Physical Algorithms
Spot the Differences
Too Many!
Spot the Differences
Still Many!
Spot the Differences
Better Screen
Bigger Disk
More RAM
Cooler Design

…
Better Screen
Bigger Disk
More RAM
Cooler Design

...
Clock speed flattening sharply

Transistor count still rising

Advent of multi-core processors!
Why Should I Care?
Computer Science ➔ Washing Machine Science

[Roger Boyle, Maurice Herlihy]
Algorithms
simple and robust model
comparable results
complexity theory
Algorithm vs. Output
The Future of Computing?
Talk Overview

Introduction & Motivation

Examples for Physical Algorithms in the Context of Sensor Networks

What are Physical Algorithms?
Clock Synchronization
Clock Synchronization in Networks

Global Positioning System (GPS)

Radio Clock Signal

AC-power line radiation

Synchronization messages
Clock Synchronization in Networks

Global Positioning System (GPS)

Radio Clock Signal

AC-power line radiation

Synchronization messages
Problem: Physical Reality

Clock rate:

\[\frac{1}{1-\epsilon} \leq \frac{1+\epsilon}{1} \leq 1 \]

Message delay:

Relative frequency vs. delay distribution.
Clock Synchronization in Theory?

Given a communication network

1. Each node equipped with hardware clock with drift
2. Message delays with jitter

Goal: Synchronize Clocks (“Logical Clocks”)

• Both global and local synchronization!
Time Must Behave!

- Time (logical clocks) should **not** be allowed to **stand still** or **jump**
• Time (logical clocks) should **not** be allowed to stand still or jump

• Let’s be more careful (and ambitious):
 • Logical clocks should **always move forward**
 • Sometimes faster, sometimes slower is OK.
 • But there should be a minimum and a maximum speed.
 • As close to correct time as possible!
Local Skew

Tree-based Algorithms
e.g. FTSP

Neighborhood Algorithms
e.g. GTSP

Bad local skew
Synchronization Algorithms: An Example ("A^\text{max}")

- **Question:** How to update the logical clock based on the messages from the neighbors?

- **Idea:** Minimizing the skew to the fastest neighbor
 - Set clock to maximum clock value you know, forward new values immediately

- **First all messages are slow (1), then suddenly all messages are fast (0)!**
Everybody's expectation, 10 years ago ("solved")

Lower bound of $\log D / \log \log D$
[Fan & Lynch, PODC 2004]

Blocking algorithm

All natural algorithms
[Locher et al., DISC 2006]

Tight lower bound
[Lenzen et al., FOCS 2008]

Dynamic Networks!
[Lenzen et al., PODC 2009]

Dynamic Networks!
[Kuhn et al., SPAA 2009]

Together
[JACM 2010]
Experimental Results for Global Skew

FTSP

PulseSync

[Lenzen, Sommer, W, SenSys 2009]
Experimental Results for Global Skew

[Lenzen, Sommer, W, SenSys 2009]
Clock Synchronization vs. Car Coordination

- In the future cars may travel at high speed despite a tiny safety distance, thanks to advanced sensors and communication.
Clock Synchronization vs. Car Coordination

• In the future cars may travel at high speed despite a tiny safety distance, thanks to advanced sensors and communication.

• How fast & close can you drive?

• Answer possibly related to clock synchronization
 – clock drift ↔ cars cannot control speed perfectly
 – message jitter ↔ sensors or communication between cars not perfect
Wireless Communication
Wireless Communication
- EE, Physics
- Maxwell Equations
- Simulation, Testing
- ‘Scaling Laws’

Network Algorithms
- CS, Applied Math
- [Geometric] Graphs
- Worst-Case Analysis
- Any-Case Analysis
CS Models: e.g. Disk Model (Protocol Model)
EE Models: e.g. SINR Model (Physical Model)
Signal-To-Interference-Plus-Noise Ratio (SINR) Formula

\[
\frac{P_u}{d(u,v)\alpha} + \sum_{w \in V \setminus \{u\}} \frac{P_w}{d(w,v)\alpha} + N \geq \beta
\]
Example: Protocol vs. Physical Model

Assume a single frequency (and no fancy decoding techniques!)

Let $\alpha=3$, $\beta=3$, and $N=10nW$

Transmission powers: $P_B = -15$ dBm and $P_A = 1$ dBm

SINR of A at D:
$$\frac{1.26mW/(7m)^3}{0.01\mu W + 31.6\mu W/(3m)^3} \approx 3.11 \geq \beta$$

SINR of B at C:
$$\frac{31.6\mu W/(1m)^3}{0.01\mu W + 1.26mW/(5m)^3} \approx 3.13 \geq \beta$$
This works in practice!

