
Chapter 3
TRANSPORT

Computer Networks
Winter 2003 / 2004

Distributed
Computing

Group

Distributed Computing Group Computer Networks R. Wattenhofer 3/2

Overview

• Transport layer services
• Multiplexing/Demultiplexing
• Connectionless transport: UDP
• Principles of reliable data transfer
• Connection-oriented transport: TCP

– reliable transfer
– flow control
– connection management

• Principles of congestion control
• Introduction to Queuing Theory
• TCP congestion control

Distributed Computing Group Computer Networks R. Wattenhofer 3/3

Transport services and protocols

• provide logical communication
between application processes
running on different hosts

• transport protocols run in end
systems

• transport vs. network layer
services
– network layer

• data transfer between end
systems

– transport layer
• data transfer between

processes
• relies on, enhances,

network layer services

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Distributed Computing Group Computer Networks R. Wattenhofer 3/4

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end transport

Transport-layer protocols

• Internet transport services
– reliable, in-order unicast

delivery (TCP)
• congestion control
• flow control
• connection setup

– unreliable (“best-effort”),
unordered unicast or multicast
delivery (UDP)

• Services not available
– real-time / latency guarantees
– bandwidth guarantees
– reliable multicast

Distributed Computing Group Computer Networks R. Wattenhofer 3/5

application
transport
network

M
P2

application
transport
network

Multiplexing/Demultiplexing

• Segment: unit of data
exchanged between
transport layer entities

• a.k.a. TPDU: transport
protocol data unit

receiver

Ht
Hn

Demultiplexing: delivering
received segments to correct
application layer processes

segment

segment M
application
transport
network

P1
M

M M
P3 P4

segment
header

application-layer
data

Distributed Computing Group Computer Networks R. Wattenhofer 3/6

multiplexing/demultiplexing:
• based on sender, receiver port

numbers, IP addresses
• source, destination port numbers

in each segment
• recall: well-known port numbers

for specific applications

gathering data from multiple
application processes,
enveloping data with header
(later used for demultiplexing) source port # dest port #

32 bits

application
data

(message)

other header fields

TCP/UDP segment format

Multiplexing:

Multiplexing/Demultiplexing

Distributed Computing Group Computer Networks R. Wattenhofer 3/7

host A server B
source port: x
dest. port: 23

source port:23
dest. port: x

port use: simple telnet app

Web client
host A

Web
server B

Web client
host C

Source IP: C
Dest IP: B

source port: x
dest. port: 80

Source IP: C
Dest IP: B

source port: y
dest. port: 80

port use: Web server

Source IP: A
Dest IP: B

source port: x
dest. port: 80

Multiplexing/Demultiplexing: Examples

Distributed Computing Group Computer Networks R. Wattenhofer 3/8

UDP: User Datagram Protocol

• RFC 768
• “no frills,” “bare bones”

Internet transport protocol
• “best effort” service, UDP

segments may be
– lost
– delivered out of order to

application
• UDP is connectionless

– no handshaking between
UDP sender and receiver

– each UDP segment handled
independently of others

Why is there a UDP?
• no connection establishment

(which can add delay)
• simple: no connection state at

sender, receiver
• small segment header
• no congestion control: UDP can

blast away as fast as desired

Distributed Computing Group Computer Networks R. Wattenhofer 3/9

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

UDP Segment Structure

• often used for streaming
multimedia apps
– loss tolerant
– rate sensitive

• other UDP uses
– DNS
– SNMP
– [Why?]

• reliable transfer over UDP
– add reliability at

application layer
– application-specific

error recovery

Distributed Computing Group Computer Networks R. Wattenhofer 3/10

UDP checksum

Sender
• treat segment contents as

sequence of 16-bit integers
• checksum: 1’s complement

sum of addition of
segment contents

• sender puts checksum
value into UDP checksum
field

Receiver
• add all 16-bit integers (including

checksum)
• check if computed sum is “11…1”

– NO → error detected
– YES → no error detected.

But maybe errors
nonetheless?!?
More later …

Goal: detect “errors” (e.g., flipped bits) in transmitted segment

Distributed Computing Group Computer Networks R. Wattenhofer 3/11

Principles of Reliable data transfer

• Important in applications, transport, link layers
• On the top 10 list of important networking topics...
• Characteristics of unreliable channel will determine complexity of

reliable data transfer protocol (rdt)

Distributed Computing Group Computer Networks R. Wattenhofer 3/12

Reliable data transfer: getting started

send
side

receive
side

rdt_send(): called from above,
(by application). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt,
to transfer packet over

unreliable channel to receiver

rdt_rcv(): called when packet
arrives on rcv-side of channel

deliver_data(): called by
rdt to deliver data to upper

Distributed Computing Group Computer Networks R. Wattenhofer 3/13

Reliable data transfer: getting started

We will
• incrementally develop sender, receiver sides of reliable data

transfer protocol (rdt)
• consider only unidirectional data transfer

– but control info will flow on both directions!
• use finite state machines (FSM) to specify sender, receiver

state
1

state
2

event causing state transition
actions taken on state transition

state:
when in this “state”
next state uniquely
determined by next

event

event
actions

Distributed Computing Group Computer Networks R. Wattenhofer 3/14

rdt 1.0: Reliable transfer over a reliable channel

• underlying channel perfectly reliable
– no bit errors
– no loss of packets

• separate FSMs for sender, receiver
– sender sends data into underlying channel
– receiver reads data from underlying channel

Distributed Computing Group Computer Networks R. Wattenhofer 3/15

rdt 2.0: channel with bit errors

• There is no packet loss
• Underlying channel may flip bits in packet

– recall: UDP checksum to detect bit errors
• Question: How do we recover from errors?

