I guess I’m just a

pathetic loser.

Advantage:
•No need to take course

Advantage:
•No need to take course

Distributed Computing Group Roger Wattenhofer 28

You might say

I want a real-time YAFA
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

I can’t find a fault-tolerant
algorithm, I guess I’m just a

pathetic loser

I can’t find a fault-tolerant
algorithm, I guess I’m just a

pathetic loser

Advantage:
•No need to take course

Advantage:
•No need to take course

Disadvantage:
•Boss fires you, hires
University St. Gallen graduate

Disadvantage:
•Boss fires you, hires
University St. Gallen graduate

Distributed Computing Group Roger Wattenhofer 29

You might say

I want a real-time YAFA
compliant Two Generals

protocol using UDP datagrams
running on our enterprise-level

fiber tachyion network ...

Using skills honed in course, I
can avert certain disaster!

•Rethink problem spec, or
•Weaken requirements, or
•Build on different platform

Using skills honed in course, I
can avert certain disaster!

•Rethink problem spec, or
•Weaken requirements, or
•Build on different platform

Distributed Computing Group Roger Wattenhofer 30

Consensus: Each Thread has a
Private Input

32 19
21

Distributed Computing Group Roger Wattenhofer 31

They Communicate

Distributed Computing Group Roger Wattenhofer 32

They Agree on Some Thread’s
Input

1919 19

Distributed Computing Group Roger Wattenhofer 33

Consensus is important

• With consensus, you can implement
anything you can imagine…

• Examples: with consensus you can
decide on a leader, implement mutual
exclusion, or solve the two generals
problem

Distributed Computing Group Roger Wattenhofer 34

You gonna learn

• In some models, consensus is possible
• In some other models, it is not

• Goal of this and next lecture: to learn
whether for a given model consensus
is possible or not … and prove it!

Distributed Computing Group Roger Wattenhofer 35

Consensus #1
shared memory

• n processors, with n > 1
• Processors can atomically read or

write (not both) a shared memory cell

Distributed Computing Group Roger Wattenhofer 36

Protocol (Algorithm?)

• There is a designated memory cell c.
• Initially c is in a special state “?”
• Processor 1 writes its value v1 into c,

then decides on v1.
• A processor j (j not 1) reads c until j

reads something else than “?”, and
then decides on that.

Distributed Computing Group Roger Wattenhofer 37

Unexpected Delay

Swapped outback at

??? ???

Distributed Computing Group Roger Wattenhofer 38

Heterogeneous Architectures

??? ???

PentiumPentium
286

yawn

(1)

Distributed Computing Group Roger Wattenhofer 39

Fault-Tolerance

??? ???

Distributed Computing Group Roger Wattenhofer 40

Consensus #2
wait-free shared memory

• n processors, with n > 1
• Processors can atomically read or

write (not both) a shared memory cell
• Processors might crash (halt)
• Wait-free implementation… huh?

Distributed Computing Group Roger Wattenhofer 41

Wait-Free Implementation

• Every process (method call)
completes in a finite number of steps

• Implies no mutual exclusion
• We assume that we have wait-free

atomic registers (that is, reads and
writes to same register do not
overlap)

Distributed Computing Group Roger Wattenhofer 42

A wait-free algorithm…

• There is a cell c, initially c=“?”
• Every processor i does the following

r = Read(c);

if (r == “?”) then

Write(c, vi); decide vi;

else

decide r;

Distributed Computing Group Roger Wattenhofer 43

Is the algorithm correct?

time

cell c32 17
?
?
?

32
1732! 17!

Distributed Computing Group Roger Wattenhofer 44

Theorem:
No wait-free consensus

??? ???

Distributed Computing Group Roger Wattenhofer 45

Proof Strategy

• Make it simple
– n = 2, binary input

• Assume that there is a protocol
• Reason about the properties of any

such protocol
• Derive a contradiction

Distributed Computing Group Roger Wattenhofer 46

Wait-Free Computation

• Either A or B “moves”
• Moving means

– Register read
– Register write

A moves B moves

Distributed Computing Group Roger Wattenhofer 47

The Two-Move Tree
Initial
state

Final
states

Distributed Computing Group Roger Wattenhofer 48

Decision Values

1 0 0 1 1 1

Distributed Computing Group Roger Wattenhofer 49

Bivalent: Both Possible

1 1 1

bivalent

1 0 0
Distributed Computing Group Roger Wattenhofer 50

Univalent: Single Value Possible

1 1 1

univalent

1 0 0

Distributed Computing Group Roger Wattenhofer 51

1-valent: Only 1 Possible

0 1 1 1

1-valent

01
Distributed Computing Group Roger Wattenhofer 52

0-valent: Only 0 possible

1 1 1

0-valent

1 0 0

Distributed Computing Group Roger Wattenhofer 53

Summary

• Wait-free computation is a tree
• Bivalent system states

– Outcome not fixed
• Univalent states

– Outcome is fixed
– Maybe not “known” yet
– 1-Valent and 0-Valent states

Distributed Computing Group Roger Wattenhofer 54

Claim

Some initial system state is bivalent

(The outcome is not always fixed from
the start.)

