Overview: Worst-Case Analysis of DES

- Ski Rental
 - Randomized Ski Rental
 - Lower Bounds
- The TCP Acknowledgement Problem
- The TCP Congestion Control Problem
 - Bandwidth in a Fixed Interval
 - Multiplicatively Changing Bandwidth
 - Changes with Bursts
- Many application domains are not Poisson distributed!
 - sometimes it makes sense to assume that events are distributed in the worst possible way (e.g. in networks, packets often arrive in bursts)

Discrete Event Systems - C. Stamm / R. Wattenhofer

5/2

Theory of Renting Skis

Scenario

Distributed

Computing Group

- you start a new hobby, e.g. skiing
- you don't know whether you will like it
- expensive equipment ~ 1 kFr
- 3 Alternatives
 - just buy a new equipment (optimistic)
 - always renting (pessimistic)
 - first rent it a few times before you buy (down-to-earth)
- · You choose the pragmatic way, but Murphy's law will strike!
 - first you rent, but as soon as you buy, you will lose interest in skiing

Chapter 5

Systems Discrete Event Systems

Winter 2006 / 2007

Worst-Case Event

- Expenses
 - buying: 1 kFr
 - renting: 1 kFr per month
- Scenario
 - first rent it for z months, then buy it.
 - after u months you will lose your interest in skiing ~~it~~will
- 2 cases:
 - $u \le z \rightarrow \text{cost}_z(u) = u \text{ kFr}$ $u \ge z \rightarrow \text{cost}(u) = (z + 1)$
 - $u > z \rightarrow cost_z(u) = (z + 1) kFr$
- If you are a clairvoyant, then ...
 - u ≤ 1 month → just renting is better → $cost_{opt}(u) = u \ kFr$ u > 1 month → just buying is better → $cost_{opt}(u) = 1 \ kFr$ → $cost_{opt}(u) = min(u, 1)$

Competitive Analysis

Randomized Ski Rental Deterministic Algorithm Definition - has a big handicap, because the adversary knows z and can always An online algorithm A is c-competitive if for all finite input sequences I present a u which is worst-case for the algorithm $cost_A(I) \le c cost_{opt}(I) + k$ - only hope: algorithm makes random decisions where k is a constant independent of the input. Randomized Algorithm If k = 0, then the online algorithm is called strictly c-competitive. - chooses randomly between 2 values z_1 und z_2 (with $z_1 < z_2$) with probabilities p_1 and $p_2 = (1 - p_1)$ When strictly c-competitive, it holds $cost_A(u) = \begin{cases} u & \text{if } u \le z_1 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot u & \text{if } z_1 < u \le z_2 \\ p_1 \cdot (z_1 + 1) + p_2 \cdot (z_2 + 1) & \text{if } z_2 < u \end{cases}$ $\frac{\cot A(u)}{\cot(u)} \le c$ Example Example $- z_1 = \frac{1}{2}, z_2 = 1, p_1 = \frac{2}{5}, p_2 = \frac{3}{5}$ What about choosing - Ski rental is strictly 2-competive. The best algorithm is z = 1. - E[c] = cost₄ / cost_{out} = 1.8 randomly between more than 2 values??? Discrete Event Systems - C. Stamm / R. Wattenhofer Discrete Event Systems - C. Stamm / R. Wattenhofer 5/6 5/5 Randomized Ski Rental with infinitely many Values (1) Randomized Ski Rental with infinitely many Values (2) • Algorithm chooses z with probability distribution p(z) Let r(u, z) be the competitive Uninteresting for Adv: ratio for all pairs of u and z - it chooses p(z) such that it minimizes E[c]Player will always buy early Comp. ratio is (z+1)/1· We are looking for the Adversary chooses u with probability distribution d(u) expected competitive ratio E[c] it chooses d(u) such that it maximized E[c] 1 $E[c] = \frac{\int_0^1 \int_0^u (z+1)p(z)d(u)dzdu + \int_0^1 \int_u^1 up(z)d(u)dzdu}{\int_0^1 \int_0^1 up(z)d(u)dzdu}$ Adversarv chooses u with Good for Adv: uniform distribution Comp. ratio is $E[c] = \frac{\iint r(u,z)dzdu}{\iint dzdu}$ (z+1)/uAdversary/Input: $\int p(z) = \int d(u) = 1$ Good for Adv: Comp. ratio is (z+1)/u Good for Algo This is a very hard task! $=\frac{1}{2} + \int_{t=0}^{t} \int_{z=0}^{t} \frac{z+1}{u} dz du$ Comp. ratio is \mathbf{u} / \mathbf{u} Good for Algo Comp. ratio is \rightarrow We should make the problem independent u/u =1.75of the adversarial distribution d(u). 0 Algorithm: z Algorithm: 2

