Compact Routing with Name Independence

Henri Dubois-Ferrière
Distributed Computing Seminar
ETHZ 20/1/2004
1. Introduction and Background
About the Paper and Topic

• Paper: “Compact Routing with Name Independence”
 – Several existing proposals.
 – This one offers best bounds to date (in a particular setting).

• Topic: Compact Routing
 – Reduce size of routing table size, at the cost of suboptimal route lengths.
 – Trade off route lengths for space
 • As opposed to approximate all-pairs shortest paths, which trades off route length for time.
 – Several existing proposals
Historical Context

• Early work on compact routing (~ 1985)
 – Network specific schemes
 • i.e., ring, tree, grid considered in isolation.
• Universal schemes (~ 1989)
 – Worked on general graphs
 – Bounds on average RT size
• More recent work
 – Bounds on maximal RT size
 – Name-independent routing
Compact Routing Taxonomy

- **Node naming:**
 - Name Independent (*harder*): nodes have arbitrary, fixed names with no topological information.
 - Topology Dependent (*easier*): Nodes can be assigned topologically relevant addresses (i.e., internet).

- **Link naming:**
 - Fixed-port (*harder*): outgoing links (ports) at each node have arbitrary, non-topological names.
 - Designer-port (*easier*): ports can be named by the algorithm (i.e., label each port with the name of node on other end)

- **Re-writable vs. fixed packet headers**
 - Notion of read-only packet seems somewhat esoteric…

- **This work is concerned with** name independent, fixed-port compact routing with rewritable headers. (the hardest setup)
Quantities of Interest

- CR scheme is characterized by 3 quantities:
 - Stretch: $\frac{|p(u,v)|}{d(u,v)}$
 - Storage: size of routing tables
 - Packet header size

- Example:
 Shortest-path routing:
 - Stretch 1
 - $O(n\log n)$ routing tables.
 - $O(\log n)$ headers

- Note: Graph considered is weighted and undirected.
Performance of Name-Indep. Schemes

<table>
<thead>
<tr>
<th></th>
<th>Table Size</th>
<th>Header Size</th>
<th>Stretch</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1]</td>
<td>$\tilde{O} \left(n^{1/2} \right)$</td>
<td>$O(\log n)$</td>
<td>2592</td>
</tr>
<tr>
<td>[1]</td>
<td>$\tilde{O} \left(n^{2/3} \right)$</td>
<td>$O(\log n)$</td>
<td>486</td>
</tr>
<tr>
<td>[3]</td>
<td>$\tilde{O} \left(n^{1/2} \right)$</td>
<td>$O(\log n)$</td>
<td>1088</td>
</tr>
<tr>
<td>[3]</td>
<td>$\tilde{O} \left(n^{2/3} \right)$</td>
<td>$O(\log n)$</td>
<td>624</td>
</tr>
<tr>
<td>This paper</td>
<td>$\tilde{O} \left(n^{1/2} \right)$</td>
<td>$O(\log^2 n)$</td>
<td>5</td>
</tr>
<tr>
<td>This paper</td>
<td>$\tilde{O} \left(n^{1/2} \right)$</td>
<td>$O(\log n)$</td>
<td>7</td>
</tr>
<tr>
<td>This paper</td>
<td>$\tilde{O} \left(n^{2/3} \right)$</td>
<td>$O(\log n)$</td>
<td>5</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>$o(n)$</td>
<td>$\log_2 n$</td>
<td>3</td>
</tr>
</tbody>
</table>

- [1]: Awerbuch et al, 1989
- [3]: Awerbuch et al, 1990
- [9]: Gavoille et al, 1997 (any routing scheme using sublinear space has stretch ≥ 3)
2. Name-Independent Compact Routing with Stretch 5
High-level view

