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Overview: Worst-Case Analysis of DES

• Ski Rental

– Randomized Ski Rental

– Lower Bounds

• The TCP Acknowledgement Problem

• The TCP Congestion Control Problem

– Bandwidth in a Fixed Interval

– Multiplicatively Changing Bandwidth

– Changes with Bursts

• Many application domains are not Poisson distributed!

– sometimes it makes sense to assume that events are distributed in the 

worst possible way (e.g. in networks, packets often arrive in bursts)
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Theory of Renting Skis

• Scenario

– you start a new hobby, e.g. skiing

– you don‘t know whether you will like it

– expensive equipment ~ 1 kFr

• 3 Alternatives

– just buy a new equipment (optimistic)

– always renting (pessimistic)

– first rent it a few times before you buy (down-to-earth)

• You choose the pragmatic way, but Murphy’s law will strike!

– first you rent, but as soon as you buy, you will lose interest in skiing
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Ski Rental Problem

• Expenses

– buying: 1 kFr

– renting: 1 kFr per month

• Scenario

– first rent it for z months, then buy it.

– after u months you will lose your interest in skiing

2 cases:

u z costz(u) = u kFr

u > z costz(u) = (z + 1) kFr

• If you are a clairvoyant, then …

u 1 month just renting is better costopt(u) = u kFr

u > 1 month just buying is better costopt(u) = 1 kFr

costopt(u) = min(u, 1)
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Competitive Analysis

• Definition 

An online algorithm A is c-competitive if for all finite input sequences I

costA(I)  c costopt(I) + k

where k is a constant independent of the input.

If k = 0, then the online algorithm is called strictly c-competitive.

• When strictly c-competitive, it holds

• Example

– Ski rental is strictly 2-competive. The best algorithm is z = 1.
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Randomized Ski Rental

• Deterministic Algorithm

– has a big handicap, because the adversary knows z and can always

present a u which is worst-case for the algorithm

– only hope: algorithm makes random decisions

• Randomized Algorithm

– chooses randomly between 2 values z1 und z2 (with z1 < z2)

with probabilities p1 and p2 = (1 – p1)

• Example

– z1 = ½, z2 = 1, p1 = 2/5, p2 = 3/5

– E[c] = costA / costopt = 1.8
What about choosing 

randomly between more 

than 2 values???
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Randomized Ski Rental with infinitely many Values (1)

• Let r(u, z) be the competitive 

ratio for all pairs of u and z

• We are looking for the 

expected competitive ratio E[c]

• Adversary chooses u with 

uniform distribution
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Randomized Ski Rental with infinitely many Values (2)

• Algorithm chooses z with probability distribution p(z)

– it chooses p(z) such that it minimizes E[c]

• Adversary chooses u with probability distribution d(u)

– it chooses d(u) such that it maximized E[c]

• This is a very hard task!

We should make the problem independent 

of the adversarial distribution d(u).
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Randomized Ski Rental with infinitely many Values (3)

• Idea

Choose the algorithm’s probability function p(z) such that

costA(u) c costopt(u) for all u

adversarial distribution d(u) doesn’t matter anymore

• costopt(u) = u for all u between 0 und 1

• Having a hunch: the best probability function p(z) will be an equality

With     we have an algorithm that is       -competitive in 

expectation.
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Can we get any better??? Lower Bounds

• Von Neumann / Yao Principle

Choose an distribution over problem instances (for ski rental, e.g. d(u)). 

If for this distribution all deterministic algorithms cost at least c, the c is 

a lower bound for the best possible randomized algorithm. 

• Ski Rental

– we are in a lucky situation, because we can parameterize all possible 

deterministic algorithms by z  0

– choose a distribution of inputs with d(u)  0 and

• Example

d(u) = ½ for 0 u 1 and d( ) = ½

costz=0(d(u)) = 1 costz 1(d(u)) 1

costz=1(d(u)) = 5/4 costz>1(d(u)) > 5/4 c = 1

costopt(d(u)) = ¾

c / costopt = 4/3 = 1.33
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TCP: Transmission Control Protocol

• Layer 4 Networking Protocol

– transmission error handling

– correct ordering of packets

– exponential (“friendly”) slow start 

mechanism: should prevent 

network overloading by new 

connections

– flow control: prevents buffer 

overloading

– congestion control: should 

prevent network overloading

application
transport
network
data link
physical

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physicalnetwork

data link
physical

logical end-end
transport

Discrete Event Systems – C. Stamm / R. Wattenhofer 5/12

Packet Acknowledgment

Sender

• Sequence number in packet header

• “Window” of up to N consecutive unack’ed packets allowed

• ACK(n): ACKs all packets up to and including sequence number n

– a.k.a. cumulative ACK

– sender may get duplicate ACKs

• timer for each in-flight packet

• timeout(n): retransmit packet n and all higher seq# packets in 

window
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The TCP Acknowledgment Problem

• Definition

The receiver’s goal is a scheme which minimizes the number of 

acknowledgments plus the sum of the latencies for each packet, where 

the latency of a packet is the time difference from arrival to 

acknowledgment.