Distributed Computing Group Roger Wattenhofer 55

A 0-Valent Initial State

• All executions lead to decision of 0

0 0

Distributed Computing Group Roger Wattenhofer 56

A 0-Valent Initial State

• Solo execution by A also decides 0

0

Distributed Computing Group Roger Wattenhofer 57

A 1-Valent Initial State

• All executions lead to decision of 1

1 1

Distributed Computing Group Roger Wattenhofer 58

A 1-Valent Initial State

• Solo execution by B also decides 1

1

Distributed Computing Group Roger Wattenhofer 59

A Univalent Initial State?

• Can all executions lead to the same
decision?

0 1

Distributed Computing Group Roger Wattenhofer 60

State is Bivalent

• Solo execution by A
must decide 0

• Solo execution by B
must decide 1

0 1

Distributed Computing Group Roger Wattenhofer 61

0-valent

Critical States

1-valent

critical

Distributed Computing Group Roger Wattenhofer 62

Critical States

• Starting from a bivalent initial state
• The protocol can reach a critical

state
– Otherwise we could stay bivalent

forever
– And the protocol is not wait-free

Distributed Computing Group Roger Wattenhofer 63

From a Critical State

c

If A goes first,
protocol decides 0

If B goes first,
protocol decides 1

0-valent 1-valent

Distributed Computing Group Roger Wattenhofer 64

Model Dependency

• So far, memory-independent!
• True for

– Registers
– Message-passing
– Carrier pigeons
– Any kind of asynchronous computation

Distributed Computing Group Roger Wattenhofer 65

What are the Threads Doing?

• Reads and/or writes
• To same/different registers

Distributed Computing Group Roger Wattenhofer 66

Possible Interactions

????y.write()

????x.write()

????y.read()

????x.read()

y.write()x.write()y.read()x.read()

Distributed Computing Group Roger Wattenhofer 67

Reading Registers

A runs solo,
decides 0

B reads x

1

0
A runs solo,
decides 1

c

States look
the same to A

Distributed Computing Group Roger Wattenhofer 68

Possible Interactions

??nonoy.write()

??nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()

Distributed Computing Group Roger Wattenhofer 69

Writing Distinct Registers

A writes y B writes x

10

c

The song remains the same

A writes yB writes x

Distributed Computing Group Roger Wattenhofer 70

Possible Interactions

?nononoy.write()

no?nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()

Distributed Computing Group Roger Wattenhofer 71

Writing Same Registers

States look
the same to A

A writes x B writes x

1
A runs solo,
decides 1

c

0

A runs solo,
decides 0 A writes x

Distributed Computing Group Roger Wattenhofer 72

That’s All, Folks!

nonononoy.write()

nonononox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()

Distributed Computing Group Roger Wattenhofer 73

Theorem

• It is impossible to solve consensus
using read/write atomic registers
– Assume protocol exists
– It has a bivalent initial state
– Must be able to reach a critical state
– Case analysis of interactions

• Reads vs others
• Writes vs writes

Distributed Computing Group Roger Wattenhofer 74

What Does Consensus have to
do with Distributed Systems?

Distributed Computing Group Roger Wattenhofer 75

We want to build a
Concurrent FIFO Queue

Distributed Computing Group Roger Wattenhofer 76

With Multiple Dequeuers!

Distributed Computing Group Roger Wattenhofer 77

A Consensus Protocol

2-element array

FIFO Queue
with red and
black balls

8

Coveted red ball Dreaded black ball

Distributed Computing Group Roger Wattenhofer 78

Protocol: Write Value to Array

0 1
0

(3)

Distributed Computing Group Roger Wattenhofer 79

0

Protocol: Take Next Item from
Queue

0 1
8

Distributed Computing Group Roger Wattenhofer 80

0 1

Protocol: Take Next Item from
Queue

I got the
coveted red ball,
so I will decide

my value

I got the dreaded
black ball, so I will
decide the other’s
value from the

array
8

Distributed Computing Group Roger Wattenhofer 81

Why does this Work?

• If one thread gets the red ball
• Then the other gets the black ball
• Winner can take her own value
• Loser can find winner’s value in array

– Because threads write array
before dequeuing from queue

Distributed Computing Group Roger Wattenhofer 82

Implication

• We can solve 2-thread consensus
using only
– A two-dequeuer queue
– Atomic registers

Distributed Computing Group Roger Wattenhofer 83

Implications

• Assume there exists
– A queue implementation from atomic registers

• Given
– A consensus protocol from queue and registers

• Substitution yields
– A wait-free consensus protocol from atomic

registers

cont
radi

ction

Distributed Computing Group Roger Wattenhofer 84

Corollary

• It is impossible to implement a two-
dequeuer wait-free FIFO queue with
read/write shared memory.

• This was a proof by reduction;
important beyond NP-completeness…

Distributed Computing Group Roger Wattenhofer 85

Consensus #3
read-modify-write shared mem.
• n processors, with n > 1
• Wait-free implementation
• Processors can atomically read and

write a shared memory cell in one
atomic step: the value written can
depend on the value read

• We call this a RMW register

Distributed Computing Group Roger Wattenhofer 86

Protocol

• There is a cell c, initially c=“?”
• Every processor i does the following

RMW(c), with

if (c == “?”) then

Write(c, vi); decide vi;

else

decide c;

atomic step

Distributed Computing Group Roger Wattenhofer 87

Discussion

• Protocol works correctly
– One processor accesses c as the first;

this processor will determine decision
• Protocol is wait-free
• RMW is quite a strong primitive

– Can we achieve the same with a weaker
primitive?

