Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

Discrete Event Systems Solution to Exercise 6

1 The Winter Train Problem

We can model each train individually and combine the corresponding sub-states using an AND-super-state, see the figure below. Additionally, in order to "synchronize" the trains, a third sub-state is needed (shown in the middle) which implements a mutual exclusion: For instance, if there is no train between Stans and Engelberg and if train 1 is in state c1, T1 can enter the critical section and train 2 has to wait. (Notice that if both trains are in states c1 and c2 respectively, T1 has priority.)

2 CNF

a) First, insert a non-terminal S^{\prime} to ensure that the start symbol S is only used on the left hand of any production. We obtain:

$$
\begin{aligned}
S & \rightarrow S^{\prime} A S^{\prime} \mid A \\
S^{\prime} & \rightarrow S^{\prime} A S^{\prime} \mid A \\
A & \rightarrow 0 \mid 1
\end{aligned}
$$

Then, replace the production $S^{\prime} \rightarrow S^{\prime} A S^{\prime}$ with $S \rightarrow S^{\prime} Q$ and $Q \rightarrow A S^{\prime}$ (do the same for $S \rightarrow S^{\prime} A S^{\prime}$). Also, insert the terminals of A in the production $S \rightarrow A$ to obtain $S \rightarrow 0 \mid 1$. We obtain the following CNF:

$$
\begin{aligned}
& S \rightarrow S^{\prime} Q|0| 1 \\
& S^{\prime} \rightarrow \\
& S^{\prime} Q|0| 1 \\
& Q \rightarrow A S^{\prime} \\
& A \rightarrow 0 \mid 1
\end{aligned}
$$

b) First, ensure that the start symbol S does not appear on the right-hand side of any rule:

$$
\begin{aligned}
S & \rightarrow S^{\prime} \\
S^{\prime} & \rightarrow T 1 T \mid T \\
T & \rightarrow T 0 S^{\prime}\left|T 1 S^{\prime}\right| U \\
U & \rightarrow 1 U \mid \epsilon
\end{aligned}
$$

Then, remove the ϵ-production, first from the last rule to obtain

$$
\begin{aligned}
S & \rightarrow S^{\prime} \\
S^{\prime} & \rightarrow T 1 T \mid T \\
T & \rightarrow T 0 S^{\prime}\left|T 1 S^{\prime}\right| U \mid \epsilon \\
U & \rightarrow 1 U \mid 1
\end{aligned}
$$

Then continue moving up the ϵ :

$$
\begin{aligned}
S & \rightarrow S^{\prime} \\
S^{\prime} & \rightarrow T 1 T|1 T| T 1|T| 1 \mid \epsilon \\
T & \rightarrow T 0 S^{\prime}\left|0 S^{\prime}\right| T 1 S^{\prime}\left|1 S^{\prime}\right| U \\
U & \rightarrow 1 U \mid 1
\end{aligned}
$$

... until the ϵ only occurs in production rules starting from S.

$$
\begin{aligned}
S & \rightarrow S^{\prime} \mid \epsilon \\
S^{\prime} & \rightarrow T 1 T|1 T| T 1|T| 1 \\
T & \rightarrow T 0 S^{\prime}\left|0 S^{\prime}\right| T 1 S^{\prime}\left|1 S^{\prime}\right| T 0|0| T 1|1| U \\
U & \rightarrow 1 U \mid 1
\end{aligned}
$$

Then, remove all unit-variable productions:

$$
\begin{aligned}
S & \rightarrow T 1 T|1 T| T 1\left|T 0 S^{\prime}\right| 0 S^{\prime}\left|T 1 S^{\prime}\right| 1 S^{\prime}|T 0| 0|1| 1 U \mid \epsilon \\
S^{\prime} & \rightarrow T 1 T|1 T| T 1\left|T 0 S^{\prime}\right| 0 S^{\prime}\left|T 1 S^{\prime}\right| 1 S^{\prime}|T 0| 0|1| 1 U \\
T & \rightarrow T 0 S^{\prime}\left|0 S^{\prime}\right| T 1 S^{\prime}\left|1 S^{\prime}\right| T 0|0| T 1|1| 1 U \\
U & \rightarrow 1 U \mid 1
\end{aligned}
$$

