Chapter 5 Worst-Case Event Systems Distributed Discrete Event Systems Computing Group Winter 2006 / 2007

Overview: Worst-Case Analysis of DES

- Ski Rental
 - Randomized Ski Rental
 - Lower Bounds

- The TCP Congestion Control Problem
 - Bandwidth in a Fixed Interval
 - Multiplicatively Changing Bandwidth
 - Changes with Bursts
- Many application domains are not Poisson distributed!
 - sometimes it makes sense to assume that events are distributed in the worst possible way (e.g. in networks, packets often arrive in bursts)

Theory of Renting Skis

- Scenario
 - you start a new hobby, e.g. skiing
 - you don't know whether you will like it
 - expensive equipment ~ 1 kFr
- 3 Alternatives
 - just buy a new equipment (optimistic)
 - always renting (pessimistic)
 - first rent it a few times before you buy (down-to-earth)
- You choose the pragmatic way, but Murphy's law will strike!
 - first you rent, but as soon as you buy, you will lose interest in skiing

Ski Rental Problem

Expenses

- buying: 1 kFr
- renting: 1 kFr per month

can go wrong,

If anything

Scenario

- first rent it for z months, then buy it.
- after u months you will lose your interest in skiing it v
 2 cases:

$$u \le z \rightarrow cost_z(u) = u kFr$$

 $u > z \rightarrow cost_z(u) = (z + 1) kFr$

If you are a clairvoyant, then ...

```
u ≤ 1 month → just renting is better → cost_{opt}(u) = u kFr
u > 1 month → just buying is better → cost_{opt}(u) = 1 kFr
→ cost_{opt}(u) = min(u, 1)
```


Competitive Analysis

Definition

An online algorithm A is c-competitive if for all finite input sequences I $cost_A(I) \le c cost_{opt}(I) + k$

where k is a constant independent of the input.

If k = 0, then the online algorithm is called strictly c-competitive.

When strictly c-competitive, it holds

$$\frac{\cot A(u)}{\cot(u)} \le c$$

- Example
 - Ski rental is strictly 2-competive. The best algorithm is z = 1.

Randomized Ski Rental

- Deterministic Algorithm
 - has a big handicap, because the adversary knows z and can always present a u which is worst-case for the algorithm
 - only hope: algorithm makes random decisions
- Randomized Algorithm
 - chooses randomly between 2 values z_1 und z_2 (with $z_1 < z_2$) with probabilities p_1 and $p_2 = (1 p_1)$

$$cost_A(u) = \begin{cases} u & \text{if } u \le z_1 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot u & \text{if } z_1 < u \le z_2 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot (z_2 + 1) & \text{if } z_2 < u \end{cases}$$

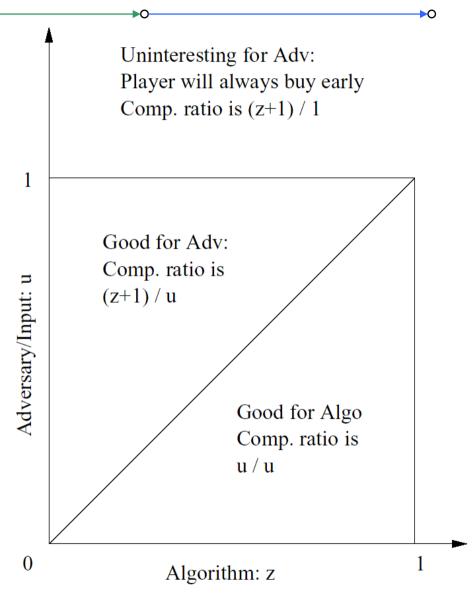
- Example
 - $z_1 = \frac{1}{2}$, $z_2 = 1$, $p_1 = \frac{2}{5}$, $p_2 = \frac{3}{5}$
 - E[c] = $cost_A / cost_{opt} = 1.8$

What about choosing randomly between more than 2 values???

Randomized Ski Rental with infinitely many Values (1)

- Let r(u, z) be the competitive ratio for all pairs of u and z
- We are looking for the expected competitive ratio E[c]
- Adversary chooses u with uniform distribution

$$E[c] = \frac{\iint r(u,z)dzdu}{\iint dzdu}$$
$$= \frac{1}{2} + \int_{u=0}^{1} \int_{z=0}^{u} \frac{z+1}{u}dzdu$$
$$= 1.75$$



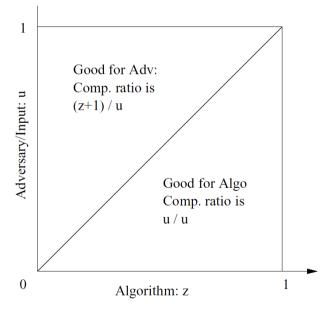
Randomized Ski Rental with infinitely many Values (2)

- Algorithm chooses z with probability distribution p(z)
 - it chooses p(z) such that it minimizes E[c]
- Adversary chooses u with probability distribution d(u)
 - it chooses d(u) such that it maximized E[c]

$$E[c] = \frac{\int_0^1 \int_0^u (z+1)p(z)d(u)dzdu + \int_0^1 \int_u^1 up(z)d(u)dzdu}{\int_0^1 \int_0^1 up(z)d(u)dzdu}$$

$$\int p(z) = \int d(u) = 1$$

- This is a very hard task!
 - → We should make the problem independent of the adversarial distribution d(u).