Distributed Computing Group Roger Wattenhofer 88

Read-Modify-Write
more formally

• Method takes 2 arguments:
– Variable x
– Function f

• Method call:
– Returns value of x
– Replaces x with f(x)

Distributed Computing Group Roger Wattenhofer 89

public abstract class RMW {
private int value;

public void rmw(function f) {
int prior = this.value;
this.value = f(this.value);
return prior;

}

}

Read-Modify-Write

Return prior value

Apply function
Distributed Computing Group Roger Wattenhofer 90

public abstract class RMW {
private int value;

public void read() {
int prior = this.value;
this.value = this.value;
return prior;

}

}

Example: Read

identity function

Distributed Computing Group Roger Wattenhofer 91

public abstract class RMW {
private int value;

public void TAS() {
int prior = this.value;
this.value = 1;
return prior;

}

}

Example: test&set

constant function
Distributed Computing Group Roger Wattenhofer 92

public abstract class RMW {
private int value;

public void fai() {
int prior = this.value;
this.value = this.value+1;
return prior;

}

}

Example: fetch&inc

increment function

Distributed Computing Group Roger Wattenhofer 93

public abstract class RMW {
private int value;

public void faa(int x) {
int prior = this.value;
this.value = this.value+x;
return prior;

}

}

Example: fetch&add

addition function
Distributed Computing Group Roger Wattenhofer 94

public abstract class RMW {
private int value;

public void swap(int x) {
int prior = this.value;
this.value = x;
return prior;

}

}

Example: swap

constant function

Distributed Computing Group Roger Wattenhofer 95

public abstract class RMW {
private int value;

public void CAS(int old, int new) {
int prior = this.value;
if (this.value == old)

this.value = new;
return prior;

}

}

Example: compare&swap

complex function
Distributed Computing Group Roger Wattenhofer 96

“Non-trivial” RMW

• Not simply read
• But

– test&set, fetch&inc, fetch&add,
swap, compare&swap, general RMW

• Definition: A RMW is non-trivial if
there exists a value v such that v ≠
f(v)

Distributed Computing Group Roger Wattenhofer 97

Consensus Numbers (Herlihy)

• An object has consensus number n
– If it can be used

• Together with atomic read/write registers
– To implement n-thread consensus

• But not (n+1)-thread consensus

Distributed Computing Group Roger Wattenhofer 98

Consensus Numbers

• Theorem
– Atomic read/write registers have

consensus number 1

• Proof
– Works with 1 process
– We have shown impossibility with 2

Distributed Computing Group Roger Wattenhofer 99

Consensus Numbers

• Consensus numbers are a useful way
of measuring synchronization power

• Theorem
– If you can implement X from Y
– And X has consensus number c
– Then Y has consensus number at least c

Distributed Computing Group Roger Wattenhofer 100

Synchronization Speed Limit

• Conversely
– If X has consensus number c
– And Y has consensus number d < c
– Then there is no way to construct a

wait-free implementation of X by Y
• This theorem will be very useful

– Unforeseen practical implications!

Distributed Computing Group Roger Wattenhofer 101

Theorem

• Any non-trivial RMW object has
consensus number at least 2

• Implies no wait-free implementation
of RMW registers from read/write
registers

• Hardware RMW instructions not just
a convenience

Distributed Computing Group Roger Wattenhofer 102

Proof
public class RMWConsensusFor2

implements Consensus {
private RMW r;

public Object decide() {
int i = Thread.myIndex();
if (r.rmw(f) == v)

return this.announce[i];
else

return this.announce[1-i];
}}

Initialized to v

Am I first?

Yes, return
my input

No, return
other’s input

Distributed Computing Group Roger Wattenhofer 103

Proof

• We have displayed
– A two-thread consensus protocol
– Using any non-trivial RMW object

Distributed Computing Group Roger Wattenhofer 104

Interfering RMW

• Let F be a set of functions such that
for all fi and fj, either
– They commute: fi(fj(x))=fj(fi(x))
– They overwrite: fi(fj(x))=fi(x)

• Claim: Any such set of RMW objects
has consensus number exactly 2

Distributed Computing Group Roger Wattenhofer 105

Examples

• Test-and-Set
– Overwrite

• Swap
– Overwrite

• Fetch-and-inc
– Commute

Distributed Computing Group Roger Wattenhofer 106

Meanwhile Back at the Critical
State

c

0-valent 1-valent

A about to
apply fA

B about to
apply fB

Distributed Computing Group Roger Wattenhofer 107

Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1
C runs solo C runs solo

1-valent
Distributed Computing Group Roger Wattenhofer 108

Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1
C runs solo C runs solo

1-valent

These states look the same to CThese states look the same to C

Distributed Computing Group Roger Wattenhofer 109

Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent
Distributed Computing Group Roger Wattenhofer 110

Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent

These states look the same to CThese states look the same to C

Distributed Computing Group Roger Wattenhofer 111

Impact

• Many early machines used these
“weak” RMW instructions
– Test-and-set (IBM 360)
– Fetch-and-add (NYU Ultracomputer)
– Swap

• We now understand their limitations
– But why do we want consensus anyway?

