
Distributed
Computing Group

WS 2006/2007 Dr. C. Stamm / Roland Flury / Stefan Schmid

Discrete Event Systems

Solution to Exercise 4

1 Regular and Context-Free Languages

• Sometimes, even simple grammars can produce tricky languages. We can interpret the 1s
and 2s of the second production rule as opening and closing brackets. Hence, L(G) consists
of all correct bracket terms where at least one 0 must be in each bracket.

L(G) is not regular. Choose x = 1n02n ∈ L(G). Let x = uvw with |uv| ≤ n and |v| > 0
(pumping lemma). Because of |uv| ≤ n, uv is in the first 1n of x. According to the pumping
lemma, we have uviw ∈ L(i ≥ 0). If we choose i = 0 we get 1k02n /∈ L(k < n).

• Since every regular language is also context-free, we can choose an arbitrary regular language.
For example, we can choose the language L = {0n1, n ≥ 1} which is clearly regular. The
corresponding context-free grammar is S → 0S | 1.

2 Context-Free Grammars

• S → SAS | A , A → 0 | 1.

• One possible solution is to use three productions: A first one which guarantees that there is
at least one ’1’ more; a second one which produces all possible strings with the same number
of ’0’ and ’1’; and finally, a production to add further 1’s at arbitrary places:

S → T1T
T → T0T1T | T1T0T | U

U → 1U | ε

3 Pushdown Automata

a) ε, 0, 00, ()

b) It is unambiguous, i.e., there is a unique derivation tree for each word. Each word w 6= ε
in L(G) contains a rightmost 0 or parenthesis expression ′(S)′ that can be unanimously
assigned to a A in each node of the derivation tree. Due to S → SA, each sequence of As is
unambiguous.

c) The following deterministic pushdown automaton does the job:

4 Counter Automaton

• A counter automaton is basically a finite automaton augmented by a counter. For every
regular language L ∈ Lreg, there is a finite automaton A which recognized L. We can
construct a counter automaton C for recognizing L by simply taking over the states and
transitions of A and not using the counter at all. Clearly C accepts L. This holds for every
regular language and therefore, Lcount ∈ Lreg.

Figure 1: Pushdown automaton accepting L(G)

• Consider the language L of all strings over the alphabet Σ = {0, 1} with an equal number
of 0s and 1s. We can construct a counter automaton with a single state q that incre-
ments/decrements its counter whenever the input is a 0/1. If the value of the counter is
equal to 0, it accepts the string. Hence, L is in Lcount.

On the other hand, it can be proven (using the pumping lemma) that L is not in Lreg and
it therefore follows Lcount /∈ Lreg.

• First, we show that a pushdown automaton can simulate a counter automaton. Hence,
PDA’s are at least as powerful as CA’s! The simulation of a given CA works as follows. We
construct a PDA which has exactly the same states as the CA. The transitions also remain
between the same pairs of states, but instead of operating on a INC/DEC register, we have
to use a stack. Concretely, we store the state of the counter on the stack by pushing ’+’ and
’-’ on the stack. For instance, a counter value ’3’ is represented by three ’+’ on the stack,
and similarly a value ’-5’ by five ’-’. Therefore, when the CA checks whether the counter
equals 0, the PDA can check whether its stack is empty.

In the following, we give just one example of how the transitions have to be transformed.
Assume a transition of the counter automaton which, on reading a symbol s increments the
counter—independently of the counter value. For the PDA, we can simulate this behavior
with three transitions: On reading s and if the top element of the stack is ’-’, a minus is
popped; if the top element is a ’+’, another ’+’ is pushed; and if the stack is empty, also a
’+’ is pushed.

Hence, we have shown that the PDA is at least as powerful as the CA, and it remains
to investigate whether both CA and PDA are equivalent, or whether a PDA is stronger.
Although it is known that the PDA is actually more powerful, the proof is difficult: There
is no pumping lemma for CA’s for example such that we can prove that a given context-free
language cannot be accepted by a CA. However, of course, if you have tackled this issue, we
are eager to know your solution... :-)

2

