Discrete Event Systems Solution to Exercise 4

1 Regular and Context-Free Languages

- Sometimes, even simple grammars can produce tricky languages. We can interpret the 1 s and 2s of the second production rule as opening and closing brackets. Hence, $L(G)$ consists of all correct bracket terms where at least one 0 must be in each bracket.
$L(G)$ is not regular. Choose $x=1^{n} 02^{n} \in L(G)$. Let $x=u v w$ with $|u v| \leq n$ and $|v|>0$ (pumping lemma). Because of $|u v| \leq n, u v$ is in the first 1^{n} of x. According to the pumping lemma, we have $u v^{i} w \in L(i \geq 0)$. If we choose $i=0$ we get $1^{k} 02^{n} \notin L(k<n)$.
- Since every regular language is also context-free, we can choose an arbitrary regular language. For example, we can choose the language $L=\left\{0^{n} 1, n \geq 1\right\}$ which is clearly regular. The corresponding context-free grammar is $S \rightarrow 0 S \mid 1$.

2 Context-Free Grammars

- $\quad S \rightarrow S A S|A \quad, \quad A \rightarrow 0| 1$.
- One possible solution is to use three productions: A first one which guarantees that there is at least one ' 1 ' more; a second one which produces all possible strings with the same number of ' 0 ' and ' 1 '; and finally, a production to add further 1's at arbitrary places:

$$
\begin{gathered}
S \rightarrow T 1 T \\
T \rightarrow T 0 T 1 T|T 1 T 0 T| U \\
U \rightarrow 1 U \mid \epsilon
\end{gathered}
$$

3 Pushdown Automata

a) $\epsilon, 0,00,()$
b) It is unambiguous, i.e., there is a unique derivation tree for each word. Each word $w \neq \epsilon$ in $L(G)$ contains a rightmost 0 or parenthesis expression ${ }^{\prime}(S)^{\prime}$ that can be unanimously assigned to a A in each node of the derivation tree. Due to $S \rightarrow S A$, each sequence of A s is unambiguous.
c) The following deterministic pushdown automaton does the job:

4 Counter Automaton

- A counter automaton is basically a finite automaton augmented by a counter. For every regular language $L \in L_{r e g}$, there is a finite automaton A which recognized L. We can construct a counter automaton C for recognizing L by simply taking over the states and transitions of A and not using the counter at all. Clearly C accepts L. This holds for every regular language and therefore, $L_{\text {count }} \in L_{\text {reg }}$.

Figure 1: Pushdown automaton accepting $L(G)$

- Consider the language L of all strings over the alphabet $\Sigma=\{0,1\}$ with an equal number of 0 s and 1 s . We can construct a counter automaton with a single state q that increments/decrements its counter whenever the input is a $0 / 1$. If the value of the counter is equal to 0 , it accepts the string. Hence, L is in $L_{\text {count }}$.
On the other hand, it can be proven (using the pumping lemma) that L is not in $L_{\text {reg }}$ and it therefore follows $L_{\text {count }} \notin L_{\text {reg }}$.
- First, we show that a pushdown automaton can simulate a counter automaton. Hence, PDA's are at least as powerful as CA's! The simulation of a given CA works as follows. We construct a PDA which has exactly the same states as the CA. The transitions also remain between the same pairs of states, but instead of operating on a INC/DEC register, we have to use a stack. Concretely, we store the state of the counter on the stack by pushing ' + ' and '-' on the stack. For instance, a counter value ' 3 ' is represented by three ' + ' on the stack, and similarly a value ' -5 ' by five ' - '. Therefore, when the CA checks whether the counter equals 0 , the PDA can check whether its stack is empty.
In the following, we give just one example of how the transitions have to be transformed. Assume a transition of the counter automaton which, on reading a symbol s increments the counter-independently of the counter value. For the PDA, we can simulate this behavior with three transitions: On reading s and if the top element of the stack is ' -2 , a minus is popped; if the top element is a ' + ', another ' + ' is pushed; and if the stack is empty, also a ' + ' is pushed.
Hence, we have shown that the PDA is at least as powerful as the CA, and it remains to investigate whether both CA and PDA are equivalent, or whether a PDA is stronger. Although it is known that the PDA is actually more powerful, the proof is difficult: There is no pumping lemma for CA's for example such that we can prove that a given context-free language cannot be accepted by a CA. However, of course, if you have tackled this issue, we are eager to know your solution... :-)