5/7

Discrete Event Systems - C. Stamm / R. Wattenhofer

Randomized Ski Rental with infinitely many Values (3)

• Idea

0

Choose the algorithm's probability function p(z) such that $cost_A(u) \le c cost_{opt}(u)$ for all u \rightarrow adversarial distribution d(u) doesn't matter anymore

cost_{opt}(u) = u for all u between 0 und 1

$$\int_0^u (z+1)p(z)dz + \int_u^1 u \cdot p(z)dz \le c \cdot u$$

with $\int_0^1 p(z)dz = 1$

• Having a hunch: the best probability function p(z) will be an equality \rightarrow With $p(z) = \frac{e^z}{e-1}$ we have an algorithm that is $\frac{e}{e-1}$ -competitive in expectation.

Discrete Event Systems – C. Stamm / R. Wattenhofer

TCP: Transmission Control Protocol

- Layer 4 Networking Protocol
 - transmission error handling
 - correct ordering of packets
 - exponential ("friendly") slow start mechanism: should prevent network overloading by new connections
 - flow control: prevents buffer overloading
 - congestion control: should prevent network overloading

Can we get any better??? \rightarrow Lower Bounds

• Von Neumann / Yao Principle

Choose an distribution over problem instances (for ski rental, e.g. d(u)). If for this distribution all deterministic algorithms cost at least c, the c is a lower bound for the best possible randomized algorithm.

- Ski Rental
 - we are in a lucky situation, because we can parameterize all possible deterministic algorithms by $z \ge 0$
 - choose a distribution of inputs with d(u) \geq 0 and $\int d(u) ~=~ 1$
- Example

Discrete Event Systems – C. Stamm / R. Wattenhofer

Packet Acknowledgment

Sender

- Sequence number in packet header
- "Window" of up to N consecutive unack'ed packets allowed

- ACK(n): ACKs all packets up to and including sequence number n
 - a.k.a. cumulative ACK
 - sender may get duplicate ACKs
- timer for each in-flight packet
- timeout(n): retransmit packet n and all higher seq# packets in

Discrete Event Systems - C. Stamm / R. Wattenhofer

5/10

5/9

The TCP Acknowledgment Problem

Definition

The receiver's goal is a scheme which minimizes the number of acknowledgments plus the sum of the latencies for each packet, where the latency of a packet is the time difference from arrival to acknowledgment.

Given

The TCP Acknowledgment Problem: z=1 Algorithm (2)

- Lemma
 - The optimal algorithm sends an ACK between any pair of consecutive ACKs by algorithm with z = 1.
- Proof
 - For the sake of contradiction, assume that, among all algorithms who achieve the minimum possible cost, there is no algorithm which sends an ACK between two ACKs of the z = 1 algorithm.
 - We propose to send an additional ACK at the beginning (left side) of each z = 1 rectangle. Since this ACK saves latency 1, it compensates the cost of the extra ACK.
 - That is, there is an optimal algorithm who chooses this extra ACK.

The TCP Acknowledgment Problem: z=1 Algorithm (1)

 z = 1 Algorithm is: Whenever a rectangle with area z = 1 does fit between the two curves, the receiver sends an acknowledgement, acknowledging all previous packets.

The TCP Acknowledgment Problem: z=1 Algorithm (3)

• Theorem: The z = 1 algorithm is 2-competitive.