• Given

n packet arrivals, at times: a1, a2, …, an

k acknowledgments, at times t1, t2, …, tn
latency(i) = tj – ai, where j such that tj -1 < ai tj

• Minimize 

n
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)latency(
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The TCP Acknowledgment Problem: z=1 Algorithm (1)

• z = 1 Algorithm is: Whenever a rectangle with area z = 1 does fit 

between the two curves, the receiver sends an acknowledgement, 

acknowledging all previous packets.
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The TCP Acknowledgment Problem: z=1 Algorithm (2)

• Lemma

– The optimal algorithm sends an ACK between any pair of consecutive 

ACKs by algorithm with z = 1.

• Proof

– For the sake of contradiction, assume that, among all algorithms who 

achieve the minimum possible cost, there is no algorithm which sends 

an ACK between two ACKs of the z = 1 algorithm.

– We propose to send an additional ACK at the beginning (left side) of 

each z = 1 rectangle. Since this ACK saves latency 1, it compensates 

the cost of the extra ACK. 

– That is, there is an optimal algorithm who chooses this extra ACK.
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The TCP Acknowledgment Problem: z=1 Algorithm (3)

• Theorem: The z = 1 algorithm is 2-competitive.

• Similarity to Ski Rental

– it’s possible to choose any z

– if you wait for a rectangle of size z with probability p(z) = ez/(e-1)
randomized TCP ACK solution, which is e/(e-1) competitive
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• two equal senders, 
two receivers

• one router with 
infinite buffer space 
and with service 
rate C 

• large delays 
when congested

• maximum 
achievable 
throughput

Simple TCP Congestion Scenario

too many sources sending too much data 

too fast for network to handle

congestion
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The TCP Congestion Control Problem

• Main Question

How many packets per second can a sender inject into the network

without overloading it?

• Assumptions

– sender does not know the bandwidth between itself and the receiver

– the bandwidth might change over time

• Model

– time divided into 

periods { t }

– unknown bandwidth 

threshold ut

– sender transmits 

xt packets

• Gain Function

– xt ut gaint = xt

– xt > ut gaint = 0

time

packets

0        1        2       3     4       5        6       7
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Competitive Analysis (2)

• Definition 

An online algorithm A is strictly c-competitive if for all finite 

input sequences I

costA(I) c costopt(I), or

c gainA(I)  gainopt(I).

• The Dynamic Model

– algorithm: chooses a sequence { xt }

– adversary: knows the algorithm’s sequence and chooses a 

sequence { ut }

• Problem

– Adversary is too strong: t: ut < xt gainA = 0

• Restrictions

– Bandwidth in a fixed interval: ut [a, b]

– Multiplicatively changing bandwidth

– Changes with bursts
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Bandwidth in a Fixed Interval: Deterministic Algorithm

• Preconditions

– adversary chooses ut [a, b]

– algorithm is aware of the upper bound b and the lower bound a

• Deterministic Algorithm

– If the algorithm plays xt > a in round t, then the adversary plays ut = a. 

gain = 0

– Therefore the algorithm must play xt = a in each round in order to have 

at least gain = a.

– The adversary knows this, and will therefore play ut = b.

– Therefore, gainAlg = a, gainopt = b, competitive ratio c = b/a.
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Bandwidth in a Fixed Interval: Randomized Algorithm

• Let’s try the ski rental trick!

– For all possible inputs u [a, b] we want the same competitive ratio: 

c gainAlg(u) = gainopt(u) = u

• Randomized Algorithm

– We choose x = a with probability pa, and any value in x (a, b] with 

probability density function p(x), with 

• Theorems

– There is an algorithm that is c-competitive, with c = 1 + ln(b/a).

– There is no randomized algorithm which is better than c-competitive, 

with c = 1 + ln(b/a).

• Remark

– Upper and lower bound are tight.
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Multiplicatively Changing Bandwidth

• Preconditions

– adversary chooses ut+1 such that ut/ ut+1 ut, with 1, e.g. 1.05

– algorithm knows u1 and

• Algorithm A1

– after a successful transmission in period t, the algorithm chooses xt+1 = xt

– otherwise: xt+1 = xt/
3

• Theorem

– The algorithm A1 is ( 4 + )-competitive

• Algorithm A2

– after a successful transmission in period t, the algorithm chooses xt+1 = xt

– otherwise: xt+1 = xt/2

• Theorem

– The algorithm A2 is (4 )-competitive
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Changes with Bursts

• Bursty Adversary

– 2 parameters: 1 and maximum burst factor B 1

– adversary chooses ut+1 from the interval 

where    is the burst factor at time t and

where ct-1 = ut/ut-1 if ut > ut-1 and ut-1/ut otherwise