Distributed Computing Group Roger Wattenhofer 112

public class RMWConsensus
implements Consensus {

private RMW r;

public Object decide() {
int i = Thread.myIndex();
int j = r.CAS(-1,i);
if (j == -1)

return this.announce[i];
else

return this.announce[j];
}}

CAS has Unbounded
Consensus NumberInitialized to -1

Am I first?

Yes, return
my input

No, return
other’s input

Distributed Computing Group Roger Wattenhofer 113

The Consensus Hierarchy

1 Read/Write Registers, …

2 T&S, F&I, Swap, …

∞ CAS, …

.

.

.

Distributed Computing Group Roger Wattenhofer 114

Consensus #4
Synchronous Systems

• In real systems, one can sometimes
tell if a processor had crashed
– Timeouts
– Broken TCP connections

• Can one solve consensus at least in
synchronous systems?

Distributed Computing Group Roger Wattenhofer 115

Communication Model

• Complete graph
• Synchronous

1p

2p

3p

4p5p

Distributed Computing Group Roger Wattenhofer 116

1p

2p

3p

4p5p

a
a

aa

Send a message to all processors
in one round: Broadcast

Distributed Computing Group Roger Wattenhofer 117

At the end of the round:
everybody receives a

1p

2p

3p

4p5p

a

a

a

a
Distributed Computing Group Roger Wattenhofer 118

1p

2p

3p

4p5p

a

a

aa
b

b

b

b

Broadcast: Two or more processes
can broadcast in the same round

Distributed Computing Group Roger Wattenhofer 119

1p

2p

3p

4p5p

a,b

a

b
a,b

a,b

At end of round...

Distributed Computing Group Roger Wattenhofer 120

Crash Failures

Faulty
processor 1p

2p

3p

4p5p

a
a

aa

Distributed Computing Group Roger Wattenhofer 121

1p

2p

3p

4p5p

a

a

Some of the messages are lost,
they are never received

Faulty
processor

Distributed Computing Group Roger Wattenhofer 122

1p

2p

3p

4p5p

a

a

Effect

Faulty
processor

Distributed Computing Group Roger Wattenhofer 123

Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

3p 3p

After a failure, the process disappears
from the network

Distributed Computing Group Roger Wattenhofer 124

Consensus:
Everybody has an initial value

0

1

2 3

4

Start

Distributed Computing Group Roger Wattenhofer 125

3

3

3 3

3

Finish

Everybody must decide on the
same value

Distributed Computing Group Roger Wattenhofer 126

1

1

1 1

1

Start

If everybody starts with the same value
they must decide on that value

Finish
1

1

1 1

1

Validity condition:

Distributed Computing Group Roger Wattenhofer 127

A simple algorithm

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

(only one round is needed)

Distributed Computing Group Roger Wattenhofer 128

0

1

2 3

4

Start

Distributed Computing Group Roger Wattenhofer 129

0

1

2 3

4

Broadcast values
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

Distributed Computing Group Roger Wattenhofer 130

0

0

0 0

0

Decide on minimum

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

Distributed Computing Group Roger Wattenhofer 131

0

0

0 0

0

Finish

Distributed Computing Group Roger Wattenhofer 132

This algorithm satisfies the validity condition

1

1

1 1

1

Start Finish
1

1

1 1

1

If everybody starts with the same initial value,
everybody sticks to that value (minimum)

Distributed Computing Group Roger Wattenhofer 133

Consensus with Crash Failures

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

The simple algorithm doesn’t work

Distributed Computing Group Roger Wattenhofer 134

0

1

2 3

4

Start

fail

The failed processor doesn’t
broadcast its value to all processors

0

0

Distributed Computing Group Roger Wattenhofer 135

0

1

2 3

4
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Broadcasted values

Distributed Computing Group Roger Wattenhofer 136

0

0

1 0

1
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Decide on minimum

Distributed Computing Group Roger Wattenhofer 137

0

0

1 0

1

fail

Finish - No Consensus!

Distributed Computing Group Roger Wattenhofer 138

If an algorithm solves consensus for
f failed processes we say it is

an f-resilient consensus algorithm

Distributed Computing Group Roger Wattenhofer 139

0

1

4 3

2

Start Finish
1

1

Example: The input and output of a
3-resilient consensus algorithm

Distributed Computing Group Roger Wattenhofer 140

New validity condition:
all non-faulty processes decide on a value
that is available initially.

