The Web as a graph
measurements, models, and methods

J. Kleinberg, R. Kumar, P. Raghavan,
S. Rajagopalan, A. Tomkins; 1999

Michelle Ackermann <mackerma@student.ethz.ch>
Seminar of Distributed Computing WS 03/04

Overview
- Introduction
- Algorithms
- Measurements
- Model
- Discussion

1. Introduction
- The Web graph is a directed graph of nodes (pages) and directed edges (hyperlinks)
- Several 100 million nodes (grows exponentially in time)
- Today: more than two billion nodes
- Average node has 7 hyperlinks

Reasons to study Web graph
- Improve Web search algorithms
- Topic classification
- Topic enumeration
- Growth of the Web and behavior of users is becoming a serious commercial interest

2. Algorithms
- HITS algorithm searches for high-quality pages on a topic query
- Topic enumeration algorithm enumerates all topics (communities) of the Web graph

Terminology
- Authoritative pages are focused on a particular topic
- Hub pages contain links to relevant pages on the topic

node (pages) and directed edges (hyperlinks)
Hubs Authorities
The HITS algorithm

- Hypertext-induced topic selection
- Reveals the most relevant pages on a search topic
- Sampling step
- Weight-propagation step

Weight-propagation step

- Extract good hubs and authorities from the base set
- Each page p has
 - authority weight x_p
 - hub weight y_p
- Pages of large hub weights (good hubs) point to pages of large authority weights (good authorities)

Sampling step

- Construct a subgraph expected to be rich in relevant, authoritative pages
- Keyword query to collect root set (~200 pages)
- Expand to base set (1000-3000 pages) by including all pages that link to or are linked by a page in the root set
- Base set contains a large number of authoritative pages

Updating weights

- Increase authority weight if page is pointed to by many good hubs:
 $$x_p = \sum_{i:p} y_i$$
- Increase hub weight if page points to many good authorities:
 $$y_p = \sum_{p:q} x_q$$

More mathematical...

- Adjacency matrix A with entries (i,j):
 - 1 if page i links to page j
 - 0 otherwise
- $x = (x_1, x_2, ..., x_n)$
- $y = (y_1, y_2, ..., y_n)$
- new update rules:
 - $x \leftarrow A^T y$
 - $y \leftarrow A x$

...Power iteration

- $x \leftarrow A^T y \leftarrow A^T A x = (A^T A) x$
- $y \leftarrow A x \leftarrow A A^T y = (A A^T) y$
- Multiple iterations \rightarrow Power iteration
 - k iterations $\rightarrow (A^T A)^k x$
 - x converges to principal eigenvector of $A^T A$
Conclusion

- Output list contains
 - pages with the largest hub weights
 - pages with the largest authority weights

- After collecting the root set, the algorithm ignores textual content
 Nevertheless it provides **good search results** for a wide range of queries

Topic enumeration

- Enumerates *all* topics (processes entire graph)
- **Bipartite core** C_{ij} contains a complete *bipartite clique* K_{ij}

 - Intuition: Every well represented topic will contain a bipartite core C_{ij} for some appropriate i and j
 - Enumerate all bipartite cores for some i and j

Elimination-generation Algorithm

- Number of sequential *passes* over the graph
- Pass consists of elimination and generation
- During each pass, the algorithm writes a modified version of the graph to the disk
- Alternately *sort edges by source and destination* (no random access to edges required)

Naive Algorithm

Problems

- Size of search space too large
 - 10^8 nodes $\rightarrow 10^{40}$ possibilities
- Requires random access to edges
 - large fraction of graph must reside in memory

Elimination

- Consider example $C_{4,3}$

- Edges of nodes with out-degree smaller 3 can be deleted because the node cannot participate on the left side

- Nodes with in-degree smaller 4 cannot participate on the right side

Generation

- **Identify nodes** u that barely qualify for a core
- Either output the core or prove that u doesn’t belong to a core, then drop u