– human scenarios?
– acknowledgements (ACKs): receiver explicitly tells sender that packet

received OK
– negative acknowledgements (NAKs): receiver explicitly tells sender that

packet had errors
– sender retransmits packet on receipt of NAK

• New mechanisms in rdt 2.0 (beyond rdt 1.0):
– error detection
– receiver feedback: control messages (ACK,NAK)

receiver → Sender
– retransmission

Distributed Computing Group Computer Networks R. Wattenhofer 3/16

rdt 2.0: FSM specification

sender FSM receiver FSM

Distributed Computing Group Computer Networks R. Wattenhofer 3/17

rdt 2.0 in action (no errors)

sender FSM receiver FSM

Distributed Computing Group Computer Networks R. Wattenhofer 3/18

rdt 2.0 in action (error scenario)

sender FSM receiver FSM

Distributed Computing Group Computer Networks R. Wattenhofer 3/19

rdt 2.0 has a fatal flaw!

• What happens if ACK/NAK
is corrupted?
– sender doesn’t know what

happened at receiver!
– can’t just retransmit: possible

duplicate

• What to do?
– sender ACKs/NAKs receiver’s

ACK/NAK? What if sender
ACK/NAK lost?

– retransmit, but this might
cause retransmission of
correctly received packet!

Handling duplicates
• sender adds sequence number to

each packet
• sender retransmits current packet

if ACK/NAK garbled
• receiver discards (doesn’t deliver

up) duplicate packet

Sender sends one packet,
then waits for receiver
response

stop and wait

Distributed Computing Group Computer Networks R. Wattenhofer 3/20

rdt 2.1: handles garbled ACK/NAKs (sender side)

Distributed Computing Group Computer Networks R. Wattenhofer 3/21

rdt 2.1: handles garbled ACK/NAKs (receiver side)

Distributed Computing Group Computer Networks R. Wattenhofer 3/22

rdt 2.1: Discussion

Sender
• sequence number added to

packet
• two sequence numbers (0,1) are

sufficient. Why?
• must check if received ACK/NAK

corrupted
• twice as many states because

state must “remember” whether
“current” packet has sequence
number 0 or 1.

Receiver
• must check if received packet is

duplicate
– state indicates whether 0 or 1

is expected packet sequence
number

• note: receiver cannot know if its
last ACK/NAK was received OK
by sender

Distributed Computing Group Computer Networks R. Wattenhofer 3/23

rdt 2.2: a NAK-free protocol

• same functionality as
rdt 2.1, using ACKs only

• instead of NAK, receiver sends
ACK for last packet received
OK
– receiver must explicitly

include sequence number
of packet being ACKed

• duplicate ACK at sender
results in same action as NAK:
retransmit current packet

sender
FSM

!

Distributed Computing Group Computer Networks R. Wattenhofer 3/24

rdt 3.0: channels with errors and loss

• New assumption: underlying
channel can also lose packets
(data or ACKs)
– checksum, seq. #, ACKs,

retransmissions will be of
help, but not enough

Q: How can we deal with loss?
– sender waits until certain data

or ACK lost, then retransmits
– yuck: drawbacks?

• Approach: sender waits
“reasonable” amount of time for
ACK

• Sender retransmits if no ACK
received in this time

• If packet (or ACK) just delayed (but
not lost):
– retransmission will be

duplicate, but use of sequence
numbers already handles this

– receiver must specify
sequence number of packet
being ACKed

• Requires countdown timer

Distributed Computing Group Computer Networks R. Wattenhofer 3/25

rdt 3.0 (sender side)

Distributed Computing Group Computer Networks R. Wattenhofer 3/26

rdt 3.0 in action

Distributed Computing Group Computer Networks R. Wattenhofer 3/27

rdt 3.0 in action

Distributed Computing Group Computer Networks R. Wattenhofer 3/28

rdt 3.0 in action (more problems?)

send pkt0

timeout
re-send pkt0

rcv ACK0
send pkt1

rcv ACK1
send new pkt0

rcv ACK0
send new pkt1

rcv pkt0; send ACK0 (slow)

rcv pkt0; send ACK0 (again?)

rcv pkt1; send ACK1

rcv pkt0; send ACK0

now everything seems to be OK… Problem: FIFO channel

x

Distributed Computing Group Computer Networks R. Wattenhofer 3/29

Performance of rdt 3.0

• Back of envelope calculation of performance of rdt 3.0
• example: 1 Gbps link, 15 ms propagation delay, 1kB packet

[b=bit, B=Byte, Gbps = Gb/s]

• With the propagation delay, the acknowledgement arrives
30.008ms later (assuming that nodal and queuing delay are 0)

• That is, we only transmit 1kB/30.008ms instead of 1Gb/s

• network protocol limits use of physical resources!

Distributed Computing Group Computer Networks R. Wattenhofer 3/30

rdt3.0: stop-and-wait operation

first packet bit transmitted, t = 0

sender receiver

RTT

last packet bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives,
send ACK

ACK arrives, send next
packet, t = RTT + L / R

Distributed Computing Group Computer Networks R. Wattenhofer 3/31

Pipelined protocols

• Pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged
packets
– range of sequence numbers must be increased
– buffering at sender and/or receiver

• There are two generic forms of pipelined protocols
– go-Back-N and selective repeat

Distributed Computing Group Computer Networks R. Wattenhofer 3/32

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives
last packet bit arrives, send ACK

ACK arrives, send next
packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

Increase utilization
by a factor of 3!