Randomized Ski Rental with infinitely many Values (3)

Idea

Choose the algorithm's probability function p(z) such that $cost_A(u) \le c cost_{opt}(u)$ for all u

- → adversarial distribution d(u) doesn't matter anymore
- cost_{opt}(u) = u for all u between 0 und 1

$$\int_0^u (z+1)p(z)dz + \int_u^1 u \cdot p(z)dz \le c \cdot u$$

with
$$\int_0^1 p(z)dz = 1$$

• Having a hunch: the best probability function p(z) will be an equality \rightarrow With $p(z)=\frac{e^z}{e-1}$ we have an algorithm that is $\frac{e}{e-1}$ -competitive in expectation.

▶O

Can we get any better??? → Lower Bounds

Von Neumann / Yao Principle

Choose an distribution over problem instances (for ski rental, e.g. d(u)). If for this distribution all deterministic algorithms cost at least c, the c is a lower bound for the best possible randomized algorithm.

Ski Rental

- we are in a lucky situation, because we can parameterize all possible deterministic algorithms by $z \ge 0$
- choose a distribution of inputs with $d(u) \ge 0$ and $\int d(u) = 1$

Example

$$d(u) = \frac{1}{2} \text{ for } 0 \le u \le 1 \text{ and } d(\infty) = \frac{1}{2}$$

$$\rightarrow$$
 cost_{z=0}(d(u)) = 1

$$cost_{r \le 1}(d(u)) \ge 1$$

$$\rightarrow \operatorname{cost}_{z=1}(\operatorname{d}(\operatorname{u})) = 5/4$$
 $\operatorname{cost}_{z>1}(\operatorname{d}(\operatorname{u})) > 5/4$ $\rightarrow c = 1$

$$cost_{z>1}(d(u)) > 5/4$$

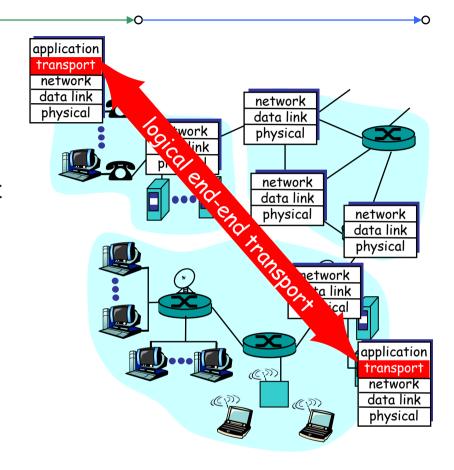
$$\rightarrow$$
 c = 1

$$\rightarrow$$
 cost_{opt}(d(u)) = $\frac{3}{4}$

$$\rightarrow$$
 c/cost_{opt} = 4/3 = 1.33

TCP: Transmission Control Protocol

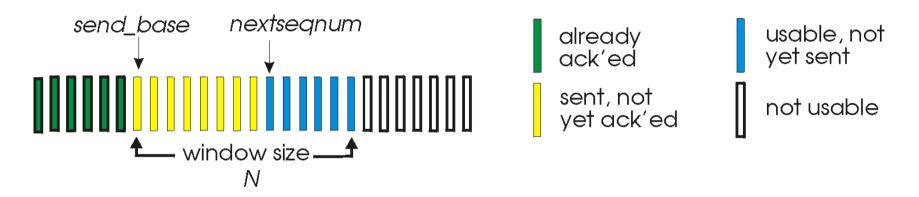
- Layer 4 Networking Protocol
 - transmission error handling
 - correct ordering of packets
 - exponential ("friendly") slow start mechanism: should prevent network overloading by new connections
 - flow control: prevents buffer overloading
 - congestion control: should prevent network overloading



Packet Acknowledgment

Sender

- Sequence number in packet header
- "Window" of up to N consecutive unack'ed packets allowed



- ACK(n): ACKs all packets up to and including sequence number n
 - a.k.a. cumulative ACK
 - sender may get duplicate ACKs
- timer for each in-flight packet
- timeout(n): retransmit packet n and all higher seq# packets in window

The TCP Acknowledgment Problem

Definition

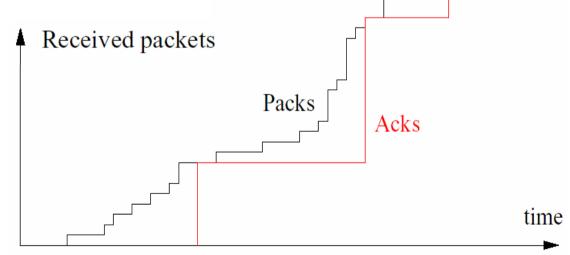
The receiver's goal is a scheme which minimizes the number of acknowledgments plus the sum of the latencies for each packet, where the latency of a packet is the time difference from arrival to acknowledgment.