- Example: node u with in-degree *exactly* 4 only belongs to a $C_{4,3}$ if the nodes that point to u have a neighborhood intersection of size *at least 3*
Observations

- Experiment: over 90% of the cores are not coincidental and correspond to communities with a definite topic focus
- Challenge: How to organize the discovered communities?
- Other interesting subgraphs: webrings, cliques, directed trees

3. Measurements

- Degree distributions
- Number of bipartite cores
- Connectivity of the graph

We will see that traditional random graph models like $G_{n,p}$ don't explain our observations

Degree distributions

- Measurements show that the in- and out-degrees of the nodes are Zipfian distributed
- Zipfian distribution: probability a node has degree i: $P_i \sim 1/i^\alpha$, $\alpha \approx 2$
- $G_{n,p}$ has a binomial degree distribution:

$$P_i = \binom{n}{i} p^i (1 - p)^{n-i} \quad (n = 10^5, p = \frac{7.2}{n})$$

In-degree distribution

Number of bipartite cores

- Experiment:
 - over 100 million pages
 - i ranging from 3 to 6
 - j ranging from 3 to 9
- Result: number of C_{ij} in the Web graph
 - over 100,000 cores
 - $i=3, j=3$: $\approx 40,000$ cores
 - $i=6, j=9$: $\approx 1,000$ cores
Bipartite cores in a random graph

Number of C_{ij} in $G_{n,p}$, $np = 7.2$ (outdegree):

$$\binom{n}{i} \binom{n}{j} p^i (1-p)^{n-i-j} \approx \frac{n^{i+j}}{n^n}$$

which is about 0 for $ij > i + j$

Connectivity of the Web

- Bowtie shape
- Strongly connected core (SCC): every page can reach every other by a path (average 20 links)
- IN-pages: can reach the core
- OUT-pages: can be reached by the core
- Scale-free: subgraphs also have the bowtie shape

Connectivity of the Web

4. Model

- Reasons for developing a model
- Requirements
 - A class of random graph models

Reasons for developing a model

- Model structural properties of the graph
 - degrees
 - distribution of C_{ij}
- Predict the behaviour of algorithms on the Web
 - show that an algorithm works well for problems in the model, (but would perform bad on worst-case graphs)
- Make predictions about the shape of the Web graph in the future

Requirements

- Model should have an easy and natural description
- Capture aggregate formation of the graph (not detailed individual behaviour)
- Set of topics evolve from the model (no static set required), the Web is dynamic
- Reflect the measurements we have seen
A class of random graph models

- Some page creators link to other sites without regard to existing topics
- Most page creators link to pages within existing topics of interest
 - find resource list for a topic and include many links from the list in the page
 - copying links
- Random copying as a mechanism to create Zipfian degree distributions

Stochastic processes

- Creation processes C_r and C_e \{ discrete time processes
- Deletion processes D_r and D_e
- C_r creates a node with probability $a_r(t)$
- D_r removes a node with probability $a_d(t)$ and also deletes all incident edges
- D_e deletes an edge with probability $\delta(t)$
- Choose probabilities to reflect growth rates of the Web, half-life of pages, etc.

Edge creation process

- Determine a node v and a number k
- With probability β add edges pointing to k uniformly chosen nodes
- With probability $1-\beta$ copy k edges from a randomly chosen node u
- If the outdegree of u is more than k, choose a random subset of size k
- If the outdegree of u is less than k, copy the edges and choose another node u'

A simple model

- New node created at every time step
- No deletions
- Choose u uniformly at random
- β: new edge points to u
- $1-\beta$: copy the out-link from u

Simulation

- Probability a node has indegree i
 converges to $1/i^\alpha$, $\alpha=1/(1-\beta)$
- Number of cores significantly larger than in a traditional random graph

Challenges

- Study relationship between copying and Zipfian distributions (applications outside the Web: term frequencies, genome, etc.)
- Study properties and evolution of the random graphs generated by the model
- Need efficient algorithms to analyze such graphs because copying generates myriads of dependencies