Distributed Computing Group Computer Networks R. Wattenhofer 3/33

Go-Back-N

Sender
• Multiple-bit sequence number in packet header
• “Window” of up to N consecutive unack’ed packets allowed

• ACK(n): ACKs all packets up to and including sequence number n
– a.k.a. cumulative ACK
– sender may get duplicate ACKs

• timer for each in-flight packet
• timeout(n): retransmit packet n and all higher seq# packets in window

Distributed Computing Group Computer Networks R. Wattenhofer 3/34

Wait start_timer
udt_send(sndpkt[base])
udt_send(sndpkt[base+1])
…
udt_send(sndpkt[nextseqnum-1])

timeout

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextseqnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum++
}

else
refuse_data(data)

base = getacknum(rcvpkt)+1
If (base == nextseqnum)

stop_timer
else

start_timer

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base=1
nextseqnum=1

rdt_rcv(rcvpkt)
&& corrupt(rcvpkt)

Λ

GBN: sender extended FSM

Distributed Computing Group Computer Networks R. Wattenhofer 3/35

GBN: receiver extended FSM

Receiver (simple version)
• ACK-only: always send ACK for correctly-received pkt with highest in-

order sequence number
– may generate duplicate ACKs
– need only to remember the expected sequence number

• out-of-order packet:
– discard (don’t buffer) → no receiver buffering!
– re-ACK packet with highest in-order sequence number

Wait

udt_send(sndpkt)
default

rdt_rcv(rcvpkt)
&& notcurrupt(rcvpkt)
&& hasseqnum(rcvpkt,expectedseqnum)

extract(rcvpkt,data)
deliver_data(data)
sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedseqnum++

expectedseqnum=1
sndpkt =

make_pkt(expectedseqnum,ACK,chksum)

Λ

Distributed Computing Group Computer Networks R. Wattenhofer 3/36

GBN in action

Distributed Computing Group Computer Networks R. Wattenhofer 3/37

Selective Repeat

• receiver individually acknowledges all correctly received
packets
– buffers packets, as needed, for eventual in-order delivery

to upper layer
• sender only resends packets for which ACK not received

– sender timer for each unACKed packet
• sender window

– N consecutive sequence numbers
– again limits sequence numbers of sent, unACKed pkts

Distributed Computing Group Computer Networks R. Wattenhofer 3/38

Selective repeat: sender, receiver windows

Distributed Computing Group Computer Networks R. Wattenhofer 3/39

Get data from layer above
• if next available sequence

number in window, send packet

timeout(n)
• resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N]
• mark packet n as received
• if n smallest unACKed pkt,

advance window base to next
unACKed sequence number

sender
pkt n in [rcvbase, rcvbase+N-1]
• send ACK(n)
• out-of-order: buffer
• in-order: deliver (also deliver

buffered in-order packets),
advance window to next not-
yet-received packet

pkt n in [rcvbase-N,rcvbase-1]
• ACK(n)

otherwise
• ignore

receiver

Selective repeat

Distributed Computing Group Computer Networks R. Wattenhofer 3/40

Selective repeat in action

Distributed Computing Group Computer Networks R. Wattenhofer 3/41

Selective repeat: dilemma

Example
• sequence numbers: 0…3
• window size = 3

• Receiver sees no
difference in two scenarios
on the right…

• Receiver incorrectly
passes duplicate data as
new in scenario (a)

Q: What is the relationship
between sequence
number size and window
size?

Distributed Computing Group Computer Networks R. Wattenhofer 3/42

• connection-oriented
– handshaking (exchange

of control msgs) to init
sender and receiver state
before data exchange

• full duplex data
– bi-directional data flow in

same connection
– MSS: maximum segment

size
• flow controlled

– sender will not
overwhelm receiver

• RFCs
– 793, 1122, 1323, 2018, 2581

• point-to-point
– one sender, one receiver

• reliable, in-order byte stream
– no “message boundaries”

• pipelined
– send & receive buffers
– TCP congestion and flow control

set window size

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

TCP: Overview

Distributed Computing Group Computer Networks R. Wattenhofer 3/43

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

rcvr window size

ptr urgent datachecksum
FSRPAUhead

len
not

used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK # valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept
(flow control)

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

TCP segment structure

Distributed Computing Group Computer Networks R. Wattenhofer 3/44

TCP sequence numbers and ACKs

Sequence numbers
– byte stream “number”

of first byte in
segment’s data

ACKs
– Sequence number of

next byte expected
from other side

– cumulative ACK

Q How does receiver handle
out-of-order segments?
– TCP spec doesn’t say;

it is up to
implementation!

Host A Host B

Seq=42, ACK=79, data = ‘C’

Seq=79, ACK=43, data = ‘C’

Seq=43, ACK=80

User
types

‘C’

host ACKs
receipt

of echoed
‘C’

host ACKs
receipt of

‘C’, echoes
back ‘C’

time
simple telnet scenario

Distributed Computing Group Computer Networks R. Wattenhofer 3/45

Q: How do we set TCP timeout
value?