Given

n packet arrivals, at times: $a_1, a_2, ..., a_n$ k acknowledgments, at times $t_1, t_2, ..., t_n$ latency(i) = $t_j - a_i$, where j such that $t_{j-1} < a_i \le t_j$

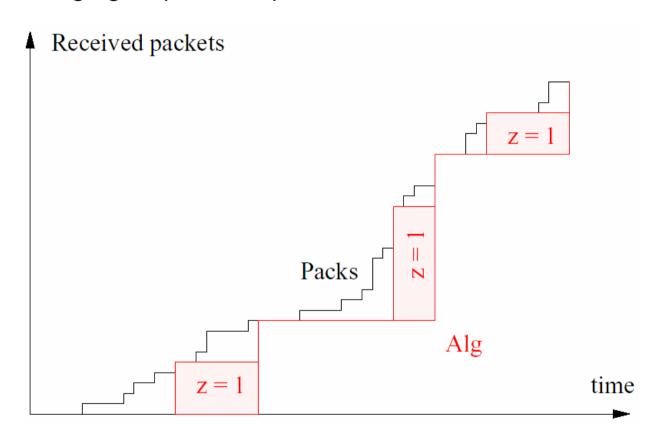
Minimize

$$\left(k + \sum_{i=1}^{n} \operatorname{latency}(i)\right)$$



The TCP Acknowledgment Problem: z=1 Algorithm (1)

• z = 1 Algorithm is: Whenever a rectangle with area z = 1 does fit between the two curves, the receiver sends an acknowledgement, acknowledging all previous packets.



The TCP Acknowledgment Problem: z=1 Algorithm (2)

Lemma

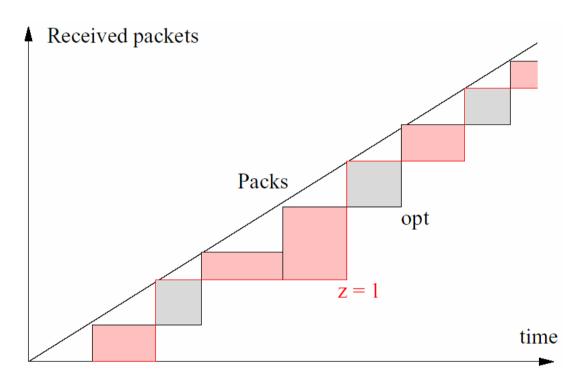
- The optimal algorithm sends an ACK between any pair of consecutive ACKs by algorithm with z = 1.

Proof

- For the sake of contradiction, assume that, among all algorithms who achieve the minimum possible cost, there is no algorithm which sends an ACK between two ACKs of the z = 1 algorithm.
- We propose to send an additional ACK at the beginning (left side) of each z = 1 rectangle. Since this ACK saves latency 1, it compensates the cost of the extra ACK.
- That is, there is an optimal algorithm who chooses this extra ACK.

The TCP Acknowledgment Problem: z=1 Algorithm (3)

Theorem: The z = 1 algorithm is 2-competitive.



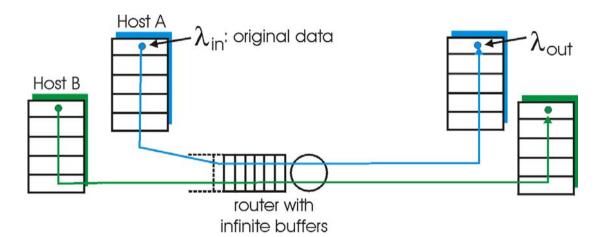
- Similarity to Ski Rental
 - it's possible to choose any z
 - if you wait for a rectangle of size z with probability $p(z) = e^{z}/(e-1)$ → randomized TCP ACK solution, which is e/(e-1) competitive

Simple TCP Congestion Scenario

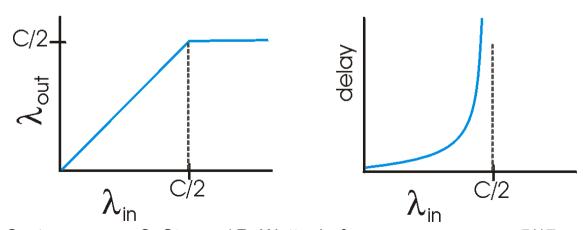
congestion

too many sources sending too much data too fast for *network* to handle

- two equal senders, two receivers
- one router with infinite buffer space and with service rate C



