
SS 2007 Prof. R. Wattenhofer / Prof. P. Widmayer / Prof. S. Suri / T. Locher / Y. A. Oswald

Principles of Distributed Computing

Exercise 6: Sample Solution

1 Linear Arrow

x1x2

x4 3x
x5

rxxr-1

r1v0rr-1 r4 r2 r3 r5 rr

Figure 1: Linear Arrow: Worst Case

As in the lecture, we consider the length of the path on the tree (linear list) when visiting
all requests in the order in which they are queued by Arrow. This gives exactly the message
complexity of the Arrow protocol. At the beginning, the arrows point to a specific node v0 (the
root of the initial tree). Let the ith request in Arrow’s order be ri and the total number of requests
be r, i.e. Arrow starts at v0 and then visits r1, r2, r3, . . . , rr. In the worst case, Arrow has to
change the side with respect to v0 in every step (see Figure 1 as an example). We want to evaluate
the cost of Arrow for this case. Let xi be the distance (i.e. number of hops) between ri and v0.
We start at v0 and go to r1. This costs x1. From there, we go to r2 which causes additional cost of
x1 + x2. Going from r2 to r3 then costs x2 + x3. In general, going from xi to xi+1 costs xi + xi+1

and therefore, the total cost of Arrow is:

cost(Arrow) = x1 + (x1 + x2) + (x2 + x3) + · · ·+ (xr−1 + xr) = 2
r−1∑

i=1

xi + xr.

The cost of an optimal queueing strategy is at least

cost(Optimal) ≥ xr−1 + xr.

We know that Arrow always visits the nearest of the remaining requests. Therefore, we have that
x1 ≤ x2, x1 + x2 ≤ x3 − x1 and in general

xi + xi+1 ≤ xi+2 − xi. (1)

We sum Inequality (1) over all i from 1 to r − 2 and get

r−2∑

i=1

(xi + xi+1) ≤
r−2∑

i=1

(xi+2 − xi)

x1 + 2
r−2∑

i=2

xi + xr−1 ≤ xr−1 + xr − x1 − x2. (2)



By adding x1 + xr−1 + xr on both sides of (2), we obtain

2
r−1∑

i=1

xi + xr ≤ 2(xr−1 + xr)− x2

cost(Arrow) < 2 · cost(Optimal).

2 Concurrent Arrow

a) The current version of Algorithm 7.8 does not take into account concurrent reads. When
we allow for multiple read operations at the same time, they might all follow the arrows to
a token node (containing the updated version of the shared variable) and thereby traversing
some edges multiple times. In the worst case, there might be O(n) concurrent reads and
the competitive ratio degenerates to O(n). See Figure 2.

u

read(u)

read(u)

read(u)

O(n)

Figure 2: Multiple read requests in the unmodified protocol can access some edge O(n) many
times.

b) In order to ameliorate the problem in (a), we can introduce an additional bit at each node
that records whether some node has already initiated a read request for that subtree. If
another, concurrent read encounters a node where that bit is set, it will wait there until
the first request comes back and then reads the cached copy as in the original protocol. This
way we emulate the sequential access as done in the proof of Theorem 7.9 and obtain a
3-competitive algorithm for concurrent reads (here the writes are still sequential and not
overlapping with the reads).

c) Now we additionally allow one write concurrent with the reads. If we simply want an
algorithm that works, we can reuse the above algorithm and handle writes the same way
as before (Algorithm 7.8).

d) The problem we encounter with that approach is sketched in Figure 3. A linearizable se-
quence of concurrent operations has to uphold the following condition: if o1 terminates
before the start of o2, then o2 has to be after o1 (o1 → o2) in any linearization order.

invalidate

write(u)

read(u)

read(u)#2

#1

Figure 3: A concurrent write with multiple reads can cause consistency problems.

Now consider a situation as in Figure 3. The first read1 operation may well terminate before
the second read2 operation starts (if the write invalidate takes a long time to travel along
the tree), but it will have read the new value unew. The read2 might encounter a cached
copy uold before invalidation. So on one hand we have read1 → read2 (with perhaps the
write in between) due to the linearizability condition, on the other hand we should have
read2 → write→ read1 because read1 obtains the new value after the write and read2

still has the older value before the write. Therefore, our current version of the algorithm
is not linearizable.

The solution to the described consistency problem is to split the write into two phases at
the expense of one additional message complexity. When a node wants to execute a write,

2



it first sends an invalidation message to all the cached copies in the tree. Then it waits for a
response from all children (essentially an echo on the [cached copies] tree) before it actually
writes the new value. This will introduce one more message per edge and the competitive
ratio of our concurrent multiple-reads/single-write algorithm is now 4.

e) When dealing with multiple write requests concurrently, we need to take care to decide
which write actually gets to write the value and which ones will simply be ignored. Consider
two writes meeting in their invalidation phase: one of them wins (somehow) and can
continue invalidating the cache tree; the other one will turn back around and echo to the
source that it has lost and cannot write its value. The winning write will still have to
invalidate the subtree of the losing node since somewhere there might be another write
that thinks it has won. In that case, an edge might be invalidated more than once.

3