• longer than RTT
– note: RTT will vary

• too short
– premature timeout
– unnecessary

retransmissions
• too long

– slow reaction to
segment loss

Q: How to estimate RTT?
• SampleRTT: measured time from

segment transmission until ACK
receipt
– ignore retransmissions,

cumulatively ACKed segments
• SampleRTT will vary, we want

estimated RTT “smoother”
– use several recent measurements,

not just current SampleRTT

TCP Round Trip Time and Timeout

Distributed Computing Group Computer Networks R. Wattenhofer 3/46

Example RTT estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

RT
T

(m
ill

ise
co

nd
s)

SampleRTT Estimated RTT

Distributed Computing Group Computer Networks R. Wattenhofer 3/47

EstimatedRTT = (1-α)·EstimatedRTT + α·SampleRTT

• Exponential weighted moving average
• influence of given sample decreases exponentially fast
• typical value α = 0.125

Setting the timeout

• EstimatedRTT plus “safety margin”
• large variation in EstimatedRTT → larger safety margin

Timeout = EstimatedRTT + 4·Deviation
Deviation = (1-β)·Deviation

+ β·|SampleRTT-EstimatedRTT|

TCP Round Trip Time and Timeout

Distributed Computing Group Computer Networks R. Wattenhofer 3/48

wait
for

event

wait
for

event

event: data received
from application above

event: timer timeout for
segment with seq # y

event: ACK received,
with ACK # y

create, send segment

retransmit segment

ACK processing

TCP: reliable data transfer

• simplified sender, with
– one way data transfer
– no flow control
– no congestion control

49

sender
(simplifi

ed)

NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with

smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

} /* end of loop forever */

Comment:
• SendBase-1: last
cumulatively
ack’ed byte

Example:
• SendBase-1 = 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so
that new data is
acked

Distributed Computing Group Computer Networks R. Wattenhofer 3/50

Host A

Seq=100, 20 bytes data

ACK=100

time
premature timeout

Host B

Seq=92, 8 bytes data

ACK=120

Seq=92, 8 bytes data

S
eq

=9
2

tim
eo

ut

ACK=120

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

lost ACK scenario

Host B

X

Seq=92, 8 bytes data

ACK=100

time

S
eq

=9
2

tim
eo

ut

SendBase
= 100

SendBase
= 120

SendBase
= 120

Sendbase
= 100

TCP: retransmission scenarios

Distributed Computing Group Computer Networks R. Wattenhofer 3/51

Host A

Seq=92, 8 bytes data

ACK=100

loss

tim
eo

ut

Cumulative ACK scenario

Host B

X

Seq=100, 20 bytes data

ACK=120

time

SendBase
= 120

TCP: retransmission scenarios

Distributed Computing Group Computer Networks R. Wattenhofer 3/52

Event

in-order segment arrival,
no gaps,
everything else already ACKed

in-order segment arrival,
no gaps,
one delayed ACK pending

out-of-order segment arrival
higher-than-expect seq. #
gap detected

arrival of segment that
partially or completely fills gap

TCP Receiver action

delayed ACK. Wait up to 500ms
for next segment. If no next segment,
send ACK

immediately send single
cumulative ACK, ACKing both
in-order segments

send duplicate ACK, indicating seq. #
of next expected byte

immediate ACK if segment starts
at lower end of gap

TCP ACK generation (RFC 1122, RFC 2581)

Distributed Computing Group Computer Networks R. Wattenhofer 3/53

Fast Retransmit

• Time-out period often long
– long delay before resending lost packet

• Detect lost segments via duplicate ACKs
– Sender often sends many segments back-to-back
– If segment is lost, there will likely be many duplicate ACKs.

• Hack: If sender receives 3 ACKs for the same data, it supposes that
segment after ACKed data was lost:
– “fast retransmit”: resend segment before timer expires

Distributed Computing Group Computer Networks R. Wattenhofer 3/54

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {

resend segment with sequence number y
}

Fast retransmit algorithm

a duplicate ACK for
already ACKed segment

fast retransmit

Distributed Computing Group Computer Networks R. Wattenhofer 3/55

TCP Flow Control

• RcvBuffer
– size of TCP Receive Buffer

• RcvWindow
– amount of spare room in Buffer

• Receiver
– explicitly informs sender of

(dynamically changing) amount of
free buffer space

– RcvWindow field in TCP segment
• Sender

– keeps the amount
of transmitted,
unACKed data less
than most recently
received RcvWindow

sender won’t overrun
receiver’s buffers by

transmitting too much,
too fast

flow control

Distributed Computing Group Computer Networks R. Wattenhofer 3/56

TCP Connection Management (opening connection)

• Recall: TCP sender, receiver
establish “connection” before
exchanging data segments

• They initialize TCP variables
– Sequence numbers
– buffers, flow control info

(e.g. RcvWindow)
• Client: connection initiator

Socket clientSocket =
new Socket(“host,port”);

• Server: contacted by client
Socket connectionSocket =
welcomeSocket.accept();

Three way handshake

1) client host sends TCP SYN
segment to server
– specifies initial seq. number
– no data

2) server host receives SYN, replies
with SYNACK segment

– server allocates buffers
– specifies server initial seq. #

3) client receives SYNACK, replies
with ACK segment, which may
contain data

Distributed Computing Group Computer Networks R. Wattenhofer 3/57

1) client end system sends TCP
FIN control segment to server

2) server receives FIN, replies with
ACK. Closes connection, sends
FIN.

3) client receives FIN, replies with
ACK. Enters “timed wait” - will
respond with ACK to received
FINs

4) server receives ACK.
Connection closed.

client

FIN

server

ACK

ACK

FIN

closing

closing

closed

tim
ed

 w
ai

t

TCP Connection Management (closing connection)

clientSocket.close();

closed

Distributed Computing Group Computer Networks R. Wattenhofer 3/58

TCP client
lifecycle

TCP server
lifecycle

TCP Connection Management (continued)

Distributed Computing Group Computer Networks R. Wattenhofer 3/59

Principles of Congestion Control

• Different from flow control (both are often mistaken)
• Manifestations

– long delays
(queuing in router buffers)

– lost packets
(buffer overflow at routers)

• Another top 10 problem!

