Discrete Event Systems Solution to Exercise 5

1 Pumping Lemma revisited

a) Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. I.e. there is a p, such that for every word $u \in L$ with $|u| \geq p$ it holds that: u can be written as $u=x y z$ with $|x y| \leq p$ and $1 \leq|y| \leq p$, such that $\forall i \geq 0: x y^{i} z \in L$.
In order to obtain the contradiction, we need to show that there is at least one word $w \in L$ with $|w| \geq p$ for which it is not possible to form the string partition $w=x y z$, s.t. $|x y| \leq p$, $1 \leq|y| \leq p$, and $\forall i \geq 0: x y^{i} z \in L$.
First, we need to overcome the problem that we do not know the value of p. The standard trick is to consider words whose length depends on p. E.g. consider the word $w=1^{p^{2}} \in L$. For sure, $|w| \geq p$.
By the pumping lemma, we can write $w=1^{p^{2}}$ as $x y z$. What remains to show is that there is no partition $x y z$ that satisfies $|x y| \leq p, 1 \leq|y| \leq p$, and $\forall i \geq 0: x y^{i} z \in L$.
The expression $w=x y^{i} z$ can be written as $x y^{i} z=1^{|x|} 1^{i|y|} 1^{|z|}$. Because $|w|=p^{2}$, we know that $|z|=p^{2}-|x|-|y|$, and therefore, $x y^{i} z=1^{|x|} 1^{i|y|} 1^{p^{2}-|x|-|y|}=1^{p^{2}+(i-1)|y|}$.
To obtain the contradiction, we need to find an $i \geq 0$, such that $x y^{i} z \notin L$. For example, consider $i=0$. Then we have $w^{0}=x y^{0} z=1^{p^{2}-|y|}$. Clearly, $\left|w^{0}\right|<p^{2}$, as $|y| \geq 1$. Note that we argue independent of the partition $w=x y z$, we do not pick a specific x and y and therefore the following holds for all possible partitions.
If $w^{0} \in L$, then $\left|w^{0}\right|$ is a square number, smaller than p^{2}. But the next smaller square number, $(p-1)^{2}$, is strictly smaller than $\left|w^{0}\right|:(p-1)^{2}=p^{2}-2 p+1<p^{2}-p \leq p^{2}-|y|=\left|w^{0}\right|$, which shows that $\left|w^{0}\right|$ cannot be a square number. This shows that there is no partition for w that allows to fulfill the pumping lemma conditions. But this should be the case if L is regular. Thus, we have a contradiction, which concludes the proof.
b) Consider the alphabet $\Sigma=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and the language $L=\bigcup_{i-1}^{n} a_{i}^{*}$. The language is regular, as it is the union of regular languages, and the smallest possible pumping number p for L is 1 . But any DFA needs at least $n+1$ states to distinguish the n different characters of the alphabet. Thus, for the DFA, we cannot deduce any information from p about the minimum number of states.
The same argument holds for the NFA.

2 Push Down Automaton

a) The PDA first reads all a from the input until it reads a b. For each a it reads, it pushes an a on the stack. Then, the PDA reads all b from the input until there comes an a. Again, for each b on the input, it pushes a b on the stack. Then, the automaton reads a from the input, but only if it can pop a b from the stack. Finally, it reads b from the input as long as it can pop an a from the stack.

b) This PDA should recognize all palindromes. However, we don't know where the middle of the word to recognize is. Therefore, we have to construct a non-deterministic automaton that decides itself when the middle has been reached.

Note that we need to support words of even and odd length. Words of even length have a counter-part for each letter. However, the center letter of an odd word has no counterpart.

c) Consider the word w to be an array of symbols. If $w \in L$, there is at least one offset c, such that $w[c] \neq w[|w|-c]$. That is, there are two symbols x and y in w s.t. $x \neq y$ and the distance of x from the start of w equals the distance of y from the end of w.
The PDA reads $c-1$ symbols, and stores a token α on the stack for each read symbol. Then, it reads the c-th symbol, and puts the symbol onto the stack. Afterwards, the PDA allows to read arbitrarily many symbols from the input, and does not modify the stack. Then, when only c symbols are left on the input stream, the PDA requires that the symbol on the stack must differ to the one on the input. Finally, the PDA reads the remaining $c-1$ symbols and accepts if the stack is empty.