- large delays when congested
- maximum achievable throughput

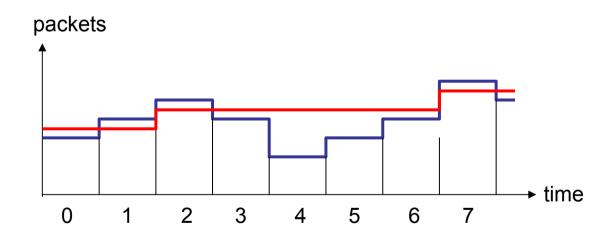


The TCP Congestion Control Problem

Main Question

How many packets per second can a sender inject into the network without overloading it?

- **Assumptions**
 - sender does not know the bandwidth between itself and the receiver.
 - the bandwidth might change over time
- Model
 - time divided into periods { t }
 - unknown bandwidth threshold u_t
 - sender transmits x_t packets
- Gain Function
 - $-x_t \le u_t \rightarrow gain_t = x_t$
 - $-x_t > u_t \rightarrow gain_t = 0$



Competitive Analysis (2)

Definition

An online algorithm A is strictly c-competitive if for all finite input sequences I

$$cost_A(I) \le c cost_{opt}(I)$$
, or $c gain_A(I) \ge gain_{opt}(I)$.

- The Dynamic Model
 - algorithm: chooses a sequence { x_t }
 - adversary: knows the algorithm's sequence and chooses a sequence { u_t }
- Problem
 - Adversary is too strong: $\forall t$: $u_t < x_t$ → gain_A = 0
- Restrictions
 - Bandwidth in a fixed interval: u_t ∈ [a, b]
 - Multiplicatively changing bandwidth
 - Changes with bursts

Bandwidth in a Fixed Interval: Deterministic Algorithm

- Preconditions
 - adversary chooses $u_t \in [a, b]$
 - algorithm is aware of the upper bound b and the lower bound a
- Deterministic Algorithm
 - If the algorithm plays x_t > a in round t, then the adversary plays u_t = a.
 → gain = 0
 - Therefore the algorithm must play $x_t = a$ in each round in order to have at least gain = a.
 - The adversary knows this, and will therefore play u₁ = b.
 - Therefore, $gain_{Alg} = a$, $gain_{opt} = b$, competitive ratio c = b/a.

Bandwidth in a Fixed Interval: Randomized Algorithm

- Let's try the ski rental trick!
 - For all possible inputs $u \in [a, b]$ we want the same competitive ratio: $c gain_{Ala}(u) = gain_{opt}(u) = u$
- Randomized Algorithm
 - We choose x = a with probability p_a , and any value in $x \in (a, b]$ with probability density function p(x), with $p_a + \int_a^b p(x) dx = 1$.
- Theorems
 - There is an algorithm that is c-competitive, with $c = 1 + \ln(b/a)$.
 - There is no randomized algorithm which is better than c-competitive, with $c = 1 + \ln(b/a)$.
- Remark
 - Upper and lower bound are tight.

Multiplicatively Changing Bandwidth

Preconditions

- adversary chooses u_{t+1} such that $u_t/\mu \le u_{t+1} \le \mu u_t$, with $\mu \ge 1$, e.g. 1.05
- algorithm knows u₁ and μ

Algorithm A₁

- after a successful transmission in period t, the algorithm chooses $x_{t+1} = \mu x_t$
- otherwise: $x_{t+1} = x_t/\mu^3$

Theorem

- The algorithm A_1 is $(\mu^4 + \mu)$ -competitive

Algorithm A₂

- after a successful transmission in period t, the algorithm chooses $x_{t+1} = \mu x_t$
- otherwise: $x_{t+1} = x_t/2$

Theorem

- The algorithm A_2 is (4μ) -competitive

Changes with Bursts

- Bursty Adversary
 - 2 parameters: μ ≥ 1 and maximum burst factor B ≥ 1
 - $\ \, \text{adversary chooses u}_{t+1} \text{ from the interval } \left[\frac{u_t}{\beta_t \mu}, u_t \cdot \beta_t \cdot \mu \right] \\ \text{where } \beta_t = \min\{B, \beta_{t-1} \frac{\mu}{c_{t-1}}\} \text{ is the burst factor at time t and } \\ \text{where c}_{t-1} = \textbf{u}_t/\textbf{u}_{t-1} \text{ if } \textbf{u}_t > \textbf{u}_{t-1} \text{ and } \textbf{u}_{t-1}/\textbf{u}_t \text{ otherwise} \\$