1

1

1 1

1

Start Finish
1

1

Distributed Computing Group Roger Wattenhofer 141

An f-resilient algorithm

Round 1:
Broadcast my value

Round 2 to round f+1:
Broadcast any new received values

End of round f+1:
Decide on the minimum value received

Distributed Computing Group Roger Wattenhofer 142

0

1

2 3

4

Start

Example: f=1 failures, f+1=2 rounds needed

Distributed Computing Group Roger Wattenhofer 143

0

1

2 3

4

Round 1

0

0
fail

Example: f=1 failures, f+1 = 2 rounds needed

Broadcast all values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

(new values)

Distributed Computing Group Roger Wattenhofer 144

Example: f=1 failures, f+1 = 2 rounds needed

Round 2 Broadcast all new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
1

2 3

4

Distributed Computing Group Roger Wattenhofer 145

Example: f=1 failures, f+1 = 2 rounds needed

Finish Decide on minimum value

0

0 0

0
0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Distributed Computing Group Roger Wattenhofer 146

0

1

2 3

4

Start

Example: f=2 failures, f+1 = 3 rounds needed

Example of execution with 2 failures

Distributed Computing Group Roger Wattenhofer 147

0

1

2 3

4

Round 1

0

Failure 1

Broadcast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 148

0

1

2 3

4

Round 2

Failure 1

Broadcast new values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 149

0

1

2 3

4

Round 3

Failure 1

Broadcast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 150

0

0

0 3

0

Finish

Failure 1

Decide on the minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 151

Example:
5 failures,
6 rounds

1 2

No failure

3 4 5 6Round

If there are f failures and f+1 rounds then
there is a round with no failed process

Distributed Computing Group Roger Wattenhofer 152

• Every (non faulty) process knows
about all the values of all the other
participating processes

•This knowledge doesn’t change until
the end of the algorithm

At the end of the
round with no failure:

Distributed Computing Group Roger Wattenhofer 153

Everybody would decide on the same value

However, as we don’t know the exact
position of this round,

we have to let the algorithm execute
for f+1 rounds

Therefore, at the end of the
round with no failure:

Distributed Computing Group Roger Wattenhofer 154

when all processes start with the same
input value then the consensus is that value

This holds, since the value decided from
each process is some input value

Validity of algorithm:

Distributed Computing Group Roger Wattenhofer 155

A Lower Bound

Any f-resilient consensus algorithm
requires at least f+1 rounds

Theorem:

Distributed Computing Group Roger Wattenhofer 156

Proof sketch:

Assume for contradiction that f
or less rounds are enough

Worst case scenario:

There is a process that fails in
each round

Distributed Computing Group Roger Wattenhofer 157

Round

a

1
before process
fails, it sends its
value a to only one
process

ip

kp

ip

kp

Worst case scenario

Distributed Computing Group Roger Wattenhofer 158

Round

a

1
before process
fails, it sends
value a to only one
process

mp

kp

kp

mp

Worst case scenario

2

Distributed Computing Group Roger Wattenhofer 159

Round 1

fp

Worst case scenario

2

………

a np

f3
At the end
of round f
only one
process
knows
about
value a

np

Distributed Computing Group Roger Wattenhofer 160

Round 1

Worst case scenario

2

………

f3
Process
may decide
on a, and all
other
processes
may decide
on another
value (b)

np

npa

b

decide

Distributed Computing Group Roger Wattenhofer 161

Round 1

Worst case scenario

2

………

f3

npa

b

decide
Therefore f
rounds are
not enough
At least f+1
rounds are
needed

Distributed Computing Group Roger Wattenhofer 162

Consensus #5
Byzantine Failures

Faulty
processor 1p

2p

3p

4p5p

a
b

ac

Different processes receive different values

Distributed Computing Group Roger Wattenhofer 163

1p

2p

3p

4p5p

a

a

A Byzantine process can behave like a
Crashed-failed process

Some messages may be lost

Faulty
processor

Distributed Computing Group Roger Wattenhofer 164

Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

After failure the process continues
functioning in the network

3p 3p

Failure

1p

2p

4p

5p

Round
6

3p

Distributed Computing Group Roger Wattenhofer 165

Consensus with Byzantine
Failures

solves consensus for f failed processes

f-resilient consensus algorithm:

Distributed Computing Group Roger Wattenhofer 166

The input and output of
a 1-resilient consensus algorithm

0

1

4 3

2

Start Finish
3

3

Example:

3 3

Distributed Computing Group Roger Wattenhofer 167

Validity condition:
if all non-faulty processes start with
the same value then all non-faulty processes
decide on that value

1

1

1 1

1

Start Finish
1

1

1 1

Distributed Computing Group Roger Wattenhofer 168

Any f-resilient consensus
algorithm requires at least
f+1 rounds

Theorem:

follows from the crash failure
lower bound

Proof:

Lower bound on number of
rounds

Distributed Computing Group Roger Wattenhofer 169

There is no f-resilient algorithm

for n processes, where f ≥ n/3

Theorem:

Plan: First we prove the 3 process case,
and then the general case

Upper bound on failed
processes

Distributed Computing Group Roger Wattenhofer 170

There is no 1-resilient algorithm
for 3 processes

Lemma:

Proof: Assume for contradiction that
there is a 1-resilient algorithm
for 3 processes

The 3 processes case

Distributed Computing Group Roger Wattenhofer 171

0p

1p 2p

A(0)

B(1) C(0)

Initial value

Local
algorithm

Distributed Computing Group Roger Wattenhofer 172

0p

1p 2p

1

1 1

Decision value

Distributed Computing Group Roger Wattenhofer 173

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

Assume 6 processes are in a ring

(just for fun)

