Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
SS 2007 Prof. R. Wattenhofer / Prof. P. Widmayer / Prof. S. Suri / T. Locher / Y. A. Oswald

Principles of Distributed Computing Exercise 10: Sample Solution

1 Minimum Cut with Fewest Arcs

Consider two mincuts in G, one with k_{1} edges, the other with k_{2} edges and both with capacity C^{*}. Using the transformed capacities, observe that the first cut has capacity $m C^{*}+k_{1}$, the second has capacity $m C^{*}+k_{2}$; so if $k_{1}<k_{2}$, then k_{1} wins.

Consequently the winninig cut among all min cuts in G is the one with fewest edges. Next, suppose there is a sub-optimal cut C, with $C>C^{*}$, but fewer edges $k<k_{1}$.

The value of this cut is

$$
\begin{aligned}
m C+k & \geq m\left(C^{*}+1\right)+k & & /^{*} \text { because } C \geq C^{*}+1 \\
& >m C^{*}+k 1 & & / * \text { because } k_{1}<m
\end{aligned}
$$

Thus, no suboptimal cut beats any optimal cut.

2 Maximum Flow Reduction Algorithm

Compute the mincut C^{*} in G. If you delete k edges from this min cut, the flow shrinks by k units.
Proof: Focus on the cut C^{*}. Initially, this cut has capacity (=number of edges) $\left|C^{*}\right|$. If we delete k edges from it, the cut now has capacity $\left|C^{*}\right|-k$. By the flow capaciy lemma, the max permissible flow through this cut is at most $\left|C^{*}\right|-k$. Because each edge has capacity 1 , the deletion of k edges can reduce the flow by at most k, so this is optimal.

