Discrete Event Systems Exercise 10: Sample Solution

1 "Hopp FCB!"

a) We know that the minimum of i independent and exponentially distributed (with parameter λ) random variables is an exponentially distributed random variable with parameter $i \lambda$. Thus, we have the following birth-death-process:

b) Let p_{i} be the probability of state i in the equilibrium. In a general birth-death-process with transition parameters λ_{i} and μ_{i}, it holds that

$$
p_{1} \mu_{1}=p_{0} \lambda_{1} \Rightarrow p_{1}=\frac{\lambda_{1}}{\mu_{1}} p_{0}
$$

By induction, we have

$$
p_{i+1} \cdot \mu_{i+1}+p_{i-1} \cdot \lambda_{i}=p_{i} \cdot\left(\lambda_{i+1}+\mu_{i}\right)
$$

and thus

$$
p_{i}=\frac{\lambda_{1} \cdot \lambda_{2} \cdots \lambda_{i}}{\mu_{1} \cdot \mu_{2} \cdots \mu_{i}} p_{0} .
$$

Applying this formula to our process yields

$$
p_{i}=\frac{n(n-1) \cdots \cdots(n-i+1) \cdot \lambda^{i}}{1 \cdot 2 \cdots \cdots i \cdot \mu^{i}} p_{0}=\binom{n}{i}\left(\frac{\lambda}{\mu}\right)^{i} p_{0} .
$$

Let $\rho:=\frac{\lambda}{\mu}$. Since the sum of all probabilities equals 1 , we have

$$
p_{0} \sum_{i=0}^{n}\binom{n}{i} \rho^{i}=p_{0}(1+\rho)^{n}=1 \Rightarrow p_{0}=\frac{1}{(1+\rho)^{n}}
$$

Finally,

$$
p_{i}=\frac{\binom{n}{i} \rho^{i}}{(1+\rho)^{n}}
$$

c) A team is able to play if and only if there are at least eleven fit players:

$$
p_{11}+p_{12}+\cdots+p_{20}=0.965
$$

Thus, the FCB team has enough players that it can participate in most of the matches (probability $>95 \%$).

2 A Binary Game

a) If a player writes both 0 and 1 with probability $\frac{1}{2}$, the sum is 0 or 1 modulo 2 with probability $\frac{1}{2}$, independently of the other player's strategy!
Excursion: In Game Theory, ${ }^{1}$ a set of strategies with the property that no player can benefit by changing his strategy while the other players keep their strategies, is called a Nash Equilibrium. In our example, the two strategies where both players write 0 and 1 with probability $\frac{1}{2}$ is a Nash equilibrium. However, Anna's and Markus' strategies do not constitute an equilibrium. To see this, assume that Anna changes its strategy as follows: Knowing that Markus writes 1 with probability 0.6 , Anna can always write 1 and thus wins 60% of all games on average. Therefore, Anna has indeed an insensitive to change her strategy!
b) We model the situation using 4 states, where the left bit denotes Anna's decision and the right bit Markus' decision in the last round. Note that Anna' strategy is deterministic. We have (transitions with probability 0 not shown):

Anna wins in the shaded states 00 an 11. We calculate the probability of these two states in the equilibrium:

$$
\begin{gathered}
p_{00}=.4 p_{00}+.4 p_{10} \\
p_{01}=.6 p_{00}+.6 p_{10} \\
p_{11}=.6 p_{01}+.6 p_{11} \\
1=p_{00}+p_{01}+p_{10}+p_{11}
\end{gathered}
$$

and get

$$
p_{00}=.16, p_{01}=.24, p_{10}=.24, p_{11}=.36
$$

Since $p_{00}+p_{11}=.52$, Anna' strategy is better!
c) First note that both strategies are deterministic. Encoding the states with four bits (from left to right: Anna two rounds ago, Markus two rounds ago, Anna one round ago, Markus one round ago), showing only the reachable states and the possible edges (probability 1), we have:

Note that the first two games-where the strategies are not defined completely yet-decide which of these two cycles describes the following games. Thus, these initial conditions determine which player wins more games in the long run.

[^0]
[^0]: ${ }^{1}$ For an introduction to Game Theory, e.g.: A Course in Game Theory, M. Osborne and A. Rubinstein, MIT Press, 1994.