• Example:
– Router with infinite buffer size can handle 1Mb per second.
– There are 10 connections through router with 200kb/s each.
– Delays are growing with time!
– Question: How long are delays if 10 connections have 150kb/s only?

What about 100 kb/s? 90kb/s? 50kb/s? 10kb/s?!?

too many sources
sending too much data

too fast for network
to handle

congestion

Distributed Computing Group Computer Networks R. Wattenhofer 3/60

Excursion to Queuing Theory

• Queuing theory considers a system where “customers” enter, wait, and then
leave.

• For example, banks, parking lots, stores, multi-user operating systems,
router queues, networks of routers.

• There are complete courses for queuing theory.
• We do queuing theory for dummies only.
• Queuing theory studies the following

– Arrival Process (distribution of arrivals)
– Service Process (distribution of process completion)
– Buffer size
– Number of servers
– Service discipline (FIFO, LIFO, etc)
– Queuing networks

Distributed Computing Group Computer Networks R. Wattenhofer 3/61

What we want out of this

• We use queuing theory to determine qualities like
– Average time spent by a customer/packet in

the system or queue
– Average number of customers/packets in

system or queue.
– Probability a customer will have to wait a certain

large amount of time.

The Big Black
Box of delay

(T seconds)

Arriving
customers

Departing
Customers

Distributed Computing Group Computer Networks R. Wattenhofer 3/62

Some terms

• Each customer spends T seconds in the box, representing service time.
• We assume that system was empty at time t = 0.
• Let A(t) be the number of arrivals from time t = 0 to time t.
• Let D(t) be the number of departures.
• Let N(t) represent the number of customers in the system at time t.
• Throughput: average number of customers/messages per second that pass

through the system.

The Big Black
Box of delay

(T seconds)

Arriving
customers

Departing
Customers

A(t)

N(t)= A(t) - D(t)

D(t)

Distributed Computing Group Computer Networks R. Wattenhofer 3/63

Arrival Process

• Let a1 be the 1st arrival in
the system. The 2nd comes
a2 time units later.

• Therefore the nth
customer comes at time
a1 + a2 + a3 + … + an.

a1 a2 a3 a4

A(t)

t

Distributed Computing Group Computer Networks R. Wattenhofer 3/64

T1

T2

T3

T4

a1 a2 a3 a4

A(t)

t

D(t)

Average number in system at time t

N(t)

Distributed Computing Group Computer Networks R. Wattenhofer 3/65

Arrivals, Departures, Throughput

• The average arrival rate λ, up to the time when the nth customer
arrives is n / (a1 + a2 + … + an) = λ customers/sec

• Note the average interarrival rate of customers is the reciprocal of
λ: (a1 + a2 + … + an) /n sec/customer

• Arrival rate = 1/(mean of interarrival time)

• The long-term arrival rate λ is therefore cust./sec.

• Similarly, we can derive throughput µ

• Throughput customers/sec

• Note the average service time is 1/µ.

t
tA

t
)(lim

∞→=λ

Distributed Computing Group Computer Networks R. Wattenhofer 3/66

Example

• We are in line at the bank behind 10 people, and we estimate the
teller taking around 5 minutes/per customer.

• The throughput is the reciprocal of average time in service
= 1/5 persons per minute

• How long will we wait at the end of the queue?
The queue size divided by the processing rate

= 10/(1/5) = 50 minutes.

Distributed Computing Group Computer Networks R. Wattenhofer 3/67

Offered Load (or Traffic Intensity)

• If we have the arrival rate, and the throughput (the rate at which
customers leave), then we can define the offered load ρ as

ρ = λ/µ

• If the offered load is less than 1, and if packets arrive and depart
regularly, then there is no queuing delay.

• If the offered load is less than 1, and packets arrive not quite
regularly (there will be bursts now and then), we will have queuing
delay. However, packets will be serviced eventually.

• Long term offered load greater than (or equal to) one will cause
infinite delay (or dropped packets).

Distributed Computing Group Computer Networks R. Wattenhofer 3/68

Little’s Law

• We have

– the arrival rate λ
– and the average number of customers E[N]

• Little’s law relates the average time spent in the system E[T], to the
arrival rate λ, and the avg number of customers E[N], as follows

• First some examples, then let’s derive it!

E[N] = λ·E[T]

Distributed Computing Group Computer Networks R. Wattenhofer 3/69

Example

• In a bank, customers have an arrival rate of 4 per hour. Customers
are served at a rate of 6 per hour. The average time customers
spend in the bank is 25 minutes.

• Is the system stable?
• What is the average number of customers in the system?

• ρ = λ/µ = (4/60) / (6/60)= 2/3 < 1. Yes, the system is stable!
• E[N]= λE[T] = (4/60)·(25)= 5/3 customers

Distributed Computing Group Computer Networks R. Wattenhofer 3/70

Example (Variations of Little’s Law)

• What is the average queue length, E[Nq]?
• E[Nq] = λE[Q], where E[Q] is the average time spent in queue.
• Customers enter at rate λ = 4/hour.
• We know average service time is 1/µ= 1/(6/60)= 10 min.
• Average time spent in system is 25, thus in queue 25-10=15.
• Average queue length: E[Nq] = λ E[Q] = (4/60)·(15)= 1.

• What is the average number of customers in service, E[Ns]?
• E[Ns] = λE[X], where E[X] = E[T] - E[Q]= 1/µ
• E[Ns] = λ (1/µ) = (4/60)·10 = 2/3 = ρ

• Average in queue 1, average in service 2/3, average in system 5/3.

