Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich
WS 2006/2007

Discrete Event Systems Exercise 2

1 Nondeterministic Finite Automata

a) Consider the alphabet $\{\diamond, \boldsymbol{\oplus}\}$. Construct an NFA with ε-transitions that accepts all strings containing a sub-string $\diamond \boldsymbol{\phi} \diamond$ at least twice.
b) Construct an NFA which accepts the following regular expression: $\left(00 \cup\left(0(0 \cup 1)^{*}\right)\right)^{*}$.
c) Consider a machine $\mathrm{M}:=\left(Q, \Sigma, \delta, q_{0}, Q\right)$. Is it possible to make a statement about the strings being accepted by M? Does it make a difference whether M is deterministic or not?

2 De-randomization

a) Give a regular expression for the following NFA and construct an equivalent NFA without ε-transitions.

b) Finally, transform the machine into a deterministic automaton.

3 States Minimization

Simplify the following automaton. Explain why your changes are allowed. Finally, give the corresponding regular expression.

4 "Regular" Operations in UNIX

In this exercise you are asked to provide a UNIX command to find all lines in a file ending with "password" or "passwort", followed by an unknown number of vowels.

