

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

WS 2006/2007

Dr. C. Stamm / Roland Flury / Stefan Schmid

Discrete Event Systems Exercise 2

1 Nondeterministic Finite Automata

- a) Consider the alphabet $\{\diamondsuit, \blacklozenge\}$. Construct an NFA with ε -transitions that accepts all strings containing a sub-string $\diamondsuit \blacklozenge \diamondsuit \diamondsuit$ at least twice.
- **b)** Construct an NFA which accepts the following regular expression: $(00 \cup (0(0 \cup 1)^*))^*$.
- c) Consider a machine $M := (Q, \Sigma, \delta, q_0, Q)$. Is it possible to make a statement about the strings being accepted by M? Does it make a difference whether M is deterministic or not?

2 De-randomization

a) Give a regular expression for the following NFA and construct an equivalent NFA without ε -transitions.

b) Finally, transform the machine into a deterministic automaton.

3 States Minimization

Simplify the following automaton. Explain why your changes are allowed. Finally, give the corresponding regular expression.

4 "Regular" Operations in UNIX

In this exercise you are asked to provide a UNIX command to find all lines in a file ending with "password" or "passwort", followed by an unknown number of vowels.