Distributed Computing Group Computer Networks R. Wattenhofer 3/71

T1

T2

T3

T4

a1 a2 a3 a4

A(t)

t

D(t)

N(t)

Deriving Little: Step 1

The average number in
the system for [0,t0) is

The integral is equivalent
to the averaged sum of
time spent by the first
A(t0) customers.

We look at a special
point in time t0 with
N(t0) = A(t0) – D(t0) = 0.

t0

Distributed Computing Group Computer Networks R. Wattenhofer 3/72

Each customer contributes Ti
time to the integral.

The integral is equivalent to
the averaged sum of times
spent by the first A(t0)
customers.

T1

T2

T3

T4

a1 a2 a3 a4

A(t)

t

D(t)

Deriving Little: Step 2

Distributed Computing Group Computer Networks R. Wattenhofer 3/73

Deriving Little: Step 3

• We extend the last equation by A(t0)/A(t0) to equation (1):

• By definition we have λ = A(t0) / t0.
• We also have

• Then equation (1) is Little’s Law: E[N] = λ·E[T]
• Little’s Law applies to any work-conserving system: one where

customers are serviced in any order, but there is never an idle
period if customers are waiting. It works for FIFO, LIFO, etc.

Distributed Computing Group Computer Networks R. Wattenhofer 3/74

Random Variables & Binomial RV

• Random variables define a real valued function over a sample
space. The value of a random variable is determined by the
outcome of an experiment, and we can assign probabilities to these
outcomes.

• Example: Random variable X of a regular dice:
P[X=i] = 1/6 for any number i=1,2,3,4,5,or 6.

• Suppose a trial can be classified as either a success or failure. For a
RV X, let X=1 for an arrival, and X=0 for a non-arrival, and let p be
the chance of an arrival, with p = P[X=1].

• Suppose we had n trials. Then for a series of trials, a binomial RV
with parameters (n,p) is the probability of having exactly i arrivals
out of n trials with independent arrival probability p:

)1()(ppi
nip ini −

= −

Distributed Computing Group Computer Networks R. Wattenhofer 3/75

Poisson Random Variables

• It is hard to calculate Binomial Random Variables, however, they
can be approximated with Poisson Random Variables.

• With λ = np, the distribution of a Poisson RV is

• The mean is λ
• Given an interval [0,t]. Let N(t) be the number of events occurring

in that interval. (Parameter is λt: n subintervals in [0,t]; the prob of
an event is p in each, i.e., λt =np, since average rate of events is λ
and we have t time.) Without additional derivation, we get

• The number of events occurring in any fixed interval of length t is
stated above. (It’s a Poisson random variable with parameter λt.)

() []
!

i

p i P X i e i
λ λ−= = =

()[()]
!

k
t tP N t k e k

λ λ−= =

Distributed Computing Group Computer Networks R. Wattenhofer 3/76

Exponential Random Variables

• The exponential RV arises in the modeling of the time between
occurrence of events, for example packet inter-arrival times

• Again consider the interval [0,t] with np = λt. What is the probability
that an inter-event time T exceeds t seconds.

• For an exponential random Variable T with parameter λ

• For a Poisson random variable, the time between the events is an
exponentially distributed random variable, and vice versa.

Distributed Computing Group Computer Networks R. Wattenhofer 3/77

Relationship Between RVs

• The interval [0,T] is divided into n sub-intervals.
• The number of packets arriving is a binomial random variable.
• With a large number of trials, it approaches a Poisson RV.

• The number of trials (time units) until the arrival of a packet is a
geometric random variable.

• With a large number of trials, it approaches a exponential RV.

...
0 T

...
0 T

Distributed Computing Group Computer Networks R. Wattenhofer 3/78

Memoryless Property

• The exponential random variable satisfies the “memoryless”
property.

• The probability of having to wait at least h seconds is

• The probability of having to wait h additional seconds given that one
has already waited t seconds, is

ehXP hλ−=>][

Distributed Computing Group Computer Networks R. Wattenhofer 3/79

Kendall Notation

• Queuing systems are classified by a specific notation denoting:
1. The customer arrival pattern
2. The service time distribution

• 1 and 2 can be either M = Markov (Poisson or Exponential),
D = Deterministic, Ek = Erlang with param. k, G = General

3. The number of servers
4. The maximum number of customers in the system (std. = ∞)
5. Calling population size (std. = ∞)
6. Queuing discipline (FIFO, LIFO, etc.; std. = FIFO)

• Examples:
– M/M/1: Markov inter-arrivals, Markov service times, 1 server.
– M/D/c/K: Markov inter-arrivals, deterministic service times, c

servers, K customers can queue.

Distributed Computing Group Computer Networks R. Wattenhofer 3/80

M/M/1 Queue

• The most basic queuing analysis.
• Let p0 be the probability of that

the system is idle.

• The system is defined to be in the equilibrium, so what goes in must
come out. This gives:

• λ = p0·0 + (1-p0)·µ (idle: nobody goes out; not idle: µ go out)
• Then 1-p0 = λ/µ = ρ, thus p0 = 1-ρ.

• With other words, the probability that an M/M/1 system is not idle is
ρ; that’s why ρ is also called the traffic intensity or utility.

μλ

Distributed Computing Group Computer Networks R. Wattenhofer 3/81

M/M/1 Queue

• Since arrival and service process are both Markov, we know that
E[A(t)]= λt and E[D(t)]= µt.

• With some derivation, we can figure out probabilities and expected
means of
– The mean number of customers in the system
– The mean time customers spend in the system
– The mean number queued up
– The mean time spent being queued up

• To do this we are going to set up a state diagram.