Distributed Computing Group Roger Wattenhofer 174

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

B(1)
1p

0p
A(1)

2p
faulty

C(1)

C(0)Processes think they are in
a triangle

Distributed Computing Group Roger Wattenhofer 175

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

1
1p

0p
1

2p
faulty

(validity condition)
Distributed Computing Group Roger Wattenhofer 176

3p

4p

2p
A(0) C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
C(0)

B(0)

0p
A(0)

A(1)

faulty

B(1)

Distributed Computing Group Roger Wattenhofer 177

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
0

0

0p
faulty

(validity condition)
Distributed Computing Group Roger Wattenhofer 178

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0pA(1)C(0)

1p
B(1)B(0)

faulty

Distributed Computing Group Roger Wattenhofer 179

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0p10

1p faulty
Distributed Computing Group Roger Wattenhofer 180

2p 0p
10

1p faulty

Impossibility

Distributed Computing Group Roger Wattenhofer 181

There is no algorithm that solves
consensus for 3 processes
in which 1 is a byzantine process

Conclusion

Distributed Computing Group Roger Wattenhofer 182

Assume for contradiction that
there is an f -resilient algorithm A
for n processes, where f ≥ n/3

We will use algorithm A to solve consensus
for 3 processes and 1 failure (which is
impossible, thus we have a contradiction)

The n processes case

Distributed Computing Group Roger Wattenhofer 183

1p

0 1

2p np

1

… …

2 21 0 00 1 1start

failures

1p

1 1

2p np… …

1 1 11 1finish

Algorithm A

Distributed Computing Group Roger Wattenhofer 184

3
1 npp Κ

1q

2q3q
3
21

3
nn pp Κ

+nn pp Κ
1

3
2 +

Each process q simulates algorithm A

on n/3 of “p” processes

Distributed Computing Group Roger Wattenhofer 185

3
1 npp Κ1q

2q3q
3
21

3
nn pp Κ

+nn pp Κ
1

3
2 +

fails

When a single q is byzantine, then n/3 of

the “p” processes are byzantine too.

Distributed Computing Group Roger Wattenhofer 186

3
1 npp Κ

1q

2q3q
3
21

3
nn pp Κ

+nn pp Κ
1

3
2 +

fails

algorithm A tolerates n/3 failures

Finish of
algorithm A

k
kk

k kk

k

k

kk
kk

k

all decide k

Distributed Computing Group Roger Wattenhofer 187

1q

2q3q

fails

Final decision
k

k

We reached consensus with 1 failure
Impossible!!!

Distributed Computing Group Roger Wattenhofer 188

There is no f-resilient algorithm

for n processes with f ≥ n/3

Conclusion

Distributed Computing Group Roger Wattenhofer 189

The King Algorithm

solves consensus with n processes and
f failures where f < n/4 in f +1 “phases”

There are f+1 phases
Each phase has two rounds
In each phase there is a different king

Distributed Computing Group Roger Wattenhofer 190

Example: 12 processes, 2 faults, 3 kings

0 1 1 2 21 0 00 1 1 0

initial values

Faulty

Distributed Computing Group Roger Wattenhofer 191

Example: 12 processes, 2 faults, 3 kings

Remark: There is a king that is not faulty

0 1 1 2 21 0 00 1 1 0

initial values

King 1 King 2 King 3

Distributed Computing Group Roger Wattenhofer 192

Each processor has a preferred valueip iv

In the beginning, the preferred value

is set to the initial value

The King algorithm

Distributed Computing Group Roger Wattenhofer 193

Round 1, processor :ip

• Broadcast preferred value

• Set to the majority of
values received

iv
iv

The King algorithm: Phase k

Distributed Computing Group Roger Wattenhofer 194

•If had majority of less than

Round 2, king :kp

•Broadcast new preferred value

Round 2, process :ip
kv

iv fn +
2

then set to iv kv

The King algorithm: Phase k

Distributed Computing Group Roger Wattenhofer 195

End of Phase f+1:

Each process decides on preferred value

The King algorithm

Distributed Computing Group Roger Wattenhofer 196

Example: 6 processes, 1 fault

Faulty

0 1

king 1

king 20

11

2

Distributed Computing Group Roger Wattenhofer 197

0 1

king 1

0

11

2

Phase 1, Round 1

2,1,1,0,0,0

2,1,1,1,0,0

2,1,1,1,0,0 2,1,1,0,0,0

2,1,1,0,0,0

0

1

1 0

0

Everybody broadcasts

Distributed Computing Group Roger Wattenhofer 198

1 0

king 1

0

11

0

Phase 1, Round 1 Choose the majority

Each majority population was 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value

