ETH

Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
SS 2007 Prof. R. Wattenhofer / Prof. P. Widmayer / Prof. S. Suri / T. Locher / Y. A. Oswald

Principles of Distributed Computing Exercise 7: Sample Solution

1 Pancake Networks

Generally, observe that $N=\left|V\left(P_{n}\right)\right|=n!\in O\left(n^{n}\right) \Rightarrow n \in O\left(\frac{\log N}{\log \log N}\right)$.
a) See Figure 1. For drawing P_{n}, first draw n copies of P_{n-1}, each of which will have some $j \in[n]$ fixed as the last vertex. Then there are $(n-2)$! nodes of such a P_{n-1} connected to the same ($n-1$)-dimensional pancake. To see this, fix v_{1} and v_{n}, the remaining node combinations in the middle will be the link between pancake $P_{n-1} \mid v_{n}$ and $P_{n-1} \mid v_{1}$. There are $n-1$ such sets in $P_{n-1} \mid v_{n}$, each connecting with another $(n-1)$-dimensional pancake.

Figure 1: Pancake graphs for $n=2,3,4$.
b) Let us look at the second, more intuitive definition (Eq. (3)). Basically, it states that for every node, there exists exactly one edge for every distinct prefix reversal. So the node degree of P_{n} can be stated as follows: how many non-trivial prefix reversals are there for a sequence of n nodes? Answer: $n-1$ with edges e_{2}, \ldots, e_{n}. Succinctly,

$$
\operatorname{deg}(v)=n-1 \quad \forall v \in V\left(P_{n}\right) .
$$

Thus the degree of an N-node pancake graph is in $O(\log N / \log \log N)$.
c) To give an upper bound on the diameter, we need to determine in how many steps, at most, we can go from one node to any other node. Say we want to get from node $v=v_{1} v_{2} \ldots v_{n}$ to node $w=w_{1} w_{2} \ldots w_{n}$. As with all hypercube-like graphs, we will proceed by correcting one "coordinate" at a time. In this case, we start at the back. Since the nodes are all permutations, there will exist a v_{j} such that $v_{j}=w_{n}$. Now take the edges $v \rightarrow e_{j} \rightarrow e_{n}$ to get to node $v^{(1)}=v_{N} \ldots v_{j+1} v_{1} v_{2} \ldots v_{j-1} w_{n}$. We can relable the indices of $v^{(1)}$ to go again from 1 to $n-1$, leave w_{n} fixed, find the index j with $v_{j}=w_{n-1}$, and take the edges $v^{(1)} \rightarrow e_{j} \rightarrow e_{n-1}$. Thus, by induction, we need at most 2 edges per correct target index, and we are done after $n-1$ steps. Therefore,

$$
D\left(P_{n}\right) \leq 2(n-1)
$$

that is, the diameter of P_{n} is in $O(\log N / \log \log N)$.
Gates and Papadimitriou [1] have also shown that this is asymptotically optimal, that is,

$$
D\left(P_{n}\right) \geq n
$$

d) To show that P_{n} is Hamiltonian, we proceed by induction on n. We will actually show the following stronger claim: In P_{n}, there exists a Hamiltonian path from $12 \ldots(n-1) n$ to $n(n-1) \ldots 21$ and the cycle is completed by using edge e_{n}. Observe that since in P_{n} the graph looks the same from every vertex, this also holds for any given vertex $v_{1} v_{2} \ldots v_{n}$.
For $n=3$: by direct observation, we have the path $123 \rightarrow 213 \rightarrow 312 \rightarrow 132 \rightarrow 231 \rightarrow 321$ and the final edge $321 \rightarrow 123$.
Assume that P_{n-1} has such a Hamiltonian path H_{n-1} from $v_{1} v_{2} \ldots v_{n-1}$ to $v_{n-1} \ldots v_{2} v_{1}$. Then we can construct a Hamiltonian path in P_{n} by concatenating the Hamiltonian paths of the $n P_{n-1}$ subgraphs as follows:

$$
\begin{gathered}
a_{n}=12 \ldots(n-1) n \rightarrow H_{n-1} \rightarrow(n-1) \ldots 21 n=b_{n} \\
b_{n} \rightarrow e_{n} \rightarrow a_{n-1} \\
a_{n-1}=n 12 \ldots(n-2)(n-1) \rightarrow H_{n-1} \rightarrow n-2 \ldots 1 n(n-1)=b_{n-1} \\
b_{n-1} \rightarrow e_{n} \rightarrow a_{n-2} \\
\vdots \\
a_{2}=3 \ldots(n-1) n 12 \rightarrow H_{n-1} \rightarrow 1 n(n-1) \ldots 32=b_{2} \\
b_{2} \rightarrow e_{n} \rightarrow a_{1} \\
a_{1}=2 \ldots(n-1) n 1 \rightarrow H_{n-1} \rightarrow n(n-1) \ldots 21=b_{1}
\end{gathered}
$$

and we complete the cycle with the final $b_{1} \rightarrow a_{n}$ edge. Or, more formally, set

$$
\begin{aligned}
a_{i} & =(i+1)(i+2) \ldots n 1 \ldots(i-1) i \\
b_{i} & =(i-1) \ldots 1 n \ldots(i+2)(i+1) i
\end{aligned}
$$

using $n+1=1$ and $1-1=n$. Then, since the nth coordinate is fixed, the Hamilitonian path H_{n-1} from a_{i} to b_{i} is completely contained in $n-1$ dimensions. Its existence is guaranteed by the induction hypothesis. Thus, the Hamiltonian path in n dimensions is given by

$$
a_{n} \stackrel{H_{n-1}}{\cdots} b_{n} \rightarrow a_{n-1} \stackrel{H_{n-1}}{\cdots} b_{n-1} \rightarrow a_{n-2} \ldots a_{2} \stackrel{H_{n-1}}{\cdots} b_{2} \rightarrow a_{1} \stackrel{H_{n-1}}{\cdots} b_{1} \rightarrow a_{n}
$$

where $a_{n}=12 \ldots(n-1) n$ and $b_{1}=n(n-1) \ldots 21$ as required in the claim.

References

[1] W. H. Gates, C. H. Papadimitriou, Bounds for sorting by prefix reversal, Discrete Math. 27, (1979), 47-57.

