ETH Distributed

Eidgendssische Technische Hochschule Ziirich Computing Gro

Swiss Federal Institute of Technology Zurich

WS 2006,/2007 Dr. C. Stamm / Roland Flury / Stefan Schmid

1
a)

Discrete Event Systems
Solution to Exercise 5

Pumping Lemma revisited

Let us assume that L is regular and show that this results in a contradiction.

We have seen that any regular language fulfills the pumping lemma. I.e. there is a p, such
that for every word u € L with |u[> p it holds that: u can be written as u = zyz with
|zy] <pand 1 < |y| < p, such that Vi > 0: zy’z € L.

In order to obtain the contradiction, we need to show that there is at least one word w € L
with |w| > p for which it is not possible to form the string partition w = zyz, s.t. |zy| < p,
1<yl <p,and Vi > 0:zy'z € L.

First, we need to overcome the problem that we do not know the value of p. The staQndard
trick is to consider words whose length depends on p. E.g. consider the word w = 17 € L.
For sure, |w| > p.

By the pumping lemma, we can write w = 17° as xyz. What remains to show is that there
is no partition xyz that satisfies |zy| <p, 1 < |y| <p, and Vi > 0 : zy’z € L.

The expression w = zy'z can be written as zy'z = 1171171121 Because |w| = p?, we know
that |z| = p® — |z| — |y|, and therefore, zyiz = 1lel1ilvl1P*~lel=lyl = 1p*+(-Dlyl,

To obtain the contradiction, we need to find an i > 0, such that xy’z ¢ L. For example,
consider i = 0. Then we have w® = 23z = 1P°~1¥[. Clearly, |w®| < p?, as |y| > 1. Note
that we argue independent of the partition w = zyz, we do not pick a specific x and y and
therefore the following holds for all possible partitions.

If w® € L, then |w°] is a square number, smaller than p?. But the next smaller square number,
(p — 1)2, is strictly smaller than |w°[: (p —1)2 =p? —2p+1 < p? —p < p? — |y| = ||,
which shows that |w"| cannot be a square number. This shows that there is no partition for
w that allows to fulfill the pumping lemma conditions. But this should be the case if L is
regular. Thus, we have a contradiction, which concludes the proof.

Consider the alphabet ¥ = {a1,as,...,a,} and the language L = |J!" ; af. The language is
regular, as it is the union of regular languages, and the smallest possible pumping number p
for L is 1. But any DFA needs at least n + 1 states to distinguish the n different characters
of the alphabet. Thus, for the DFA, we cannot deduce any information from p about the
minimum number of states.

The same argument holds for the NFA.

Push Down Automaton

The PDA first reads all a from the input until it reads a b. For each a it reads, it pushes an
a on the stack. Then, the PDA reads all b from the input until there comes an a. Again,
for each b on the input, it pushes a b on the stack. Then, the automaton reads a from the
input, but only if it can pop a b from the stack. Finally, it reads b from the input as long as
it can pop an a from the stack.

ale = a ble = b alb — e bla — €

—s(¢0 1 2 3 % 5
@ ele — $ é ble — b é alb — € é bla — ¢ w €l$ — e @

b) This PDA should recognize all palindromes. However, we don’t know where the middle of
the word to recognize is. Therefore, we have to construct a non-deterministic automaton
that decides itself when the middle has been reached.

Note that we need to support words of even and odd length. Words of even length have a
counter-part for each letter. However, the center letter of an odd word has no counterpart.

1le — 1 11 — €
Ole—0 010 — €
€le — § €le — € €l$ — e
lle — €
Ole — €

c¢) Consider the word w to be an array of symbols. If w € L, there is at least one offset ¢, such
that w[c] # w[|w| — ¢]. That is, there are two symbols z and y in w s.t. « # y and the
distance of z from the start of w equals the distance of y from the end of w.

The PDA reads ¢— 1 symbols, and stores a token a on the stack for each read symbol. Then,
it reads the c-th symbol, and puts the symbol onto the stack. Afterwards, the PDA allows to
read arbitrarily many symbols from the input, and does not modify the stack. Then, when
only ¢ symbols are left on the input stream, the PDA requires that the symbol on the stack
must differ to the one on the input. Finally, the PDA reads the remaining ¢ — 1 symbols and
accepts if the stack is empty.

Note that this is again a non-deterministic PDA, as we do not know the value of c.

Ole — « Ole — € Ola — €
lle —» « lle — ¢ lla — €
€le — $ Ole =0 0|1 — e €|$ — €
lle —1 110 — €

3 Context Free Grammars

a) If z is not a permutation of y, then and y contain a different number of a or b.

S — D x and y differ in number of a
— FE z and y differ in number of b

D — BaDaB | BaC#B | B#CaB

E — AbEVLA | AbCH#A | A#CbA

B — bB]e

A — aA|e

C — aC|bC|e

b) We can distinguish 2 cases: either |z| # |y| or there is an offset i, such that x[i] # y[i],
thinking of x and y as arrays.

S = E [zl #yl

— AaC |z| = |y| and Fi : z[i] = a and y[i] = b
— BbC |z| = |y| and Fi : z[i] =b and y[i] = a
EF — DED
— #DC right side is longer
— DC# left side is longer
D — alb (alb)
C — DC|e (alb)*
A — DAD | bC#
B — DBD | aC#

Note that for the case |z| = |y|, we did not enforce that the two strings have equal length.
But for the case they have equal length, they differ. (Thus, this grammar is ambiguous.)

4 Tandem Pumping

a) Use the tandem pumping lemma to show that the language is not context free. For example,
consider the word w = aPbPt'cP*+2. Clearly, w € L. The tandem pumping lemma requires
that w can be written as w = wvayz with |vy| > 1 and |vzy| < p. For context free languages,
it must hold that uvixyiz € LVi > 0.

The window vzy can be applied at several locations on w. If it entirely covers the a region,
then either v or y is at least one a. Therefore, pumping v and y increases the number of a
in the resulting word, which violates the language definition.

If the window vy starts in the area of the a’s and ends in the area of b’s, then v or y contains
at least an a or a b. Again, pumping v and y increases the amount of this symbol, which
results in a string not contained in the language. Similarly, if vzy only covers the b region,
v or y contains at least one b, which produces strings not in L while pumping.

If the window vzy starts in the b area and ends in the ¢ area, we have several cases: a) If
either v or y contains both b and ¢, pumping w produces words not in L. If v € b+ and
y = ¢, pumping will produce words with too many b’s. If v € b™ and y € ¢T, or if v = € and
y € ¢, we set i to 0 to obtain an string not in L.

If the window vzy entirely covers the ¢ region, then v or y contains at least one c¢. Thus,
setting ¢ to 0 removes at least one ¢, and the resulting string contains not enough ¢’s to be
in L.

b) This language is regular, see Figure 1. Because the set of regular languages is a subset of
the context-free languages, the language is also context-free.

Figure 1: DFA for L = {z | z € {0,1}*, and z contains an even number of ’0’ and an even number
of "1’}

c¢) Consider the word w = 0P1P#0P1P € L. If the language is context free, we can apply the
tandem pumping lemma. In order to keep the property that |z| = |y|, we must pump the

same number of symbols on the left and right of #. Thus, the only reasonable place to place
the sub-string vzy is such that v lies to the left of # and y to the right of #. But because
|vzy| < p, v only contains 1 and y only contains 0. Therefore, for any string that we may
pump (except for ¢ = 1), the number of '0’s does not equal the number of '0’s in y (and
similarly for the number of '1’s.) Therefore, the LHS and RHS of # are not permutations
and the pumped strings are not in L. Thus, L is not context free.

