
Distributed
Computing Group

WS 2006/2007 Dr. C. Stamm / Roland Flury / Stefan Schmid

Discrete Event Systems
Exercise 12: Sample Solution

1 Competitive Analysis
a) Recall that calls have infinite duration. Therefore, once a cell accepts a call, no neighboring cell

can accept a call thereafter. The natural greedy algorithm AGreedy accepts a call, whenever this is
possible. That is, a call in cell C is accepted if no neighboring cell of C has previously accepted a
call.

A

B

D

C
A

B C

D

Figure 1: The solutions AGreedy (left) and AOpt (right)

By accepting a call, AGreedy can prevent itself from accepting at most 3 subsequent calls. This is
shown in Figure 1. Assume that there are four calls, the first one in A, then three non-interfering
ones in neighboring cells B, C, and D. AGreedy accepts the first and has benefit 1. AOpt rejects the
first call, but accepts the remaining three, resulting in a benefit of 3. The algorithm is 3-competitive.

b) There is no competitive algorithm if calls can have arbitrary durations. Assume that the first call
arrives in A and has arbitrary duration. There are two possible actions for an algorithm ALG.

If ALG rejects this call, no further call will arrive and therefore benefit(ALG) = 0. The optimal
algorithm would have accepted the call, i.e., benefit(OPT) = 1. The competitive ratio is infinitely
large.

On the other hand, if ALG accepts the call, there will be infinitely many calls coming in state B,
each of which has very short duration ε. While ALG cannot accept any of these calls (because the
call in A has infinite duration), the optimal algorithm rejects the first call and accepts all subsequent
calls. This yields benefit(ALG) = 1 as opposed to benefit(OPT) = β, for an arbitrarily large
value of β

c) At first sight, it seems that there is no better algorithm than the natural greedy algorithm from part
a) of the exercise. After all, the algorithm must accept the first call in order to stay competitive.
Accepting the first call, on the other hand, leads to a competitive ratio of 3. However, it can be
shown that there exists a randomized algorithm with competitive ratio 2.97. This algorithm accepts
every call with a certain probability.

2 Online Algorithm
a) When using the strategy recommended by Cons-ULT, Mario has to serve all clients while Luigi

does not move at all. The total length of Mario’s path is 0.4 + 0.3 + 0.4 + 0.2 + 0.7 = 2. In the
optimal solution on the other hand, Luigi serves the first request even though he is more distant to
this request than Mario. All subsequent requests are handled by the closer friend. Mario’s path has
length 0.1 + 0.1 = 0.2 and Luigi walks a distance of 0.6 + 0.1 + 0.2 = 0.9. Hence, the total cost
of this solution is 1.1. For the request sequence σ1, the competitive ratio of Cons-ULT’s algorithm is
therefore 2/1.1 ≈ 1.82.

b) No, the algorithm proposed by Cons-ULT is not competitive for any constant. In fact, the outcome
of Cons-ULT’s algorithm can be as bad as n times worse than the optimal solution, where n is the
number of requests.

To see this, consider the request sequence σ2 = 1
2 − ε , 0 , 1

2 − ε , 0 , 1
2 − ε , . . ., for an

arbitrarily small constant ε. Clearly, all requests of σ2 are handled by Mario who has to go back
and forth between the two points 0 and 1

2 − ε. Hence, the total cost of Cons-ULT’s algorithm is
n · (1

2 − ε) ≈ n/2.

In contrast, the optimal solution for sequence σ2 is much better. Luigi could move for the first request
to position 1

2 − ε, and the two friends could remain at their position forever thereafter. Hence, the
optimal cost is 1

2 + ε. Combining this with the result of Cons-ULT, we see that the competitive ratio
α of the Cons-ULT ratio can be as bad as

n · (1
2 − ε)

1
2 + ε

≈ n.

c) Indeed, there exists a much better algorithm for Mario and Luigi’s problem that achieves a com-
petitive ratio of 2.1 Let us assume that Mario’s position is always to the left of Luigi or at exactly
the same place. It can easily be seen that the algorithm does never change this invariant. Then, the
algorithm handles the next request as follows:

– If the request is located to the left of Mario or to the right of Luigi, serve the request with the
closer of the two.

