Discrete Event Systems Exercise 11: Sample Solution

1 Gloriabar

a) The situation can be modeled by a $M / M / 1$ queue. We have an arrival rate of $\lambda=540 /(90 \cdot 60)=0.1$ (persons per second), and $\mu=1 / 9$ (persons per second). Thus $\rho=\lambda / \mu=0.9$. Therefore, the expected waiting time is $W=\rho /(\mu-\lambda)=81$ seconds. The expected time until the student gets her menu is given by $T=1 /(\mu-\lambda)=90$ seconds.
b) The queue length is given by $N=\rho^{2} /(1-\rho)=8.1$.
c) We require that $T=1 /(\mu-0.1)=90 / 2$. Thus, $\mu=11 / 90$, i.e., instead of 9 secs, the service time should be roughly $90 / 11=8.2$ secs.

2 Queuing Networks

a) See Figure 1.

Figure 1: Queuing Network.
b) We have an open queuing network an hence we can apply Jackson's theorem (slides 97ff):

$$
\begin{array}{r}
\lambda_{d}=\lambda+\lambda_{b}\left(1-p_{b}\right) \\
\lambda_{t}=\lambda_{d}\left(1-p_{d}\right) \\
\lambda_{b}=\lambda_{t}\left(1-p_{t}\right) \tag{3}
\end{array}
$$

Solving this equation system gives:

$$
\begin{aligned}
\lambda_{d} & =\frac{\lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
\lambda_{t} & =\frac{\left(1-p_{d}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)} \\
\lambda_{b} & =\frac{\left(1-p_{d}\right)\left(1-p_{t}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)}
\end{aligned}
$$

c) The waiting time is given by $W_{t}=\rho_{t} /\left(\mu_{t}-\lambda_{t}\right)$, where $\rho_{t}=\lambda_{t} / \mu_{t}$.
d) We have

$$
\begin{array}{cc}
\lambda_{d}=10, \quad \lambda_{t}=25 / 3, & \lambda_{b}=20 / 3 \\
\rho_{d}=1 / 2, \quad \rho_{t}=5 / 6, \quad \rho_{b}=2 / 3
\end{array}
$$

Therefore, by the formula of slide 79, the number of customers in the system is given by

$$
N=\frac{\lambda_{d}}{\mu_{d}-\lambda_{d}}+\frac{\lambda_{t}}{\mu_{t}-\lambda_{t}}+\frac{\lambda_{b}}{\mu_{b}-\lambda_{b}}=8
$$

Applying Little's formula to the entire system gives $T=N / \lambda=8 / 5$ hours.
e) We have

$$
\lambda_{t}=\frac{\left(1-p_{d}\right) \lambda}{1-\left(1-p_{d}\right)\left(1-p_{t}\right)\left(1-p_{b}\right)}=1 \Leftrightarrow p_{d}=23 / 28
$$

3 Theory of Ice Cream Vending

The situation can be described by a classic M/M/2 system. According to slide 90 , there is an equilibrium iff

$$
\rho=\lambda /(2 \mu)<1
$$

For the stationary distribution, in holds that

$$
\pi_{0}=\frac{1}{1+2 \rho+4 \rho^{2} /(2(1-\rho))}=\frac{1-\rho}{1+\rho}
$$