• Select “a few” landmark nodes.
• Keep name-independent shortest-path routes to:
 – Subset of “close” nodes
 – All landmarks
• Use topology-dependent shortest-path spanning trees rooted at each landmark, for which there exist small routing tables
• Reuse parts of prior work
 – Result on topology-dep. routing over trees with $O(1)$ tables
 – Result on size of a “well-distributed” landmark set
 – Result on distribution of nodes for lookup
Topology-dependent CR on a Tree

- For any tree T, there is a routing scheme that provides optimal (stretch 1) routes, with:
 - $\tilde{O}(1)$ storage
 - $O(\log^2 n)$ headers

- Note: If we require $\tilde{O}(n^{\frac{1}{2}})$ storage, then we can afford up to $\tilde{O}(n^{\frac{1}{2}})$ such trees in our scheme.

- Prior result from
 - Fraigniaud et al, 2001
 - Thorup et al, 2001
High-level example

- S must route to D
- We have two landmarks
- Nodes have optimal route to each landmark
- Landmarks have optimal route to each node
- The hard part is figuring out:
 - Which landmark to route through
 - What is the topology-dep. address of D in chosen landmark’s tree.
The Landmark Set

• How many?
 – If “too many” (e.g. $O(n)$), storage requirements grow too large (remember each node stores one $\tilde{O}(1)$ table per tree).
 – If “too few”, (e.g. $O(1)$), then avg distance to landmark grows with network size and we will not have constant stretch
 – Therefore we must have at most $\tilde{O}(n^{1/2})$ landmarks.

• Where?
 – Should be spread out “uniformly” – so that every node pair has a landmark which is “close” to their optimal route.
Landmark Set as a Hitting Set

- \(G = (V, E) \): undirected graph of size \(n \)
- \(N(v) \): set of \(v \)'s \(n^{1/2} \) closest nodes ("neighborhood ball")
- Thm. (hitting set): [Lovasz, 1975]
 - There exists a set \(L \) s.t.
 - \(\forall v \in V, L \cap N(v) \neq \emptyset \) (all nodes have nearby landmark)
 - \(|L| = \tilde{O}(n^{1/2}) \) (sublinear size)
 - Exists an algorithm to compute \(L \) in polynomial time

- Our CR scheme makes use of any set of landmarks satisfying this theorem.
- Note: If there are \(\tilde{O}(n^{1/2}) \) landmarks, then we can afford to maintain optimal route entries to each of them
Which landmark to route through?

- So far:
 - $\tilde{O}(n^{1/2})$ landmarks
 - Nodes have optimal routes to each landmark
 - Nodes have optimal routes to nodes in neighborhood ball
 - Most routes will go through a landmark

- Pick landmark which minimizes $d(s,l) + d(l,d)$ ("best" landmark)

- Remark: Can only store "best" landmark for $\tilde{O}(n^{1/2})$ destinations!

- So we need some assignment of which $\tilde{O}(n^{1/2})$ subset of destinations each node knows about
Block Set

• Lemma:
 – Given $G = (V, E)$, $|G| = n$
 – $N(v)$: set of v’s $n^{1/2}$ closest nodes ("neighborhood ball")
 – Blocks: Namespace partitioned into $n^{1/2}$ blocks, each of size $n^{1/2}$. $B_1 \quad B_2 \quad \ldots \quad B_k$
 – There exists an assignment of sets of blocks S_v to each node v such that:
 * $\forall v \in G, \forall B_i (0 \leq i < n^{1/2}), \exists j \in N(v) : B_i \in S_j$
 * $\forall v \in G, |S_v| = O(\log n)$

• Each node v keeps track of the “best” landmark to reach all nodes in S_v. This takes $\tilde{O}(n^{1/2})$ space.
Storage Recap & Analysis

