
Principles of Distributed Computing
Roger Wattenhofer

8 Basic Network Topologies

(With thanks to Christian Scheideler, Johns Hopkins University, for a preliminary version of this text.)

In this chapter we will introduce some popular families of network topologies. Many of these
topologies are used in classic parallel computers or telecommunication networks, or more recently in
the emerging area of peer-to-peer computing.

The most basic network topologies used in practice are trees, cycles, grids and tori. Many other
suggested networks are simply combinations or derivatives of these. The advantage of trees is that the
path selection problem is very easy: for every source-destination pair there is only one possible simple
path. However, since the root of a tree is usually a severe bottleneck, so-calledfat treeshave been
used. These trees have the property that every edge connecting a nodev to its parentu has a capacity
that is equal to all leaves of the subtree routed atv. See Figure 1 for an example.
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Figure 1: The structure of a fat tree.

Fat trees belong to a family of networks that require edges of non-uniform capacity to be efficient.
Easier to build are networks with edges of uniform capacity. This is usually the case for grids and
tori. Unless explicitly mentioned, we will treat all edges in the following to be of capacity 1. In the
following, [x] means the set{0, 1, . . . , x− 1}.

Definition 8.1 (Torus, Mesh) Let m, d ∈ IN. The(m, d)-meshM(m, d) is a graph with node set
V = [m]d and edge set

E =

{
{(ad−1 . . . a0), (bd−1 . . . b0)} | ai, bi ∈ [m],

d−1∑

i=0

|ai − bi| = 1

}
.

The (m, d)-torusT (m, d) is a graph that consists of an(m, d)-mesh and additionally wrap-around
edges from(ad−1 . . . ai+1(m − 1) ai−1 . . . a0) to (ad−1 . . . ai+1 0 ai−1 . . . a0) for all i ∈ [d] and all
aj ∈ [m] with j 6= i. M(m, 1) is also called aline, T (m, 1) a cycle, and M(2, d) = T (2, d) a
d-dimensional hypercube.
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Figure 2: The structure ofM(m, 1), T (4, 2), andM(2, 3).

Figure 2 presents a linear array, a torus, and a hypercube.
The hypercube is a very important class of networks, and many derivatives, the so-calledhyper-

cubic networks, have been suggested for it. Among these are the butterfly, cube-connected-cycles,
shuffle-exchange, and de Bruijn graph. We start with the butterfly, which is basically a rolled out
hypercube.

Definition 8.2 (Butterfly) Let d ∈ IN. Thed-dimensional butterflyBF (d) is a graph with node set
V = [d + 1]× [2]d and an edge setE = E1 ∪ E2 with

E1 = {{(i, α), (i + 1, α)} | i ∈ [d], α ∈ [2]d}
and

E2 = {{(i, α), (i + 1, β)} | i ∈ [d], α, β ∈ [2]d, α andβ differ

only at theith position} .

A node set{(i, α) | α ∈ [2]d} is said to formlevel i of the butterfly. Thed-dimensional wrap-around
butterflyW-BF(d) is defined by taking theBF (d) and identifying leveld with level 0.

Figure 3 shows the 3-dimensional butterflyBF (3). TheBF (d) has(d + 1)2d nodes,2d · 2d edges
and degree 4. It is not difficult to check that combining the node sets{(i, α) | i ∈ [d]} into a single
node results in the hypercube.
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Figure 3: The structure of BF(3).

Next we define the cube-connected-cycles network. It only has a degree of 3 and it results from
the hypercube by replacing the corners by cycles.
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Definition 8.3 (Cube-Connected-Cycles)Letd ∈ IN. Thecube-connected-cyclesnetwork CCC(d) is
a graph with node setV = {(a, p) | a ∈ [2]d, p ∈ [d]} and edge set

E =
{
{(a, p), (a, (p + 1) modd)} | a ∈ [2]d, p ∈ [d]

}

∪
{
{(a, p), (b, p)} | a, b ∈ [2]d, p ∈ [d], a = b except forap

}

Two possible representations of a CCC can be found in Figure 4.
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Figure 4: The structure of CCC(3).

The shuffle-exchange is yet another way of transforming the hypercubic interconnection structure
into a constant degree network.

Definition 8.4 (Shuffle-Exchange)Letd ∈ IN. Thed-dimensional shuffle-exchangeSE(d) is defined
as an undirected graph with node setV = [2]d and an edge setE = E1 ∪ E2 with

E1 = {{(ad−1 . . . a0), (ad−1 . . . ā0)} | (ad−1 . . . a0) ∈ [2]d, ā0 = 1− a0}
and

E2 = {{(ad−1 . . . a0), (a0ad−1 . . . a1)} | (ad−1 . . . a0) ∈ [2]d} .

Figure 5 shows the 3- and 4-dimensional shuffle-exchange graph.

Definition 8.5 (DeBruijn) Theb-ary DeBruijn graph of dimensiond DB(b, d) is an undirected graph
G = (V, E) with node setV = {v ∈ [b]d} and edge setE that contains all edges{v, w} with the
property thatw ∈ {(x, vd−1, . . . , v1) : x ∈ [b]}, wherev = (vd−1, . . . , v0).

Two examples of a DeBruijn graph can be found in Figure 6.
One important goal in choosing a topology for a network is that it has a small diameter. The

following theorem presents a lower bound for this.
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Figure 5: The structure of SE(3) and SE(4).
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Figure 6: The structure ofDB(2, 2) andDB(2, 3).

Theorem 8.6 Every graph of maximum degreed > 2 and sizen must have a diameter of at least
b(log n)/(log(d− 1))c − 1.

Proof. Suppose we have a graphG = (V,E) of maximum degreed and sizen. Start from any node
v ∈ V . In a first step at mostd other nodes can be reached. In two steps at mostd · (d− 1) additional
nodes can be reached. Thus, in general, in at mostk steps at most

1 +
k−1∑

i=0

d · (d− 1)i = 1 + d · (d− 1)k − 1

(d− 1)− 1
≤ d · (d− 1)k

d− 2

nodes (includingv) can be reached. This has to be at leastn to ensure thatv can reach all other nodes
in V within k steps. Hence,

(d− 1)k ≥ (d− 2) · n
d

⇔ k ≥ logd−1((d− 2) · n/d) .

Sincelogd−1((d− 2)/d) > −2 for all d > 2, this is true only ifk ≥ blogd−1 nc − 1. uu
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