

SS 2007Prof. R. Wattenhofer / Prof. P. Widmayer / Prof. S. Suri / D. Bilò/ T. Locher / Y. A. Oswald

Principles of Distributed Computing Exercise 12: Sample Solution

We provide a solution for Task 2, which includes a solution for Task 1 as a special case. The construction is the following

- 1) Given G, compute a rooted spanning tree T.
- 2) Set $\alpha = (\epsilon n)/2k$.
- 3) For a node v, let C(v) be the children of v in T.
- 4) The algorithm processes nodes from the bottom on, and computes a weight W(v) for each node as follows.

$$W'(v) = 1 + \sum_{u \in C(v)} W(u).$$

5) If $W'(v) \ge \alpha$, then add v to detector set; and put W(v) = 0. Otherwise, let W(v) = W'(v).

Now we prove that the detector set D output by this algorithm is a weak (ϵ, k) detection set.

Let \mathcal{C} be the set of connected components in $T \setminus D$. First, we note that every connected component in \mathcal{C} has size at most α . If the weight were greater then α , look at the node in this component that is the ancestor of all other nodes in the tree-scan order. Now this node has weight greater than α , which would imply it would have been added to D. A contradiction!

We now show that D is a detection set. So, consider any subset $Z \subset V$ of size at most k. If $Z \cap D$ is non-empty, then we are done. So, assume that $Z \cap D = \emptyset$. Consider two disjoint sets C_1, C_2 , each of size at least $\epsilon \cdot n$, in $G \setminus Z$. We will show that at least one of them contains a vertex of D, which is the witness to the failure.

If D intersects both C_1 and C_2 , we are done. So, assume that C_1 has empty intersection with D. Because $|C_1| \ge \epsilon \cdot n$, there are at least 2k components $A_1, A_2, ..., A_{2k}$ of C that intersect C_1 . In order to disconnect $(C_1 \cap A_i)$ from $G \setminus C_1$ without including any detectors, the adversary must delete at least one element (vertex or edge) from A_i . Hence, he must delete at least 2k > kvertices, which contradicts the definition of Z.