<table>
<thead>
<tr>
<th>Data (at node u)</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Next-hop entries (shortest-path) to all nodes in N(u)</td>
<td>O(n^{1/2}) (Because N(u) contains by construction n^{1/2} closest nodes)</td>
</tr>
<tr>
<td>Next-hop entries (shortest-path) to all landmark nodes.</td>
<td>(\tilde{O}(n^{1/2})) (Because L contains by the hitting set thm (\tilde{O}(n^{1/2})) nodes)</td>
</tr>
</tbody>
</table>
| For each node j in \(S_u\), the triple \((j, l, \text{addr}(j,l))\) where:
 • l minimizes \(d(u,l) + d(l,j)\) over all landmarks
 • \(\text{addr}(j,l)\) is the address of j in tree rooted at l | \(\tilde{O}(n^{1/2})\)
 \((S_u\ contains \(O(\log n)\) blocks, each of size \(O(n^{1/2})\)) |
| For every landmark l, the routing table Tab(u) for the tree \(T_l\) | \(\tilde{O}(n^{1/2})\)
 \((There\ are \(\tilde{O}(n^{1/2})\) landmarks, each routing tables is \(\tilde{O}(1)\)) |
Routing Algorithm I

- Case $d \in N(s)$
- Easy: s can route along stretch-1 path to d
 (remember that we keep routing entries for all nodes in neighborhood)
Routing Algorithm II

• Case $d \notin N(s), d \in S_s$ (s knows which landmark to choose)

• Stretch is 3:
 Call l^* the landmark closest to s.
 Then $d(s,l^*) \leq d(s,d)$ (because $l^* \in N(s)$, and by assumption $d \notin N(s)$)
 $d(s,l) + d(l,d) \leq d(s,l^*) + d(l^*,d)$ (by construction)
 $d(l^*,d) \leq d(s,l^*) + d(s,d) \leq 2d(s,d)$
Routing Algorithm II

- Case $d \not\in N(s), d \not\in S_s$ (s knows which landmark to choose)

 \[d(s,h) \leq d(s,d) \quad \text{(because } h \in N(s), \text{ and by assumption } d \not\in N(s)) \]

 \[d(h,l^*) = d(h,s) + d(s,l^*) \quad \text{(tri. inequality)} \]

 \[\leq 2d(s,d) \]

 \[d(l^*,d) = d(l^*,s) + d(s,d) \quad \text{(tri. inequality)} \]

 \[\leq 2d(s,d) \]

 \[d(s,h) + d(h,l) + d(l,d) \leq 5d(s,d) \]

- Stretch is 5:

 Call l^* the landmark closest to s. Then $d(s,h) \leq d(s,d)$ (because $h \in N(s)$, and by assumption $d \not\in N(s)$)

 \[d(h,l^*) \leq d(h,s) + d(s,l^*) \quad \text{(tri. inequality)} \]

 \[\leq 2d(s,d) \]

 \[d(l^*,d) \leq d(l^*,s) + d(s,d) \quad \text{(tri. inequality)} \]

 \[\leq 2d(s,d) \]

 \[d(s,h) + d(h,l) + d(l,d) \leq 5d(s,d) \]
3. Remaining bits, comments, and conclusion
Bits not covered

• Stretch 7 and other stretch 5 schemes
 – Similar flavor to this one

• Above schemes generalized to provide schemes with different stretch/space tradeoffs
 – $\tilde{O}(k^{2n^{2/k}})$ tables
 – $\tilde{O}(\log^2 n)$ headers
 – $\min\{1 + (k - 1) (2^{k/2} - 2), 16k^2 + 4k\}$

• Method to apply these schemes when node names are picked from an arbitrary namespace (of size larger than n)
Comments and Questions

• Open questions from conclusions
 – Bridge gap to lower bound (stretch 3)
 – Study problem in dynamic context

• Comments:
 – Scheme is flat (non-hierarchical) in terms of storage, but not in terms of load (landmarks get more traffic)
 – After first lookup, can we take shorter route?
 – Maybe node names could be considered as data ids, in which case this problem (and solution) could be cast in a p2p setting?
 – Would this work if the name-space is much larger than $|G|$, i.e. each node has many labels attached to it? (we would then be close to the p2p setup)