– Otherwise, the request is between the two friends. In this case, both Mario and Luigi move
towards the request at equal speed until (at least) one of them reaches the request.

We now prove that the above algorithm is 2-competitive.

PROOF. Let OPT and ALG denote the optimal solution and the solution computed by our algorithm
for a given request sequence, respectively. Also, let oi

M and oi
L be the positions of Mario and Luigi

after the ith request in the optimal solution OPT . Similarly, we denote by ai
M and ai

L the positions
of Mario and Luigi after the ith request in ALG.

1Note that in the exam, we did of course not expect students to write down a formal proof as detailed as in this master solution.
Instead, it was sufficient to provide a reasonable argument why the proposed algorithm is competitive.

2

We now define the following potential function:

Φi = 2(|oi
M − ai

M |+ |oi
L − ai

L|) + |ai
M − ai

L|.

The potential function has three properties:

i) Φi ≥ 0 for all i.

ii) If OPT moves its players a distance d, then Φi+1 ≤ Φi + 2d.

iii) If ALG moves its players a distance d, then Φi+1 ≤ Φi − d.

Property i) certainly holds. As for property ii), notice that if OPT moves, the term |ai
M − ai

L| is not
changed and clearly, the term |oi

M − ai
M | + |oi

L − ai
L| can increase by at most d. In order to prove

that iii) holds, we assume that oi
M ≤ oi

L, i.e., the Mario is never to the right of Luigi in the optimal
solution. This is without loss of generality, because if the optimal solution switches the positions of
the two friends, we can simply use a “renaming” in order to reestablish the invariant.

We must distinguish two cases. First, assume that the ith request is either to the left of Mario or to
the right of Luigi, i.e., only one of the two moves by a distance of d. In this case, the term |ai

M −ai
L|

increases by d. On the other hand, the term |oi
M −ai

M |+ |oi
L−ai

L|must decrease by d, because after
moving Mario or Luigi by a distance d, either |oi

M − ai
M | or |oi

L − ai
L| becomes 0. This is the case

because the optimal solution must also handle this request. The new value of the potential function
in the first case is therefore at most Φi+1 ≤ Φi − 2d + d = Φi − d.

Now, consider the second case, in which the request is between Mario and Luigi and both of them
move a distance d/2 towards the request from opposite sides. Because both friends move towards
each other, the term |ai

M − ai
L| must decrease by d. Now, consider the change of the term |oi

M −
ai

M | + |oi
L − ai

L|. When serving the ith request, either Mario or Luigi is matched exactly with
the optimal server, i.e., either |oi

M − ai
M | or |oi

L − ai
L| decreases by d/2. The term that does not

decrease, however, may increase at most d/2, because that is the distance this friend walks. Hence,
in the second case, the term |oi

M − ai
M |+ |oi

L − ai
L| remains exactly the same. In combination with

the above observation that |ai
M − ai

L| decreases by d, this concludes the proof.

Using the potential function, we can now prove the competitive ratio. Specifically, assume that for
serving the ith request, OPT and ALG move Mario and Luigi a distance of di

O and di
A, respectively.

Also, let ∆Φi be the change of the potential function after request i, i.e., ∆Φi = Φi−Φi−1. Because
in our case, we have ∆Φi = 2di

0− di
A as shown above (one move by OPT and one move by ALG),

it holds that
di

A + ∆Φi ≤ 2 · di
0.

Summing this term up over all iterations i, we obtain
∑

i

di
A +

∑

i

(Φi − Φi−1) ≤ 2 ·
∑

i

di
O.

In the term
∑

i (Φi − Φi−1), all but the first and last term cancel out and hence,

ALG + Φn − Φ0 ≤ 2 ·OPT.

Because Φn is positive and Φ0 is a constant, it follows that ALG ≤ 2 ·OPT + O(1). 2

Note that the method of using a potential function is very powerful when dealing with online algo-
rithms. In particular, whenever (for every possible online problem) we can come up with a potential
function for which we can prove that an algorithm ALG fulfils properties i), ii), and iii), then ALG
has a constant approximation of C, where C is the constant used in property ii).

3

