
Distributed
Computing Group

WS 2006/2007 Dr. C. Stamm / Roland Flury / Stefan Schmid

Discrete Event Systems

Solution to Exercise 6

1 The Winter Train Problem

We can model each train individually and combine the corresponding sub-states using an AND-
super-state, see the figure below. Additionally, in order to “synchronize” the trains, a third
sub-state is needed (shown in the middle) which implements a mutual exclusion: For instance, if
there is no train between Stans and Engelberg and if train 1 is in state c1, T1 can enter the critical
section and train 2 has to wait. (Notice that if both trains are in states c1 and c2 respectively, T1
has priority.)

Train

a1

b1

m1 / T1=R

c1

b1 / T1=S

d1

[y] / T1=R;G=1

e1

c / T1=S;

wait(100);

T1=L

f1

b1

a1 / T1=S

x

y

z

a2

b2

m2 / T2=R

c2

b2 / T2=S

d2

[z] / T2=R;G=0

e2

c / T2=S;

wait(100);

T2=L

f2

b2

a2 / T2=S

[c1]

[c1 & c2][f2]

[f1]

2 CNF

a) First, insert a non-terminal S′ to ensure that the start symbol S is only used on the left
hand of any production. We obtain:

S → S′AS′ | A
S′ → S′AS′ | A
A → 0 | 1

Then, replace the production S′ → S′AS′ with S → S′Q and Q → AS′ (do the same for
S → S′AS′). Also, insert the terminals of A in the production S → A to obtain S → 0 | 1.
We obtain the following CNF:

S → S′Q | 0 | 1
S′ → S′Q | 0 | 1
Q → AS′

A → 0 | 1

b) First, ensure that the start symbol S does not appear on the right-hand side of any rule:

S → S′

S′ → T1T | T
T → T0S′ | T1S′ | U
U → 1U | ε

Then, remove the ε-production, first from the last rule to obtain

S → S′

S′ → T1T | T
T → T0S′ | T1S′ | U | ε
U → 1U | 1

Then continue moving up the ε:

S → S′

S′ → T1T | 1T | T1 | T | 1 | ε
T → T0S′ | 0S′ | T1S′ | 1S′ | U
U → 1U | 1

... until the ε only occurs in production rules starting from S.

S → S′ | ε
S′ → T1T | 1T | T1 | T | 1
T → T0S′ | 0S′ | T1S′ | 1S′ | T0 | 0 | T1 | 1 | U
U → 1U | 1

2

Then, remove all unit-variable productions:

S → T1T | 1T | T1 | T0S′ | 0S′ | T1S′ | 1S′ | T0 | 0 | 1 | 1U | ε
S′ → T1T | 1T | T1 | T0S′ | 0S′ | T1S′ | 1S′ | T0 | 0 | 1 | 1U

T → T0S′ | 0S′ | T1S′ | 1S′ | T0 | 0 | T1 | 1 | 1U

U → 1U | 1

Add dyadic variable rules to replace any longer non-dyadic or non-variable production. We
start by removing the non-terminals from non-variable productions:

S → TBT | BT | TB | TAS′ | AS′ | TBS′ | BS′ | TA | 0 | 1 | BU | ε
S′ → TBT | BT | TB | TAS′ | AS′ | TBS′ | BS′ | TA | 0 | 1 | BU

T → TAS′ | AS′ | TBS′ | BS′ | TA | 0 | TB | 1 | BU

U → BU | 1
A → 0
B → 1

Finally, we split production rules whose RHS contains more than 2 non-terminals:

S → QT | BT | TB | PS′ | AS′ | QS′ | BS′ | TA | 0 | 1 | BU | ε
S′ → QT | BT | TB | PS′ | AS′ | QS′ | BS′ | TA | 0 | 1 | BU

T → PS′ | AS′ | QS′ | BS′ | TA | 0 | TB | 1 | BU

U → BU | 1
A → 0
B → 1
P → TA

Q → TB

3 Transducer and Turing Machine

a) The proposed automaton (which is deterministic!) reads two successive symbols (bits) of
the input and outputs the sum. If there is a carry-over, we end up in state q3, where the
output is adapted accordingly.

q0

q1

q2 q3

q4

q5

0/ε
0/0
1/1

1/ε

0/1

1/0

0/ε

1/ε
0/0
1/1

ε/1

3

b) The machine performs the following actions:

1 Move the head to the LSB of b. For convenience of explanation, assume there is a
variable i, initially set to 0. After this step, the TM head points to b[i].

2 Replace the digit at the head with A or B, if the digit is a 0 or a 1, respectively. (That’s
how we store the value of digit b[i] and can find back later on.)

3 Move to the left until we find the + sign. Then, continue moving left until we hit the
first digit. (Note: this digit corresponds to a[i]). Depending on the value of this digit,
go into state q5 or q6, and remove the digit a[i], by writing a 2.

4 Move right until we hit an A or B (or C, which we explain later). At that point, we
have the information of a[i] and b[i] and can determine the sum. If a[i] + b[i] ≥ 2 (we
get a reminder), go to state q7. (Note that q1 corresponds to q7: we’re in q7 if there is
a reminder, otherwise we’re in q1.)

(5) Now, we’re done with the digit at offset i. Increment i by one. (This is no action of
the TM, it is only for the sake of explanation.)

6 Continue until we’re in q1 or q7 and read a + sign, in which case we write the current
reminder and terminate (accept).

6’ Some more explanation to q7: In this state, we have a carry-over from the previous
sum. Thus, b[i] plus this carry over may already sum up to 2, in which case we write a
C on the tape.

We use the following notation for transitions: α → β|γ: read α from the tape at the current
position, then write a β and finally move left if γ = L or move right if γ = R. We abbreviate
transitions of the form α → α|γ and write α|γ (these transitions do not modify the content
of the tape).

q0 q1

q2

q3 q4

q5

q6

q7q8

{0|1|+}|R

2|L

+ → 0|ε

0 → A|L
1 → B|L

{0|1}|L

+|L
2|L

1 → 2|R

0 → 2|R

{0|1|+ |2}|R
A → 0|L
B → 1|L

{0|1|+ |2}|R

B → 0|L
C → 1|L

A → 1|L

C → 0|L

0 → B|L
1 → C|L

+ → 1|ε

4

c) The proposed Turing machine decrements the value of a until a = 0. In each step, it adds a
’1’ to the output:

1 Move the TM head to the right of a and place a $ sign. We will use this marker to
return to the LSB of a.

2 Look at the LSB of a. If it is ’1’, we change it to 0 (transition between q1 and q3) and
move to the right. Then, we continue moving to the right until we hit a 2, which is
changed to a ’1’ (transition q4 to q5). Finally, we move back to the LSB of a.

3 If the LSB of a is 0, we search for the first ’1’ in a from the right (transition q1 to q2
and loop on q2).

3.1 If we find a ’1’, we change it to ’0’. While moving back to the $ symbol, we change all
’0’ to ’1’ (self-loop on q3). Then, we proceed as in point 2 after passing the $ symbol.

3.2 If we don’t find a ’1’ in a at all (transition q2 to q6), we start the cleanup procedure:
Remove all 0 on the right of the $ symbol, and finally remove the $ symbol itself and
move to the right of u.

q0 q1 q3

q4q5

q6 q7 q8

{0|1}|R

2 → $|L

0|L

1 → 0|R

2|R

0 → 1|R

$|R

1|R
2 → 1|L

1|L

$|L

0 → 2|R
$ → 2|R

1|R

2|L

5