... even with very simple hardware (sensor nodes)

Time for transmitting 20’000 packets:

<table>
<thead>
<tr>
<th>Node</th>
<th>Time required (standard MAC)</th>
<th>“SINR-MAC”</th>
</tr>
</thead>
<tbody>
<tr>
<td>u₁</td>
<td>721s</td>
<td>267s</td>
</tr>
<tr>
<td>u₂</td>
<td>778s</td>
<td>268s</td>
</tr>
<tr>
<td>u₃</td>
<td>780s</td>
<td>270s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Messages received</th>
<th>standard MAC</th>
<th>“SINR-MAC”</th>
</tr>
</thead>
<tbody>
<tr>
<td>u₄</td>
<td>19999</td>
<td>19773</td>
</tr>
<tr>
<td>u₅</td>
<td>18784</td>
<td>18488</td>
</tr>
<tr>
<td>u₆</td>
<td>16519</td>
<td>19498</td>
</tr>
</tbody>
</table>

Speed-up is almost a factor 3

The Capacity of a Network
(How many concurrent wireless transmissions can you have)
... is a well-studied problem in Wireless Communication

The Capacity of Wireless Networks
Gupta, Kumar, 2000

[Toumpis, TWC’03] [Gamal et al, INFOCOM’04]
[Liu et al, INFOCOM’03] [Kyasanur et al, MOBICOM’05]
[Kodialam et al, MOBICOM’05] [Gastpar et al, INFOCOM’02]
[Li et al, MOBICOM’01] [Mitra et al, IPSN’04] [Zhang et al, INFOCOM’05]
[Bansal et al, INFOCOM’03] [Dousse et al, INFOCOM’04]
[Yi et al, MOBIHOC’03] [Perevalov et al, INFOCOM’03]

etc...
Network Topology?

- All these capacity studies make very strong assumptions on node deployment, topologies
 - randomly, uniformly distributed nodes
 - nodes placed on a grid
 - etc.

What if a network looks differently...?
```

"Convergecast Capacity" in Wireless Sensor Networks

<table>
<thead>
<tr>
<th>Networks Model/Power</th>
<th>Worst-Case Capacity</th>
<th>Best-Case Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protocol Model</td>
<td>Max. rate in arbitrary, worst-case deployment</td>
<td>Max. rate in random, uniform deployment</td>
</tr>
<tr>
<td></td>
<td>$\Theta(1/n)$</td>
<td>$\Theta(1/\log n)$</td>
</tr>
<tr>
<td>Physical Model</td>
<td>$\Omega(1/\log n)$</td>
<td>$\Omega(1/\log n)$</td>
</tr>
</tbody>
</table>

Exponential gap between protocol and physical model!

The Price of Worst-Case Node Placement:
- Exponential in protocol model
- Polylogarithmic in physical model (almost no worst-case penalty!)

[Convergecast Capacity](Moscibroda, W, 2006)
[Halldorsson, Mitra, 2012]

[Best-Case Capacity](Giridhar, Kumar, 2005)```
Physical Algorithms

Real Capacity
How much information can be transmitted in any network?

“Classic” Capacity
How much information can be transmitted in nice networks?

Worst-Case Capacity
How much information can be transmitted in nasty networks?
Wireless Communication

EE, Physics
Maxwell Equations
Simulation, Testing
‘Scaling Laws’

Network Algorithms

CS, Applied Math
[Geometric] Graphs
Worst-Case Analysis
Any-Case Analysis
... is really taking off right now!

The Complexity of Connectivity ...
Moscibroda et al., Infocom 2006

[Fanghaenel et al, PODC’09]
[Lotker et al., INFOCOM’11]  [Kesselheim, SODA’11]  [Fanghaenel et al, ICALP’09]
[Kesselheim et al, DISC’10]  [Halldorsson et al, SODA’11]  [Goussevskaia et al, INFOCOM’09]
[Avin et al, PODC’11]  [Kantor et al, STOC’11]  [Lebhar et al, IPDPS’09]
[Halldorsson, ESA’09]  [Hua et al, TCS’09]  etc...
Possible Application – Hotspots in WLAN
Possible Application – Hotspots in WLAN
Physical Algorithms?
Physical Algorithms

no seq. input/output       beyond laws of physics
Some Unifying Theory?
Distributed Algorithms is a tool to understand physical algorithms.

- **Self-Assembling Robots**
- **Self-Stabilization**
- **Dynamics**
- **Applications e.g. Multicore**
- **Distributed Algorithms**
- **Sublinear Estimators**
Distributed Algorithms: A Simple Example
How Many Nodes in Network?
With a simple flooding/echo process, a network can find the number of nodes in time $O(D)$, where $D$ is the diameter (size) of the network.
Diameter (Size) of Network?

- Distance between two nodes = Number of hops of shortest path
Diameter (Size) of Network?

- **Distance** between two nodes = Number of hops of shortest path
Diameter (Size) of Network?

- **Distance** between two nodes = Number of hops of shortest path
- **Diameter** of network = Maximum distance, between any two nodes
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)
Networks Cannot Compute Their Diameter in Sublinear Time!

(even if diameter is just a small constant)

Pair of nodes not connected on both sides? We have $\Theta(n^2)$ information that has to be transmitted over $O(n)$ edges, which takes $\Omega(n)$ time!

[Frischknecht, Holzer, W, 2012]
Summary

Self-Stabilization Distributed Algorithms Dynamics Self-Assembling Robots Applications e.g. Multicore

Sublinear Estimators

Distributed Algorithms

Robots

Mobile Networks

Networks

Parallelism

Self-Organization

Game Theory

BAR Games

Crypto

Agents

Network Mobility
Thank You!
Questions & Comments?

Thanks to my co-authors
Silvio Frischknecht
Stephan Holzer
Christoph Lenzen
Thomas Moscibroda
Thomas Locher
Philipp Sommer

www.disco.ethz.ch