- Similarity to Ski Rental
- it's possible to choose any z
- − if you wait for a rectangle of size z with probability $p(z) = e^{z}/(e-1)$ → randomized TCP ACK solution, which is e/(e-1) competitive

•

Simple TCP Congestion Scenario

Competitive Analysis (2)

Definition

An online algorithm A is strictly c-competitive if for all finite input sequences I

 $cost_A(I) \le c cost_{opt}(I)$, or $c gain_A(I) \ge gain_{opt}(I)$.

- The Dynamic Model
 - algorithm: chooses a sequence { x_t }
 - adversary: knows the algorithm's sequence and chooses a sequence { u_t }
- Problem
 - − Adversary is too strong: $\forall t: u_t < x_t \rightarrow gain_A = 0$
- Restrictions
 - Bandwidth in a fixed interval: $u_t \in [a, b]$
 - Multiplicatively changing bandwidth
 - Changes with bursts

Discrete Event Systems – C. Stamm / R. Wattenhofer

The TCP Congestion Control Problem

Main Question

How many packets per second can a sender inject into the network without overloading it?

- Assumptions
 - sender does not know the bandwidth between itself and the receiver
 - the bandwidth might change over time
- Model

Bandwidth in a Fixed Interval: Deterministic Algorithm

- Preconditions
 - adversary chooses $u_t \in [a, b]$
 - algorithm is aware of the upper bound b and the lower bound a
- Deterministic Algorithm
 - − If the algorithm plays $x_t > a$ in round t, then the adversary plays $u_t = a$. → gain = 0
 - Therefore the algorithm must play x_t = a in each round in order to have at least gain = a.
 - The adversary knows this, and will therefore play $u_t = b$.
 - Therefore, $gain_{Alg} = a$, $gain_{opt} = b$, competitive ratio c = b/a.

Bandwidth in a Fixed Interval: Randomized Algorithm

- · Let's try the ski rental trick!
 - For all possible inputs $u \in [a, b]$ we want the same competitive ratio: $c \; gain_{Alg}(u) = gain_{opt}(u) = u$
- Randomized Algorithm
 - We choose x = a with probability p_a , and any value in x \in (a, b] with probability density function p(x), with $p_a + \int_a^b p(x) dx = 1$.
- Theorems
 - There is an algorithm that is c-competitive, with c = 1 + ln(b/a).
 - There is no randomized algorithm which is better than c-competitive, with c = 1 + ln(b/a).
- Remark
 - Upper and lower bound are tight.

Discrete Event Systems – C. Stamm / R. Wattenhofer

5/21

Multiplicatively Changing Bandwidth

- Preconditions
 - adversary chooses u_{t+1} such that $u_t/\mu \le u_{t+1} \le \mu u_t$, with $\mu \ge 1$, e.g. 1.05
 - algorithm knows u_1 and μ
- Algorithm A₁
 - after a successful transmission in period t, the algorithm chooses $x_{t+1} = \mu x_t$
 - otherwise: $x_{t+1} = x_t/\mu^3$
- Theorem
 - The algorithm $A^{}_1$ is (μ^4 + $\mu)$ -competitive
- Algorithm A₂
 - after a successful transmission in period t, the algorithm chooses $x_{t^{+1}}$ = μ x_t
 - otherwise: $x_{t+1} = x_t/2$
- Theorem
 - The algorithm A_2 is (4µ)-competitive

Discrete Event Systems – C. Stamm / R. Wattenhofer

5/22

Changes with Bursts

- Bursty Adversary
 - 2 parameters: $\mu \ge 1$ and maximum burst factor $B \ge 1$
 - adversary chooses u_{t+1} from the interval $\left[\frac{u_t}{\beta_t \mu}, u_t \cdot \beta_t \cdot \mu\right]$ where $\beta_t = \min\{B, \beta_{t-1} \frac{\mu}{c_{t-1}}\}$ is the burst factor at time t and where $c_{t-1} = u_t/u_{t-1}$ if $u_t > u_{t-1}$ and u_{t-1}/u_t otherwise