Note that this is again a non-deterministic PDA, as we do not know the value of c.

3 Context Free Grammars

a) If x is not a permutation of y, then x and y contain a different number of a or b.

$$
\begin{aligned}
S & \rightarrow D \quad x \text { and } y \text { differ in number of } a \\
& \rightarrow E \quad x \text { and } y \text { differ in number of } b \\
D & \rightarrow B a D a B|B a C \# B| B \# C a B \\
E & \rightarrow A b E b A|A b C \# A| A \# C b A \\
B & \rightarrow b B \mid \epsilon \\
A & \rightarrow a A \mid \epsilon \\
C & \rightarrow a C|b C| \epsilon
\end{aligned}
$$

b) We can distinguish 2 cases: either $|x| \neq|y|$ or there is an offset i, such that $x[i] \neq y[i]$, thinking of x and y as arrays.

$$
S \quad \rightarrow E \quad|x| \neq|y|
$$

$$
\begin{array}{rlll}
& \rightarrow A a C & |x|=|y| \text { and } \exists i: x[i]=a \text { and } y[i]=b \\
& \rightarrow B b C & |x|=|y| \text { and } \exists i: x[i]=b \text { and } y[i]=a \\
E & \rightarrow D E D & \\
& \rightarrow & \# D C & \text { right side is longer } \\
& \rightarrow D C \# & \text { left side is longer } \\
D & \rightarrow & a \mid b & (a \mid b) \\
C & \rightarrow & D C \mid \epsilon & (a \mid b)^{*} \\
A & \rightarrow & D A D \mid b C \# \\
B & \rightarrow & D B D \mid a C \#
\end{array}
$$

Note that for the case $|x|=|y|$, we did not enforce that the two strings have equal length. But for the case they have equal length, they differ. (Thus, this grammar is ambiguous.)

4 Tandem Pumping

a) Use the tandem pumping lemma to show that the language is not context free. For example, consider the word $w=a^{p} b^{p+1} c^{p+2}$. Clearly, $w \in L$. The tandem pumping lemma requires that w can be written as $w=u v x y z$ with $|v y| \geq 1$ and $|v x y| \leq p$. For context free languages, it must hold that $u v^{i} x y^{i} z \in L \forall i \geq 0$.
The window $v x y$ can be applied at several locations on w. If it entirely covers the a region, then either v or y is at least one a. Therefore, pumping v and y increases the number of a in the resulting word, which violates the language definition.
If the window $v x y$ starts in the area of the a 's and ends in the area of b 's, then v or y contains at least an a or a b. Again, pumping v and y increases the amount of this symbol, which results in a string not contained in the language. Similarly, if $v x y$ only covers the b region, v or y contains at least one b, which produces strings not in L while pumping.
If the window $v x y$ starts in the b area and ends in the c area, we have several cases: a) If either v or y contains both b and c, pumping w produces words not in L. If $v \in b^{+}$and $y=\epsilon$, pumping will produce words with too many b 's. If $v \in b^{+}$and $y \in c^{+}$, or if $v=\epsilon$ and $y \in c^{+}$, we set i to 0 to obtain an string not in L.
If the window $v x y$ entirely covers the c region, then v or y contains at least one c. Thus, setting i to 0 removes at least one c, and the resulting string contains not enough c 's to be in L.
b) This language is regular, see Figure 1. Because the set of regular languages is a subset of the context-free languages, the language is also context-free.

Figure 1: DFA for $L=\left\{x \mid x \in\{0,1\}^{*}\right.$, and x contains an even number of ' 0 ' and an even number of '1'\}
c) Consider the word $w=0^{p} 1^{p} \# 0^{p} 1^{p} \in L$. If the language is context free, we can apply the tandem pumping lemma. In order to keep the property that $|x|=|y|$, we must pump the
same number of symbols on the left and right of \#. Thus, the only reasonable place to place the sub-string $v x y$ is such that v lies to the left of $\#$ and y to the right of $\#$. But because $|v x y| \leq p, v$ only contains 1 and y only contains 0 . Therefore, for any string that we may pump (except for $i=1$), the number of '0's x does not equal the number of '0's in y (and similarly for the number of ' 1 's.) Therefore, the LHS and RHS of $\#$ are not permutations and the pumped strings are not in L. Thus, L is not context free.