Add dyadic variable rules to replace any longer non-dyadic or non-variable production. We start by removing the non-terminals from non-variable productions:

$$
\begin{aligned}
S & \rightarrow T B T|B T| T B\left|T A S^{\prime}\right| A S^{\prime}\left|T B S^{\prime}\right| B S^{\prime}|T A| 0|1| B U \mid \epsilon \\
S^{\prime} & \rightarrow T B T|B T| T B\left|T A S^{\prime}\right| A S^{\prime}\left|T B S^{\prime}\right| B S^{\prime}|T A| 0|1| B U \\
T & \rightarrow T A S^{\prime}\left|A S^{\prime}\right| T B S^{\prime}\left|B S^{\prime}\right| T A|0| T B|1| B U \\
U & \rightarrow B U \mid 1 \\
A & \rightarrow 0 \\
B & \rightarrow 1
\end{aligned}
$$

Finally, we split production rules whose RHS contains more than 2 non-terminals:

$$
\begin{aligned}
S & \rightarrow Q T|B T| T B\left|P S^{\prime}\right| A S^{\prime}\left|Q S^{\prime}\right| B S^{\prime}|T A| 0|1| B U \mid \epsilon \\
S^{\prime} & \rightarrow Q T|B T| T B\left|P S^{\prime}\right| A S^{\prime}\left|Q S^{\prime}\right| B S^{\prime}|T A| 0|1| B U \\
T & \rightarrow P S^{\prime}\left|A S^{\prime}\right| Q S^{\prime}\left|B S^{\prime}\right| T A|0| T B|1| B U \\
U & \rightarrow B U \mid 1 \\
A & \rightarrow 0 \\
B & \rightarrow 1 \\
P & \rightarrow T A \\
Q & \rightarrow T B
\end{aligned}
$$

3 Transducer and Turing Machine

a) The proposed automaton (which is deterministic!) reads two successive symbols (bits) of the input and outputs the sum. If there is a carry-over, we end up in state $q 3$, where the output is adapted accordingly.

b) The machine performs the following actions:

1 Move the head to the LSB of b. For convenience of explanation, assume there is a variable i, initially set to 0 . After this step, the TM head points to $b[i]$.
2 Replace the digit at the head with A or B, if the digit is a 0 or a 1 , respectively. (That's how we store the value of digit $b[i]$ and can find back later on.)
3 Move to the left until we find the + sign. Then, continue moving left until we hit the first digit. (Note: this digit corresponds to $a[i]$). Depending on the value of this digit, go into state $q 5$ or $q 6$, and remove the digit $a[i]$, by writing a \square.
4 Move right until we hit an A or B (or C, which we explain later). At that point, we have the information of $a[i]$ and $b[i]$ and can determine the sum. If $a[i]+b[i] \geq 2$ (we get a reminder), go to state $q 7$. (Note that $q 1$ corresponds to $q 7$: we're in $q 7$ if there is a reminder, otherwise we're in $q 1$.)
(5) Now, we're done with the digit at offset i. Increment i by one. (This is no action of the TM, it is only for the sake of explanation.)
6 Continue until we're in $q 1$ or $q 7$ and read a + sign, in which case we write the current reminder and terminate (accept).
6' Some more explanation to $q 7$: In this state, we have a carry-over from the previous sum. Thus, $b[i]$ plus this carry over may already sum up to 2 , in which case we write a C on the tape.

We use the following notation for transitions: $\alpha \rightarrow \beta \mid \gamma$: read α from the tape at the current position, then write a β and finally move left if $\gamma=L$ or move right if $\gamma=R$. We abbreviate transitions of the form $\alpha \rightarrow \alpha \mid \gamma$ and write $\alpha \mid \gamma$ (these transitions do not modify the content of the tape).

c) The proposed Turing machine decrements the value of a until $a=0$. In each step, it adds a ' 1 ' to the output:

1 Move the TM head to the right of a and place a $\$$ sign. We will use this marker to return to the $L S B$ of a.
2 Look at the LSB of a. If it is ' 1 ', we change it to 0 (transition between $q 1$ and $q 3$) and move to the right. Then, we continue moving to the right until we hit a \square, which is changed to a '1' (transition $q 4$ to $q 5$). Finally, we move back to the LSB of a.
3 If the LSB of a is 0 , we search for the first ' 1 ' in a from the right (transition $q 1$ to $q 2$ and loop on $q 2$).
3.1 If we find a ' 1 ', we change it to ' 0 '. While moving back to the $\$$ symbol, we change all ' 0 ' to ' 1 ' (self-loop on $q 3$). Then, we proceed as in point 2 after passing the $\$$ symbol.
3.2 If we don't find a ' 1 ' in a at all (transition $q 2$ to $q 6$), we start the cleanup procedure: Remove all 0 on the right of the $\$$ symbol, and finally remove the $\$$ symbol itself and move to the right of u.