Distributed Computing Group Roger Wattenhofer 199

Phase 1, Round 2

1 0

0

11

0
0

1

0 1

2

king 1

The king broadcasts

Distributed Computing Group Roger Wattenhofer 200

Phase 1, Round 2

0 1

0

11

2

king 1

Everybody chooses the king’s value

Distributed Computing Group Roger Wattenhofer 201

0 1

king 2
0

11

2

Phase 2, Round 1

2,1,1,0,0,0

2,1,1,1,0,0

2,1,1,1,0,0 2,1,1,0,0,0

2,1,1,0,0,0

0

1

1 0

0

Everybody broadcasts

Distributed Computing Group Roger Wattenhofer 202

1 0

0

11

0

Phase 2, Round 1 Choose the majority

Each majority population is 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value

king 2

2,1,1,1,0,0

Distributed Computing Group Roger Wattenhofer 203

Phase 2, Round 2

1 0

0

11

0

The king broadcasts

king 2

00
0

0 0

Distributed Computing Group Roger Wattenhofer 204

Phase 2, Round 2

0 0

0

10

0
king 2

Everybody chooses the king’s value
Final decision

Distributed Computing Group Roger Wattenhofer 205

In the round where the king is non-faulty,
everybody will choose the king’s value v

After that round, the majority will

remain value v with a majority population
which is at least fnfn +>−

2

Invariant / Conclusion

Distributed Computing Group Roger Wattenhofer 206

Exponential Algorithm

solves consensus with n processes and
f failures where f < n/3 in f +1 “phases”

But: uses messages with exponential size

Distributed Computing Group Roger Wattenhofer 207

Consensus #6
Randomization

• So far we looked at deterministic
algorithms only. We have seen that
there is no asynchronous algorithm.

• Can one solve consensus if we allow
our algorithms to use randomization?

Distributed Computing Group Roger Wattenhofer 208

Yes, we can!

• We tolerate some processes to be
faulty (at most f stop failures)

• General idea: Try to push your initial
value; if other processes do not
follow, try to push one of the
suggested values randomly.

Distributed Computing Group Roger Wattenhofer 209

Randomized Algorithm

• At most f stop-failures (assume n > 9f)
• For process pi with initial input x ∈ {0,1}:

1. Broadcast Proposal(x, round)
2. Wait for n-f Proposal messages.
3. If at least n-2f messages have value v,

then x := v, else x := undecided.

Distributed Computing Group Roger Wattenhofer 210

Randomized Algorithm

4. Broadcast Bid(x, round).
5. Wait for n-f Bid messages.
6. If at least n-2f messages have value v,

then decide on v.
If at least n-4f messages have value v,

then x := v.
Else choose x randomly (p(0) = p(1) = ½)

7. Go back to step 1 (next round).

Distributed Computing Group Roger Wattenhofer 211

What do we want?

• Agreement: Non-faulty processes
decide non-conflicting values.

• Validity: If all have the same input,
that input should be decided.

• Termination: All non-faulty processes
eventually decide.

Distributed Computing Group Roger Wattenhofer 212

All processes have same input

• Then everybody will agree on that
input in the very first round already.

• Validity follows immediately

• If not, then any decision is fine!
• Validity follows too (in any case).

Distributed Computing Group Roger Wattenhofer 213

What if process i decides in
step 6a (Agreement)…?

• Then process i has received at least
n-2f Bid messages with value v.

vvv vvvvvvvvvvvvvvvvv www www

• Then everybody else has received at least n-
3f messages will value v, and thus everybody
will propose v next round, and thus decide v.

Distributed Computing Group Roger Wattenhofer 214

What about termination?

• We have seen that if a process
decides in step 6a, all others will
follow in the next round at latest.

• If in step 6b/c, all processes choose
the same value (with probability 2-n),
all give the same bid, and terminate in
the next round.

Distributed Computing Group Roger Wattenhofer 215

Byzantine & Asynchronous?

• The presented protocol is in fact
already working in the Byzantine case!

• (That’s why we have “n-4f” in the
protocol and “n-3f” in the proof.)

Distributed Computing Group Roger Wattenhofer 216

But termination is awfully slow…

• In expectation, about the same
number of processes will choose 1 or
0 in step 6c.

• The probability that a strong
majority of processes will propose
the same value in the next round is
exponentially small.

Distributed Computing Group Roger Wattenhofer 217

Naïve Approach

• In step 6c, all processes should
choose the same value! (Reason:
validity is not a problem anymore
since for sure there exist 0’s and 1’s
and therefore we can savely always
propose the same…)

• Replace 6c by: “choose x := 1”!

Distributed Computing Group Roger Wattenhofer 218

Problem of Naïve Approach

• What if a majority of processes bid 0
in round 4? Then some of the
processes might go into 6b (setting
x=0), others into 6c (setting x=1).
Then the picture is again not clear in
the next round

• Anyway: Approach 1 is deterministic!
We know (#2) that this doesn’t work!

Distributed Computing Group Roger Wattenhofer 219

Shared/Common Coin

• The idea is to replace 6c with a
subroutine where all the processes
compute a so-called shared (a.k.a.
common, “global”) coin.

• A shared coin is a random binary
variable that is 0 with constant
probability, and 1 with constant
probability.

Distributed Computing Group Roger Wattenhofer 220

Shared Coin Algorithm

Code for process i:
1. Set local coin ci := 0 with

probability 1/n, else (w.h.p.) ci := 1.
2. Use reliable broadcast* to tell all

processes about your local coin ci.
3. If you receive a local coin cj of

another process j, add j to the set
coinsi, and memorize cj.

