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Principles of Distributed Computing
Exercise 4: Sample Solution

For questions and /or comments, you can write e-mails in English to davide.bilo@di.univaq.it.

1 Greedy algorithm with lookahead

a) The algorithm Look(2) computes one of the following four s — ¢ paths
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b)

The solution follows the same line of the proof of Theorem 2 of Kleinberg’s paper. We start
by writing a general formula which will be useful for solving also part (c) of this exercise.
Let S*(u) be the set of points within lattice distance k—1 from u. Let B; be the set of nodes
within lattice distance 27 of t. Without loss of generality, we can assume that B; N S*(u) = ()
(otherwise we will change phase in 1 step). Hence we have

Pr[3 long-range contact from S*(u) to B;] =
= 1 — Pr[A any long-range contact from S*(u) to B;]

=1- H Pr[z has no long-range contact to a node in Bj]
€Sk (u)

=1- H (1 — Pr[z has a long-range contact to a node in B;])
z€Sk(u)
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where the last inequality holds because S*(u) has at least k points within lattice distance
29+2 from B;.

For k = 2 we have that the probability that exists a long-range contact from S?(u) to B; is at
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least 1— (1 — m) >1— (1 — 178 ln(ﬁn)) = 28T (6n) for any constant 1 < ¢ < 255/128,

and n > 1.

Let X; denote the total number of steps spent in phase j,log(logn) < j < logn. We have
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EX; Pr[X; > i] < _c ) ==
; X 2 —E( 1281n 6n)) ;- [n(6n).

Hence, in expectation, the total number of steps spent in phase j decreases by a constant
factor if compared to the total number of steps spent in phase j by algorithm Greedy.

log n

So, if X denotes the total number of steps spent by the algorithm, we have X = Z X,

and so by linearity of expectation we have EX < (14 logn)(1281n(6n)) < as(log n) for a
suitable choice of as.

For k = logn (for simplicity, assume that logn is an integer), the probability that there is a
long-range contact from S'°8"(u) to B; is at least
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Let X; denote the total number of steps spent in phase j,log(logn) < j < logn. We have

00 i—1 00 1 i—1 i
EXj:;Pr[Xj>z Z(l—1+6m> =§_:1<> e

€768

Hence, in expectation, the total number of steps spent in phase j decreases by a factor of
logn if compared to the total number of steps spent in phase j by algorithm Greedy.

log n

So, if X denotes the total number of steps spent by the algorithm, we have X = Z s
and so by linearity of expectation we have

EX < (1+logn)——— < as(logn)

for a suitable choice of as.
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3-dimensional Small-World networks

Any node w is connected to 6 nearest neighbors in the lattice (3 or 4 in the case of nodes on
the boundary). Hence we have
3n—3 3n—3
D du,v) < > (477 +2)70<6 ) 57 <6+ 6In(3n —3) < 61n(9n)
vEU j=1 j=1

where the first inequality holds because the number of nodes at distance j from u is at most
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The set B; contains at least
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nodes within lattice distance 2712 of u. Hence, the message enters B; with probability at
least
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Let X; be the total number of steps spent in phase j,log(log) < i < logn. We have

1—1
EX; Pr[X; >i] < -~ ) —2304In(9n).
; X 2 < g( 23041n(9n)) n(n)

The remaining part of the exercise proceeds along the same line of the proof of Theorem 2
of Kleinberg’s paper.