Distributed Computing Group Computer Networks R. Wattenhofer 3/82

States

• Let the “state” of our system be equal to the number of customers in
the system.

• The M/M/1 queue is memoryless. This means that the transition to a
new state is independent of the time spent in the current state, all
that matters is the number of customers in the system.

• In the equilibrium, the probability of being in state i is denoted by pi.
The probabilities pi become independent of time..

• (Remark: p0 is the probability that nobody is in the system.)

Distributed Computing Group Computer Networks R. Wattenhofer 3/83

Markovian Models

• For any small interval of time t, there is a small chance of an arrival,
and a small chance of a departure.

• If we make t small enough the chance of both a departure and
arrival is negligible.

0 1

λt

µt

2 3

λt

µt

Distributed Computing Group Computer Networks R. Wattenhofer 3/84

• For the M/M/1 queue, we have infinitely many states and the
following set of transition probabilities between them

• Because we are in the equilibrium (eq, the flow between states (the
transition probabilities) must balance, that is:

(λpi)t = (µpi+1)t → ρ·pi = pi+1

Markov Chain of M/M/1

0 1

λt

µt

2

λt

µt

...

Distributed Computing Group Computer Networks R. Wattenhofer 3/85

What is the mean number of customers?

• We therefore express pi as pi = ρi·p0

• All probabilities must sum up to 1, that is

• We have p0 = 1-ρ (we knew this already). We get pi = ρi(1-ρ)
• This tells us the probability of having i customers in the system.
• We can find the mean easily:

Distributed Computing Group Computer Networks R. Wattenhofer 3/86

M/M/1 summary

• In the equilibrium, the number
of customers in the system is
E[N] = ρ/(1-ρ), as shown in the
chart on the right hand side.

• You can see that the number
grows infinitely as ρ goes to 1.

• We can calculate the mean
time in the system with Little’s
law: E[T] = E[N]/λ = 1/(1-ρ)/µ.

• Since E[X] = 1/µ, one can also
calculate E[Q] easily…

ρ

E[N]

Distributed Computing Group Computer Networks R. Wattenhofer 3/87

Example

• A local pre-school has 1 toilet for all the kids. On average, one
toddler every 7 minutes decides he or she has to use the toilet
(randomly with a Poisson distribution). Kids take an average of 5
minutes using the toilet.

• Is one bathroom enough if kids can hold it in for an unlimited
amount of time? Yes, because ρ = λ/µ = (1/7) / (1/5) < 1.

• If time to get to and from the bathroom is 1 minute, how long will a
kid be gone from class on average?
1+E[T]+1 = 2 + 1/(1-ρ)/µ = 2 + 5 / (1-5/7) = 19.5 minutes.

• George W. Bush visits the pre-school, and needs to go pee. He gets
to the back of the line. He can only hold it in for 11 minutes. On
average, would he make it to the toilet on time?
E[Q] = E[T]-1/µ = 12.5 minutes… What’s the probability…?

Distributed Computing Group Computer Networks R. Wattenhofer 3/88

• The way we solved the M/M/1 “Markov chain” can be generalized:
• A birth-death process is where transitions are only allowed between

neighboring states. A Markov process is where transitions are
between any states; states do not need to be “one dimensional”.

• You can solve such systems by the same means as M/M/1;
probably the derivation is more complicated.

• Below is for example the birth-death process of M/M/∞.

Birth-Death and Markov Processes

k-1 k

λ

kµ

k+1

λ

(k+1)µ

0 1

λ

µ

2

λ

2µ

...

Distributed Computing Group Computer Networks R. Wattenhofer 3/89

• two equal senders,
two receivers

• one router with
infinite buffer space

• with capacity C
• no retransmission

• large delays
when congested

• maximum
achievable
throughput

Back to Practice: Congestion scenario 1

Distributed Computing Group Computer Networks R. Wattenhofer 3/90

Congestion scenario 2

• one router with only finite buffer
• sender retransmission of lost packet
• more work for the same throughput

Distributed Computing Group Computer Networks R. Wattenhofer 3/91

• A “network” of routers (queues), with multihop paths.
• Still analytically solvable when streams and routers are Markov.
• But there are retransmissions, timeouts, etc.
• Typical behavior:

throughput gets
worse with more
and more input:

Congestion scenario 3

Distributed Computing Group Computer Networks R. Wattenhofer 3/92

Approaches towards congestion control

End-end congestion control
• no explicit feedback about

congestion from network
• congestion inferred from end-

system observed loss, delay
• approach taken by TCP

Network-assisted cong. control
• routers provide feedback to

end systems
– single bit indicating

congestion (used in SNA,
DECbit, TCP/IP ECN,
ATM)

– explicit rate sender
should send at

Two types of approaches usually used:

Distributed Computing Group Computer Networks R. Wattenhofer 3/93

Example for Network-Assisted Cong. Control: ATM ABR

RM (resource management) cells
• sent by sender, interspersed

with data cells
• bits in RM cell set by switches

(“network-assisted”)
– NI bit: no increase in rate

(mild congestion)
– CI bit: congestion

indication
• RM cells returned to sender by

receiver, with bits intact

ABR: available bit rate
• “elastic service”
• if sender’s path “underloaded”:

– sender should use
available bandwidth

• if sender’s path congested:
– sender is throttled to

minimum guaranteed rate

Distributed Computing Group Computer Networks R. Wattenhofer 3/94

• two-byte ER (explicit rate) field in RM cell
– congested switch may lower ER value in cell
– Sender’s rate thus minimum supportable rate on path