Distributed Computing Group Roger Wattenhofer 221

Shared Coin Algorithm

4. If you have seen exactly n-f local
coins then copy the set coinsi into
the set seeni (but do not stop
extending coinsi if you see new
coins)

5. Use reliable broadcast to tell all
processes about your set seeni.

Distributed Computing Group Roger Wattenhofer 222

Shared Coin Algorithm

6. If you have seen at least n-f seenj
which satisfy seenj ⊆ coinsi, then
terminate with:

7. If you have seen at least a single
local coin with cj = 0 then return 0,
else (if you have seen 1-coins only)
return 1.

Distributed Computing Group Roger Wattenhofer 223

Why does the shared coin
algorithm terminate?

• For simplicity we look at f crash failures
only, assuming that 3f < n.

• Since at most f processes crash you will
see at least n-f local coins in step 4.

• For the same reason you will see at least
n-f seen sets in step 6.

• Since we used reliable broadcast, you will
eventually see all the coins that are in the
other’s sets.

Distributed Computing Group Roger Wattenhofer 224

Why does the algorithm work?

• Looks like magic at first…
• General idea: a third of the local

coins will be seen by all the
processes! If there is a “0” among
them we’re done. If not, chances are
high that there is no “0” at all.

• Proof details: next few slides…

Distributed Computing Group Roger Wattenhofer 225

Proof: Matrix

• Let i be the first process to
terminate (reach step 7)

• For process i we draw a matrix of all
the sets seenj (columns) and local
coins ck (rows) process i has seen.

• We draw an “X” in the matrix if and
only if set seeni includes coin ck.

Distributed Computing Group Roger Wattenhofer 226

Proof: Matrix (f=2, n=7, n-f=5)

XXXXcoin7

XXXXcoin6

XXXXcoin5

XXXXXcoin3

XXXcoin2

XXXXXcoin1

seen7seen6seen5seen3seen1

• Note that there are at least (n-f)2 X’s in
this matrix (≥n-f rows, n-f X’s in each row).

Distributed Computing Group Roger Wattenhofer 227

Proof: Matrix

• Lemma 1: There are at least f+1 rows
where at least f+1 cells have an “X”.

• Proof: Suppose by contradiction that
this is not the case. Then the
number of X is bounded from above
by f·(n-f) + (n-f)·f, …

Few rows have many X All other rows have at most f X

Distributed Computing Group Roger Wattenhofer 228

Proof: Matrix

|X| · 2f(n-f)
we use 3f < n 2f < n-f

< (n-f)2

but we know that |X| ≥ (n-f)2

· |X|.
A contradiction!

Distributed Computing Group Roger Wattenhofer 229

Proof: The set W
• Let W be the set of local coins where the

rows in the matrix have more than f X’s.
• Lemma 2: All local coins in the set W are

seen by all processes (that terminate).
• Proof: Let w ∈ W be such a local coin.

With Lemma 1 we know that w is at least
in f+1 seen sets. Since each process must
see at least n-f seen sets (before
terminating), these sets overlap, and w
will be seen.

Distributed Computing Group Roger Wattenhofer 230

Proof: End game
• Theorem: With constant probability all

processes decide 0, with constant
probability all processes decide 1.

• Proof: With probability (1-1/n)n ≈ 1/e all
processes choose ci = 1, and therefore all
will decide 1.

• With probability 1-((1-1/n)|W|) there is at
least one 0 in the set W. Since |W| ≈ n/3
this probability is constant. Using Lemma
2 we know that in this case all processes
will decide 0.

Distributed Computing Group Roger Wattenhofer 231

Back to Randomized Consensus

• Plugging the shared coin back into the
randomized consensus algorithm is all we
needed.

• If some of the processes go into 6b and,
the others still have a constant chance
that they will agree on the same shared
coin.

• The randomized consensus protocol
finishes in a constant number of rounds!

Distributed Computing Group Roger Wattenhofer 232

Improvements

• For crash-failures, there is a constant
expected time algorithm which tolerates f
failures with 2f < n.

• For Byzantine failures, there is a constant
expected time algorithm which tolerates f
failures with 3f < n.

• Similar algorithms have been proposed for
the shared memory model.

Distributed Computing Group Roger Wattenhofer 233

Databases et al.

• Consensus plays a vital role in many
distributed systems, most notably in
distributed databases:
– Two-Phase-Commit (2PC)
– Three-Phase-Commit (3PC)

Distributed Computing Group Roger Wattenhofer 234

Summary

• We have solved consensus in a variety
of models; particularly we have seen
– algorithms
– wrong algorithms
– lower bounds
– impossibility results
– reductions
– etc.

Distributed Computing Group Roger Wattenhofer 235

Credits
• The impossibility result (#2) is from

Fischer, Lynch, Patterson, 1985.
• The hierarchy (#3) is from Herlihy, 1991.
• The synchronous studies (#4) are from

Dolev and Strong, 1983, and others.
• The Byzantine studies (#5) are from

Lamport, Shostak, Pease, 1980ff., and
others.

• The first randomized algorithm (#6) is
from Ben-Or, 1983.

Distributed
Computing

Group
Roger Wattenhofer

Questions?