• EFCI bit in data cells: set to 1 in congested switch
– if data cell preceding RM cell has EFCI set, sender sets

CI bit in returned RM cell

Example for Network-Assisted Cong. Control: ATM ABR

Distributed Computing Group Computer Networks R. Wattenhofer 3/95

TCP Congestion Control

• end-end control (no network assistance)
• transmission rate limited by congestion window size, Congwin,

over segments:

• w segments, each with MSS bytes sent in one RTT:

throughput = w · MSS
RTT Bytes/sec

Congwin

Distributed Computing Group Computer Networks R. Wattenhofer 3/96

TCP Congestion Control

• TCP has two “phases”
– slow start
– congestion avoidance

• Important variables:
– Congwin
– Threshold: defines

where TCP switches from
slow start to congestion
avoidance

• “probing” for usable bandwidth
– ideally: transmit as fast as

possible (Congwin as large
as possible) without loss

– increase Congwin until loss
(congestion)

– loss: decrease Congwin,
then begin probing
(increasing) again

Distributed Computing Group Computer Networks R. Wattenhofer 3/97

TCP Slowstart

• exponential increase (per RTT)
in window size (not so slow!)

• loss event: timeout (Tahoe TCP)
and/or three duplicate ACKs
(Reno TCP)

initialize: Congwin = 1
for (each segment ACKed)

Congwin++
until (loss event OR

CongWin > threshold)

Slow start algorithm Host A

one segment

R
TT

Host B

time

two segments

four segments

Distributed Computing Group Computer Networks R. Wattenhofer 3/98

/* slowstart is over */
/* Congwin > threshold */
Repeat {
w = Congwin
every w segments ACKed:

Congwin++
} until (loss event)
threshold = Congwin/2
Congwin = 1
Go back to slowstart

Congestion avoidance

Remark: TCP Reno skips slowstart (fast recovery) after three duplicate ACKs

TCP Congestion Avoidance

Distributed Computing Group Computer Networks R. Wattenhofer 3/99

TCP Fairness

• A transport protocol must obey several objectives
besides correctness
– The protocol should not waste bandwidth
– It should be fair! …?!?
– It should be robust and not oscillate

• What is fair?
– Two resources (routers)
– Each with capacity normalised to 1
– Vertical streams use one resource
– Horizontal stream uses two resources

Distributed Computing Group Computer Networks R. Wattenhofer 3/100

Various Forms of Fairness

Max-Min

½

½ ½

Proportional

1/3

2/3
2/3

0

1 1

“TCP approx”

0.4

0.6 0.6

Max load

Distributed Computing Group Computer Networks R. Wattenhofer 3/101

Max-Min Fairness

• Definition
– A set of flows is max-min fair if and only if no flow can

be increased without decreasing a smaller or equal flow.

• How do we calculate a max-min fair distribution?
1. Find a bottleneck resource r (router or link), that is, find a

resource where the resource capacity cr divided by the number
of flows that use the resource (kr) is minimal.

2. Assign each flow using resource r the bandwidth cr/kr.
3. Remove the k flows from the problem and reduce the capacity

of the other resources they use accordingly
4. If not finished, go back to step 1.

Distributed Computing Group Computer Networks R. Wattenhofer 3/102

The good news
• TCP has an additive increase, multiplicative decrease (AIMD) congestion

control algorithm
– increase window by 1 per RTT, decrease window by factor of 2 on loss

event
– In some sense this is fair…
– One can theoretically show that AIMD is efficient (→ Web Algorithms)

• TCP is definitely much fairer than UDP!

The bad news
• (even if networking books claim the opposite:) if several TCP sessions

share same bottleneck link, not all get the same capacity
• What if a client opens parallel connections?

Is TCP Fair?

Distributed Computing Group Computer Networks R. Wattenhofer 3/103

TCP fairness example

Two competing TCP sessions
• Additive increase for both sessions gives slope of 1
• Multiplicative decrease decreases throughput proportionally
• Assume that both sessions experience loss if R1+R2 > R.

R

R

equal bandwidth share

Connection 1 throughput

C
on

ne
ct

io
n

2
th

ro
ug

hp
u t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Distributed Computing Group Computer Networks R. Wattenhofer 3/104

TCP latency modeling (back-of-envelope analysis)

• Question: How long does it
take to receive an object from
a Web server after sending a
request?

• TCP connection establishment
• data transfer delay

Notation & Assumptions
• Assume one link between

client and server of rate R
• Assume: fixed congestion

window with W segments
• S: MSS (bits)
• O: object size (bits)
• no retransmissions

(no loss, no corruption)

Distributed Computing Group Computer Networks R. Wattenhofer 3/105

TCP latency modeling: Two cases to consider

• WS/R > RTT + S/R: ACK for first
segment in window returns before
window’s worth of data sent

• WS/R < RTT + S/R: wait for ACK
after sending window’s worth of
data sent

Distributed Computing Group Computer Networks R. Wattenhofer 3/106

TCP latency modeling

latency = 2RTT + O/R
latency = 2RTT + O/R

+ (K-1)[S/R + RTT - WS/R],
with K = O/WS

Distributed Computing Group Computer Networks R. Wattenhofer 3/107

RTT

initiate TCP
connection

request
object

first window
= S/R

second window
= 2S/R

third window
= 4S/R

fourth window
= 8S/R

complete
transmissionobject

delivered

time at
client

time at
server

TCP Latency Modeling: Slow Start

Example
• O/S = 15 segments
• K = 4 windows
• Q = 2
• P = min{K-1,Q} = 2
• Server stalls P=2 times.

